boringssl/crypto/evp/p_rsa_asn1.c
David Benjamin e30a09e604 Implement new PKCS#8 parsers.
As with SPKI parsers, the intent is make EVP_PKEY capture the key's
constraints in full fidelity, so we'd have to add new types or store the
information in the underlying key object if people introduce variant key
types with weird constraints on them.

Note that because PKCS#8 has a space for arbitrary attributes, this
parser must admit a hole. I'm assuming for now that we don't need an API
that enforces no attributes and just ignore trailing data in the
structure for simplicity.

BUG=499653

Change-Id: I6fc641355e87136c7220f5d7693566d1144a68e8
Reviewed-on: https://boringssl-review.googlesource.com/6866
Reviewed-by: Adam Langley <agl@google.com>
2016-02-17 17:24:10 +00:00

739 lines
20 KiB
C

/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/evp.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include "../rsa/internal.h"
#include "internal.h"
static int rsa_pub_encode(CBB *out, const EVP_PKEY *key) {
/* See RFC 3279, section 2.3.1. */
CBB spki, algorithm, null, key_bitstring;
if (!CBB_add_asn1(out, &spki, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&algorithm, NID_rsaEncryption) ||
!CBB_add_asn1(&algorithm, &null, CBS_ASN1_NULL) ||
!CBB_add_asn1(&spki, &key_bitstring, CBS_ASN1_BITSTRING) ||
!CBB_add_u8(&key_bitstring, 0 /* padding */) ||
!RSA_marshal_public_key(&key_bitstring, key->pkey.rsa) ||
!CBB_flush(out)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ENCODE_ERROR);
return 0;
}
return 1;
}
static int rsa_pub_decode(EVP_PKEY *out, CBS *params, CBS *key) {
/* See RFC 3279, section 2.3.1. */
/* The parameters must be NULL. */
CBS null;
if (!CBS_get_asn1(params, &null, CBS_ASN1_NULL) ||
CBS_len(&null) != 0 ||
CBS_len(params) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return 0;
}
/* Estonian IDs issued between September 2014 to September 2015 are
* broken. See https://crbug.com/532048 and https://crbug.com/534766.
*
* TODO(davidben): Switch this to the strict version in March 2016 or when
* Chromium can force client certificates down a different codepath, whichever
* comes first. */
RSA *rsa = RSA_parse_public_key_buggy(key);
if (rsa == NULL || CBS_len(key) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
RSA_free(rsa);
return 0;
}
EVP_PKEY_assign_RSA(out, rsa);
return 1;
}
static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) {
return BN_cmp(b->pkey.rsa->n, a->pkey.rsa->n) == 0 &&
BN_cmp(b->pkey.rsa->e, a->pkey.rsa->e) == 0;
}
static int rsa_priv_encode(CBB *out, const EVP_PKEY *key) {
CBB pkcs8, algorithm, null, private_key;
if (!CBB_add_asn1(out, &pkcs8, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&pkcs8, 0 /* version */) ||
!CBB_add_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&algorithm, NID_rsaEncryption) ||
!CBB_add_asn1(&algorithm, &null, CBS_ASN1_NULL) ||
!CBB_add_asn1(&pkcs8, &private_key, CBS_ASN1_OCTETSTRING) ||
!RSA_marshal_private_key(&private_key, key->pkey.rsa) ||
!CBB_flush(out)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ENCODE_ERROR);
return 0;
}
return 1;
}
static int rsa_priv_decode(EVP_PKEY *out, CBS *params, CBS *key) {
/* Per RFC 3447, A.1, the parameters have type NULL. */
CBS null;
if (!CBS_get_asn1(params, &null, CBS_ASN1_NULL) ||
CBS_len(&null) != 0 ||
CBS_len(params) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return 0;
}
RSA *rsa = RSA_parse_private_key(key);
if (rsa == NULL || CBS_len(key) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
RSA_free(rsa);
return 0;
}
EVP_PKEY_assign_RSA(out, rsa);
return 1;
}
static int rsa_opaque(const EVP_PKEY *pkey) {
return RSA_is_opaque(pkey->pkey.rsa);
}
static int rsa_supports_digest(const EVP_PKEY *pkey, const EVP_MD *md) {
return RSA_supports_digest(pkey->pkey.rsa, md);
}
static int int_rsa_size(const EVP_PKEY *pkey) {
return RSA_size(pkey->pkey.rsa);
}
static int rsa_bits(const EVP_PKEY *pkey) {
return BN_num_bits(pkey->pkey.rsa->n);
}
static void int_rsa_free(EVP_PKEY *pkey) { RSA_free(pkey->pkey.rsa); }
static void update_buflen(const BIGNUM *b, size_t *pbuflen) {
size_t i;
if (!b) {
return;
}
i = BN_num_bytes(b);
if (*pbuflen < i) {
*pbuflen = i;
}
}
static int do_rsa_print(BIO *out, const RSA *rsa, int off,
int include_private) {
char *str;
const char *s;
uint8_t *m = NULL;
int ret = 0, mod_len = 0;
size_t buf_len = 0;
update_buflen(rsa->n, &buf_len);
update_buflen(rsa->e, &buf_len);
if (include_private) {
update_buflen(rsa->d, &buf_len);
update_buflen(rsa->p, &buf_len);
update_buflen(rsa->q, &buf_len);
update_buflen(rsa->dmp1, &buf_len);
update_buflen(rsa->dmq1, &buf_len);
update_buflen(rsa->iqmp, &buf_len);
if (rsa->additional_primes != NULL) {
size_t i;
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes);
i++) {
const RSA_additional_prime *ap =
sk_RSA_additional_prime_value(rsa->additional_primes, i);
update_buflen(ap->prime, &buf_len);
update_buflen(ap->exp, &buf_len);
update_buflen(ap->coeff, &buf_len);
}
}
}
m = OPENSSL_malloc(buf_len + 10);
if (m == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->n != NULL) {
mod_len = BN_num_bits(rsa->n);
}
if (!BIO_indent(out, off, 128)) {
goto err;
}
if (include_private && rsa->d) {
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "modulus:";
s = "publicExponent:";
} else {
if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "Modulus:";
s = "Exponent:";
}
if (!ASN1_bn_print(out, str, rsa->n, m, off) ||
!ASN1_bn_print(out, s, rsa->e, m, off)) {
goto err;
}
if (include_private) {
if (!ASN1_bn_print(out, "privateExponent:", rsa->d, m, off) ||
!ASN1_bn_print(out, "prime1:", rsa->p, m, off) ||
!ASN1_bn_print(out, "prime2:", rsa->q, m, off) ||
!ASN1_bn_print(out, "exponent1:", rsa->dmp1, m, off) ||
!ASN1_bn_print(out, "exponent2:", rsa->dmq1, m, off) ||
!ASN1_bn_print(out, "coefficient:", rsa->iqmp, m, off)) {
goto err;
}
if (rsa->additional_primes != NULL &&
sk_RSA_additional_prime_num(rsa->additional_primes) > 0) {
size_t i;
if (BIO_printf(out, "otherPrimeInfos:\n") <= 0) {
goto err;
}
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes);
i++) {
const RSA_additional_prime *ap =
sk_RSA_additional_prime_value(rsa->additional_primes, i);
if (BIO_printf(out, "otherPrimeInfo (prime %u):\n",
(unsigned)(i + 3)) <= 0 ||
!ASN1_bn_print(out, "prime:", ap->prime, m, off) ||
!ASN1_bn_print(out, "exponent:", ap->exp, m, off) ||
!ASN1_bn_print(out, "coeff:", ap->coeff, m, off)) {
goto err;
}
}
}
}
ret = 1;
err:
OPENSSL_free(m);
return ret;
}
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_rsa_print(bp, pkey->pkey.rsa, indent, 0);
}
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_rsa_print(bp, pkey->pkey.rsa, indent, 1);
}
/* Given an MGF1 Algorithm ID decode to an Algorithm Identifier */
static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg) {
const uint8_t *p;
int plen;
if (alg == NULL || alg->parameter == NULL ||
OBJ_obj2nid(alg->algorithm) != NID_mgf1 ||
alg->parameter->type != V_ASN1_SEQUENCE) {
return NULL;
}
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
return d2i_X509_ALGOR(NULL, &p, plen);
}
static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg,
X509_ALGOR **pmaskHash) {
const uint8_t *p;
int plen;
RSA_PSS_PARAMS *pss;
*pmaskHash = NULL;
if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE) {
return NULL;
}
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen);
if (!pss) {
return NULL;
}
*pmaskHash = rsa_mgf1_decode(pss->maskGenAlgorithm);
return pss;
}
static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss,
X509_ALGOR *maskHash, int indent) {
int rv = 0;
if (!pss) {
if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0) {
return 0;
}
return 1;
}
if (BIO_puts(bp, "\n") <= 0 ||
!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Hash Algorithm: ") <= 0) {
goto err;
}
if (pss->hashAlgorithm) {
if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "sha1 (default)") <= 0) {
goto err;
}
if (BIO_puts(bp, "\n") <= 0 ||
!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Mask Algorithm: ") <= 0) {
goto err;
}
if (pss->maskGenAlgorithm) {
if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0 ||
BIO_puts(bp, " with ") <= 0) {
goto err;
}
if (maskHash) {
if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "INVALID") <= 0) {
goto err;
}
} else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0) {
goto err;
}
BIO_puts(bp, "\n");
if (!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Salt Length: 0x") <= 0) {
goto err;
}
if (pss->saltLength) {
if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "14 (default)") <= 0) {
goto err;
}
BIO_puts(bp, "\n");
if (!BIO_indent(bp, indent, 128) ||
BIO_puts(bp, "Trailer Field: 0x") <= 0) {
goto err;
}
if (pss->trailerField) {
if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0) {
goto err;
}
} else if (BIO_puts(bp, "BC (default)") <= 0) {
goto err;
}
BIO_puts(bp, "\n");
rv = 1;
err:
return rv;
}
static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) {
if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss) {
int rv;
RSA_PSS_PARAMS *pss;
X509_ALGOR *maskHash;
pss = rsa_pss_decode(sigalg, &maskHash);
rv = rsa_pss_param_print(bp, pss, maskHash, indent);
RSA_PSS_PARAMS_free(pss);
X509_ALGOR_free(maskHash);
if (!rv) {
return 0;
}
} else if (!sig && BIO_puts(bp, "\n") <= 0) {
return 0;
}
if (sig) {
return X509_signature_dump(bp, sig, indent);
}
return 1;
}
static int old_rsa_priv_decode(EVP_PKEY *pkey, const uint8_t **pder,
int derlen) {
RSA *rsa = d2i_RSAPrivateKey(NULL, pder, derlen);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_RSA_LIB);
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa);
return 1;
}
/* allocate and set algorithm ID from EVP_MD, default SHA1 */
static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md) {
if (EVP_MD_type(md) == NID_sha1) {
return 1;
}
*palg = X509_ALGOR_new();
if (!*palg) {
return 0;
}
X509_ALGOR_set_md(*palg, md);
return 1;
}
/* Allocate and set MGF1 algorithm ID from EVP_MD */
static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md) {
X509_ALGOR *algtmp = NULL;
ASN1_STRING *stmp = NULL;
*palg = NULL;
if (EVP_MD_type(mgf1md) == NID_sha1) {
return 1;
}
/* need to embed algorithm ID inside another */
if (!rsa_md_to_algor(&algtmp, mgf1md) ||
!ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp)) {
goto err;
}
*palg = X509_ALGOR_new();
if (!*palg) {
goto err;
}
X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp);
stmp = NULL;
err:
ASN1_STRING_free(stmp);
X509_ALGOR_free(algtmp);
if (*palg) {
return 1;
}
return 0;
}
/* convert algorithm ID to EVP_MD, default SHA1 */
static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg) {
const EVP_MD *md;
if (!alg) {
return EVP_sha1();
}
md = EVP_get_digestbyobj(alg->algorithm);
if (md == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_DIGEST);
}
return md;
}
/* convert MGF1 algorithm ID to EVP_MD, default SHA1 */
static const EVP_MD *rsa_mgf1_to_md(X509_ALGOR *alg, X509_ALGOR *maskHash) {
const EVP_MD *md;
if (!alg) {
return EVP_sha1();
}
/* Check mask and lookup mask hash algorithm */
if (OBJ_obj2nid(alg->algorithm) != NID_mgf1) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_MASK_ALGORITHM);
return NULL;
}
if (!maskHash) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_MASK_PARAMETER);
return NULL;
}
md = EVP_get_digestbyobj(maskHash->algorithm);
if (md == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_MASK_DIGEST);
return NULL;
}
return md;
}
/* rsa_ctx_to_pss converts EVP_PKEY_CTX in PSS mode into corresponding
* algorithm parameter, suitable for setting as an AlgorithmIdentifier. */
static ASN1_STRING *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx) {
const EVP_MD *sigmd, *mgf1md;
RSA_PSS_PARAMS *pss = NULL;
ASN1_STRING *os = NULL;
EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx);
int saltlen, rv = 0;
if (!EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) ||
!EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) ||
!EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen)) {
goto err;
}
if (saltlen == -1) {
saltlen = EVP_MD_size(sigmd);
} else if (saltlen == -2) {
saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2;
if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0) {
saltlen--;
}
} else {
goto err;
}
pss = RSA_PSS_PARAMS_new();
if (!pss) {
goto err;
}
if (saltlen != 20) {
pss->saltLength = ASN1_INTEGER_new();
if (!pss->saltLength ||
!ASN1_INTEGER_set(pss->saltLength, saltlen)) {
goto err;
}
}
if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd) ||
!rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md)) {
goto err;
}
/* Finally create string with pss parameter encoding. */
if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os)) {
goto err;
}
rv = 1;
err:
if (pss) {
RSA_PSS_PARAMS_free(pss);
}
if (rv) {
return os;
}
if (os) {
ASN1_STRING_free(os);
}
return NULL;
}
/* From PSS AlgorithmIdentifier set public key parameters. */
static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, X509_ALGOR *sigalg, EVP_PKEY *pkey) {
int ret = 0;
int saltlen;
const EVP_MD *mgf1md = NULL, *md = NULL;
RSA_PSS_PARAMS *pss;
X509_ALGOR *maskHash;
EVP_PKEY_CTX *pkctx;
/* Sanity check: make sure it is PSS */
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_SIGNATURE_TYPE);
return 0;
}
/* Decode PSS parameters */
pss = rsa_pss_decode(sigalg, &maskHash);
if (pss == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_PARAMETERS);
goto err;
}
mgf1md = rsa_mgf1_to_md(pss->maskGenAlgorithm, maskHash);
if (!mgf1md) {
goto err;
}
md = rsa_algor_to_md(pss->hashAlgorithm);
if (!md) {
goto err;
}
saltlen = 20;
if (pss->saltLength) {
saltlen = ASN1_INTEGER_get(pss->saltLength);
/* Could perform more salt length sanity checks but the main
* RSA routines will trap other invalid values anyway. */
if (saltlen < 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_SALT_LENGTH);
goto err;
}
}
/* low-level routines support only trailer field 0xbc (value 1)
* and PKCS#1 says we should reject any other value anyway. */
if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_TRAILER);
goto err;
}
if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey) ||
!EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) ||
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) ||
!EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md)) {
goto err;
}
ret = 1;
err:
RSA_PSS_PARAMS_free(pss);
if (maskHash) {
X509_ALGOR_free(maskHash);
}
return ret;
}
/* Customised RSA AlgorithmIdentifier handling. This is called when a signature
* is encountered requiring special handling. We currently only handle PSS. */
static int rsa_digest_verify_init_from_algorithm(EVP_MD_CTX *ctx,
X509_ALGOR *sigalg,
EVP_PKEY *pkey) {
/* Sanity check: make sure it is PSS */
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_SIGNATURE_TYPE);
return 0;
}
return rsa_pss_to_ctx(ctx, sigalg, pkey);
}
static evp_digest_sign_algorithm_result_t rsa_digest_sign_algorithm(
EVP_MD_CTX *ctx, X509_ALGOR *sigalg) {
int pad_mode;
EVP_PKEY_CTX *pkctx = ctx->pctx;
if (!EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode)) {
return EVP_DIGEST_SIGN_ALGORITHM_ERROR;
}
if (pad_mode == RSA_PKCS1_PSS_PADDING) {
ASN1_STRING *os1 = rsa_ctx_to_pss(pkctx);
if (!os1) {
return EVP_DIGEST_SIGN_ALGORITHM_ERROR;
}
X509_ALGOR_set0(sigalg, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os1);
return EVP_DIGEST_SIGN_ALGORITHM_SUCCESS;
}
/* Other padding schemes use the default behavior. */
return EVP_DIGEST_SIGN_ALGORITHM_DEFAULT;
}
const EVP_PKEY_ASN1_METHOD rsa_asn1_meth = {
EVP_PKEY_RSA,
ASN1_PKEY_SIGPARAM_NULL,
"RSA",
rsa_pub_decode,
rsa_pub_encode,
rsa_pub_cmp,
rsa_pub_print,
rsa_priv_decode,
rsa_priv_encode,
rsa_priv_print,
rsa_opaque,
rsa_supports_digest,
int_rsa_size,
rsa_bits,
0,0,0,0,
rsa_sig_print,
int_rsa_free,
old_rsa_priv_decode,
rsa_digest_verify_init_from_algorithm,
rsa_digest_sign_algorithm,
};