09633cc34e
This has no behavior change, but it has a semantic one. This CL is an assertion that all BIGNUM functions tolerate non-minimal BIGNUMs now. Specifically: - Functions that do not touch top/width are assumed to not care. - Functions that do touch top/width will be changed by this CL. These should be checked in review that they tolerate non-minimal BIGNUMs. Subsequent CLs will start adjusting the widths that BIGNUM functions output, to fix timing leaks. Bug: 232 Change-Id: I3a2b41b071f2174452f8d3801bce5c78947bb8f7 Reviewed-on: https://boringssl-review.googlesource.com/25257 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
415 lines
9.8 KiB
C
415 lines
9.8 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
#include "../delocate.h"
|
|
|
|
|
|
BIGNUM *BN_new(void) {
|
|
BIGNUM *bn = OPENSSL_malloc(sizeof(BIGNUM));
|
|
|
|
if (bn == NULL) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memset(bn, 0, sizeof(BIGNUM));
|
|
bn->flags = BN_FLG_MALLOCED;
|
|
|
|
return bn;
|
|
}
|
|
|
|
void BN_init(BIGNUM *bn) {
|
|
OPENSSL_memset(bn, 0, sizeof(BIGNUM));
|
|
}
|
|
|
|
void BN_free(BIGNUM *bn) {
|
|
if (bn == NULL) {
|
|
return;
|
|
}
|
|
|
|
if ((bn->flags & BN_FLG_STATIC_DATA) == 0) {
|
|
OPENSSL_free(bn->d);
|
|
}
|
|
|
|
if (bn->flags & BN_FLG_MALLOCED) {
|
|
OPENSSL_free(bn);
|
|
} else {
|
|
bn->d = NULL;
|
|
}
|
|
}
|
|
|
|
void BN_clear_free(BIGNUM *bn) {
|
|
char should_free;
|
|
|
|
if (bn == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (bn->d != NULL) {
|
|
if ((bn->flags & BN_FLG_STATIC_DATA) == 0) {
|
|
OPENSSL_free(bn->d);
|
|
} else {
|
|
OPENSSL_cleanse(bn->d, bn->dmax * sizeof(bn->d[0]));
|
|
}
|
|
}
|
|
|
|
should_free = (bn->flags & BN_FLG_MALLOCED) != 0;
|
|
if (should_free) {
|
|
OPENSSL_free(bn);
|
|
} else {
|
|
OPENSSL_cleanse(bn, sizeof(BIGNUM));
|
|
}
|
|
}
|
|
|
|
BIGNUM *BN_dup(const BIGNUM *src) {
|
|
BIGNUM *copy;
|
|
|
|
if (src == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
copy = BN_new();
|
|
if (copy == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!BN_copy(copy, src)) {
|
|
BN_free(copy);
|
|
return NULL;
|
|
}
|
|
|
|
return copy;
|
|
}
|
|
|
|
BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src) {
|
|
if (src == dest) {
|
|
return dest;
|
|
}
|
|
|
|
if (!bn_wexpand(dest, src->width)) {
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memcpy(dest->d, src->d, sizeof(src->d[0]) * src->width);
|
|
|
|
dest->width = src->width;
|
|
dest->neg = src->neg;
|
|
return dest;
|
|
}
|
|
|
|
void BN_clear(BIGNUM *bn) {
|
|
if (bn->d != NULL) {
|
|
OPENSSL_memset(bn->d, 0, bn->dmax * sizeof(bn->d[0]));
|
|
}
|
|
|
|
bn->width = 0;
|
|
bn->neg = 0;
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(BIGNUM, BN_value_one) {
|
|
static const BN_ULONG kOneLimbs[1] = { 1 };
|
|
out->d = (BN_ULONG*) kOneLimbs;
|
|
out->width = 1;
|
|
out->dmax = 1;
|
|
out->neg = 0;
|
|
out->flags = BN_FLG_STATIC_DATA;
|
|
}
|
|
|
|
// BN_num_bits_word returns the minimum number of bits needed to represent the
|
|
// value in |l|.
|
|
unsigned BN_num_bits_word(BN_ULONG l) {
|
|
// |BN_num_bits| is often called on RSA prime factors. These have public bit
|
|
// lengths, but all bits beyond the high bit are secret, so count bits in
|
|
// constant time.
|
|
BN_ULONG x, mask;
|
|
int bits = (l != 0);
|
|
|
|
#if BN_BITS2 > 32
|
|
x = l >> 32;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 32 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
#endif
|
|
|
|
x = l >> 16;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 16 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 8;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 8 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 4;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 4 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 2;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 2 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 1;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 1 & mask;
|
|
|
|
return bits;
|
|
}
|
|
|
|
unsigned BN_num_bits(const BIGNUM *bn) {
|
|
const int width = bn_minimal_width(bn);
|
|
if (width == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return (width - 1) * BN_BITS2 + BN_num_bits_word(bn->d[width - 1]);
|
|
}
|
|
|
|
unsigned BN_num_bytes(const BIGNUM *bn) {
|
|
return (BN_num_bits(bn) + 7) / 8;
|
|
}
|
|
|
|
void BN_zero(BIGNUM *bn) {
|
|
bn->width = bn->neg = 0;
|
|
}
|
|
|
|
int BN_one(BIGNUM *bn) {
|
|
return BN_set_word(bn, 1);
|
|
}
|
|
|
|
int BN_set_word(BIGNUM *bn, BN_ULONG value) {
|
|
if (value == 0) {
|
|
BN_zero(bn);
|
|
return 1;
|
|
}
|
|
|
|
if (!bn_wexpand(bn, 1)) {
|
|
return 0;
|
|
}
|
|
|
|
bn->neg = 0;
|
|
bn->d[0] = value;
|
|
bn->width = 1;
|
|
return 1;
|
|
}
|
|
|
|
int BN_set_u64(BIGNUM *bn, uint64_t value) {
|
|
#if BN_BITS2 == 64
|
|
return BN_set_word(bn, value);
|
|
#elif BN_BITS2 == 32
|
|
if (value <= BN_MASK2) {
|
|
return BN_set_word(bn, (BN_ULONG)value);
|
|
}
|
|
|
|
if (!bn_wexpand(bn, 2)) {
|
|
return 0;
|
|
}
|
|
|
|
bn->neg = 0;
|
|
bn->d[0] = (BN_ULONG)value;
|
|
bn->d[1] = (BN_ULONG)(value >> 32);
|
|
bn->width = 2;
|
|
return 1;
|
|
#else
|
|
#error "BN_BITS2 must be 32 or 64."
|
|
#endif
|
|
}
|
|
|
|
int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num) {
|
|
if (!bn_wexpand(bn, num)) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memmove(bn->d, words, num * sizeof(BN_ULONG));
|
|
// |bn_wexpand| verified that |num| isn't too large.
|
|
bn->width = (int)num;
|
|
bn_set_minimal_width(bn);
|
|
bn->neg = 0;
|
|
return 1;
|
|
}
|
|
|
|
int bn_fits_in_words(const BIGNUM *bn, size_t num) {
|
|
// All words beyond |num| must be zero.
|
|
BN_ULONG mask = 0;
|
|
for (size_t i = num; i < (size_t)bn->width; i++) {
|
|
mask |= bn->d[i];
|
|
}
|
|
return mask == 0;
|
|
}
|
|
|
|
int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn) {
|
|
if (bn->neg) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
|
|
size_t width = (size_t)bn->width;
|
|
if (width > num) {
|
|
if (!bn_fits_in_words(bn, num)) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
width = num;
|
|
}
|
|
|
|
OPENSSL_memset(out, 0, sizeof(BN_ULONG) * num);
|
|
OPENSSL_memcpy(out, bn->d, sizeof(BN_ULONG) * width);
|
|
return 1;
|
|
}
|
|
|
|
int BN_is_negative(const BIGNUM *bn) {
|
|
return bn->neg != 0;
|
|
}
|
|
|
|
void BN_set_negative(BIGNUM *bn, int sign) {
|
|
if (sign && !BN_is_zero(bn)) {
|
|
bn->neg = 1;
|
|
} else {
|
|
bn->neg = 0;
|
|
}
|
|
}
|
|
|
|
int bn_wexpand(BIGNUM *bn, size_t words) {
|
|
BN_ULONG *a;
|
|
|
|
if (words <= (size_t)bn->dmax) {
|
|
return 1;
|
|
}
|
|
|
|
if (words > (INT_MAX / (4 * BN_BITS2))) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
|
|
if (bn->flags & BN_FLG_STATIC_DATA) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
|
|
return 0;
|
|
}
|
|
|
|
a = OPENSSL_malloc(sizeof(BN_ULONG) * words);
|
|
if (a == NULL) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memcpy(a, bn->d, sizeof(BN_ULONG) * bn->width);
|
|
|
|
OPENSSL_free(bn->d);
|
|
bn->d = a;
|
|
bn->dmax = (int)words;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int bn_expand(BIGNUM *bn, size_t bits) {
|
|
if (bits + BN_BITS2 - 1 < bits) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
return bn_wexpand(bn, (bits+BN_BITS2-1)/BN_BITS2);
|
|
}
|
|
|
|
int bn_resize_words(BIGNUM *bn, size_t words) {
|
|
if ((size_t)bn->width <= words) {
|
|
if (!bn_wexpand(bn, words)) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memset(bn->d + bn->width, 0,
|
|
(words - bn->width) * sizeof(BN_ULONG));
|
|
bn->width = words;
|
|
return 1;
|
|
}
|
|
|
|
// All words beyond the new width must be zero.
|
|
if (!bn_fits_in_words(bn, words)) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
bn->width = words;
|
|
return 1;
|
|
}
|
|
|
|
int bn_minimal_width(const BIGNUM *bn) {
|
|
int ret = bn->width;
|
|
while (ret > 0 && bn->d[ret - 1] == 0) {
|
|
ret--;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void bn_set_minimal_width(BIGNUM *bn) {
|
|
bn->width = bn_minimal_width(bn);
|
|
if (bn->width == 0) {
|
|
bn->neg = 0;
|
|
}
|
|
}
|