boringssl/ssl/test/packeted_bio.cc
Adam Langley 09feb0f3d9 Move C++ helpers into |bssl| namespace.
We currently have the situation where the |tool| and |bssl_shim| code
includes scoped_types.h from crypto/test and ssl/test. That's weird and
shouldn't happen. Also, our C++ consumers might quite like to have
access to the scoped types.

Thus this change moves some of the template code to base.h and puts it
all in a |bssl| namespace to prepare for scattering these types into
their respective headers. In order that all the existing test code be
able to access these types, it's all moved into the same namespace.

Change-Id: I3207e29474dc5fcc344ace43119df26dae04eabb
Reviewed-on: https://boringssl-review.googlesource.com/8730
Reviewed-by: David Benjamin <davidben@google.com>
2016-07-11 23:04:52 +00:00

309 lines
7.3 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "packeted_bio.h"
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <openssl/mem.h>
namespace bssl {
namespace {
extern const BIO_METHOD g_packeted_bio_method;
const uint8_t kOpcodePacket = 'P';
const uint8_t kOpcodeTimeout = 'T';
const uint8_t kOpcodeTimeoutAck = 't';
struct PacketedBio {
explicit PacketedBio(bool advance_clock_arg)
: advance_clock(advance_clock_arg) {
memset(&timeout, 0, sizeof(timeout));
memset(&clock, 0, sizeof(clock));
memset(&read_deadline, 0, sizeof(read_deadline));
}
bool HasTimeout() const {
return timeout.tv_sec != 0 || timeout.tv_usec != 0;
}
bool CanRead() const {
if (read_deadline.tv_sec == 0 && read_deadline.tv_usec == 0) {
return true;
}
if (clock.tv_sec == read_deadline.tv_sec) {
return clock.tv_usec < read_deadline.tv_usec;
}
return clock.tv_sec < read_deadline.tv_sec;
}
timeval timeout;
timeval clock;
timeval read_deadline;
bool advance_clock;
};
PacketedBio *GetData(BIO *bio) {
if (bio->method != &g_packeted_bio_method) {
return NULL;
}
return (PacketedBio *)bio->ptr;
}
const PacketedBio *GetData(const BIO *bio) {
return GetData(const_cast<BIO*>(bio));
}
// ReadAll reads |len| bytes from |bio| into |out|. It returns 1 on success and
// 0 or -1 on error.
static int ReadAll(BIO *bio, uint8_t *out, size_t len) {
while (len > 0) {
int chunk_len = INT_MAX;
if (len <= INT_MAX) {
chunk_len = (int)len;
}
int ret = BIO_read(bio, out, chunk_len);
if (ret <= 0) {
return ret;
}
out += ret;
len -= ret;
}
return 1;
}
static int PacketedWrite(BIO *bio, const char *in, int inl) {
if (bio->next_bio == NULL) {
return 0;
}
BIO_clear_retry_flags(bio);
// Write the header.
uint8_t header[5];
header[0] = kOpcodePacket;
header[1] = (inl >> 24) & 0xff;
header[2] = (inl >> 16) & 0xff;
header[3] = (inl >> 8) & 0xff;
header[4] = inl & 0xff;
int ret = BIO_write(bio->next_bio, header, sizeof(header));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
// Write the buffer.
ret = BIO_write(bio->next_bio, in, inl);
if (ret < 0 || (inl > 0 && ret == 0)) {
BIO_copy_next_retry(bio);
return ret;
}
assert(ret == inl);
return ret;
}
static int PacketedRead(BIO *bio, char *out, int outl) {
PacketedBio *data = GetData(bio);
if (bio->next_bio == NULL) {
return 0;
}
BIO_clear_retry_flags(bio);
for (;;) {
// Check if the read deadline has passed.
if (!data->CanRead()) {
BIO_set_retry_read(bio);
return -1;
}
// Read the opcode.
uint8_t opcode;
int ret = ReadAll(bio->next_bio, &opcode, sizeof(opcode));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
if (opcode == kOpcodeTimeout) {
// The caller is required to advance any pending timeouts before
// continuing.
if (data->HasTimeout()) {
fprintf(stderr, "Unprocessed timeout!\n");
return -1;
}
// Process the timeout.
uint8_t buf[8];
ret = ReadAll(bio->next_bio, buf, sizeof(buf));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
uint64_t timeout = (static_cast<uint64_t>(buf[0]) << 56) |
(static_cast<uint64_t>(buf[1]) << 48) |
(static_cast<uint64_t>(buf[2]) << 40) |
(static_cast<uint64_t>(buf[3]) << 32) |
(static_cast<uint64_t>(buf[4]) << 24) |
(static_cast<uint64_t>(buf[5]) << 16) |
(static_cast<uint64_t>(buf[6]) << 8) |
static_cast<uint64_t>(buf[7]);
timeout /= 1000; // Convert nanoseconds to microseconds.
data->timeout.tv_usec = timeout % 1000000;
data->timeout.tv_sec = timeout / 1000000;
// Send an ACK to the peer.
ret = BIO_write(bio->next_bio, &kOpcodeTimeoutAck, 1);
if (ret <= 0) {
return ret;
}
assert(ret == 1);
if (!data->advance_clock) {
// Signal to the caller to retry the read, after advancing the clock.
BIO_set_retry_read(bio);
return -1;
}
PacketedBioAdvanceClock(bio);
continue;
}
if (opcode != kOpcodePacket) {
fprintf(stderr, "Unknown opcode, %u\n", opcode);
return -1;
}
// Read the length prefix.
uint8_t len_bytes[4];
ret = ReadAll(bio->next_bio, len_bytes, sizeof(len_bytes));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
uint32_t len = (len_bytes[0] << 24) | (len_bytes[1] << 16) |
(len_bytes[2] << 8) | len_bytes[3];
uint8_t *buf = (uint8_t *)OPENSSL_malloc(len);
if (buf == NULL) {
return -1;
}
ret = ReadAll(bio->next_bio, buf, len);
if (ret <= 0) {
fprintf(stderr, "Packeted BIO was truncated\n");
return -1;
}
if (outl > (int)len) {
outl = len;
}
memcpy(out, buf, outl);
OPENSSL_free(buf);
return outl;
}
}
static long PacketedCtrl(BIO *bio, int cmd, long num, void *ptr) {
if (cmd == BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT) {
memcpy(&GetData(bio)->read_deadline, ptr, sizeof(timeval));
return 1;
}
if (bio->next_bio == NULL) {
return 0;
}
BIO_clear_retry_flags(bio);
int ret = BIO_ctrl(bio->next_bio, cmd, num, ptr);
BIO_copy_next_retry(bio);
return ret;
}
static int PacketedNew(BIO *bio) {
bio->init = 1;
return 1;
}
static int PacketedFree(BIO *bio) {
if (bio == NULL) {
return 0;
}
delete GetData(bio);
bio->init = 0;
return 1;
}
static long PacketedCallbackCtrl(BIO *bio, int cmd, bio_info_cb fp) {
if (bio->next_bio == NULL) {
return 0;
}
return BIO_callback_ctrl(bio->next_bio, cmd, fp);
}
const BIO_METHOD g_packeted_bio_method = {
BIO_TYPE_FILTER,
"packeted bio",
PacketedWrite,
PacketedRead,
NULL /* puts */,
NULL /* gets */,
PacketedCtrl,
PacketedNew,
PacketedFree,
PacketedCallbackCtrl,
};
} // namespace
ScopedBIO PacketedBioCreate(bool advance_clock) {
ScopedBIO bio(BIO_new(&g_packeted_bio_method));
if (!bio) {
return nullptr;
}
bio->ptr = new PacketedBio(advance_clock);
return bio;
}
timeval PacketedBioGetClock(const BIO *bio) {
return GetData(bio)->clock;
}
bool PacketedBioAdvanceClock(BIO *bio) {
PacketedBio *data = GetData(bio);
if (data == nullptr) {
return false;
}
if (!data->HasTimeout()) {
return false;
}
data->clock.tv_usec += data->timeout.tv_usec;
data->clock.tv_sec += data->clock.tv_usec / 1000000;
data->clock.tv_usec %= 1000000;
data->clock.tv_sec += data->timeout.tv_sec;
memset(&data->timeout, 0, sizeof(data->timeout));
return true;
}
} // namespace bssl