5e578c9dba
Change-Id: I8512c6bfb62f1a83afc8f763d681bf5db3b4ceae Reviewed-on: https://boringssl-review.googlesource.com/17144 Commit-Queue: Adam Langley <alangley@gmail.com> Reviewed-by: David Benjamin <davidben@google.com>
288 lines
12 KiB
C
288 lines
12 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#ifndef OPENSSL_HEADER_EC_INTERNAL_H
|
|
#define OPENSSL_HEADER_EC_INTERNAL_H
|
|
|
|
#include <openssl/base.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
struct ec_method_st {
|
|
int (*group_init)(EC_GROUP *);
|
|
void (*group_finish)(EC_GROUP *);
|
|
int (*group_copy)(EC_GROUP *, const EC_GROUP *);
|
|
int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *,
|
|
BIGNUM *x, BIGNUM *y, BN_CTX *);
|
|
|
|
/* Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar|
|
|
* are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null.
|
|
* Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar|
|
|
* and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is
|
|
* non-null. */
|
|
int (*mul)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
|
|
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx);
|
|
|
|
/* 'field_mul' and 'field_sqr' can be used by 'add' and 'dbl' so that the
|
|
* same implementations of point operations can be used with different
|
|
* optimized implementations of expensive field operations: */
|
|
int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
|
|
|
|
int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *); /* e.g. to Montgomery */
|
|
int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *); /* e.g. from Montgomery */
|
|
} /* EC_METHOD */;
|
|
|
|
const EC_METHOD *EC_GFp_mont_method(void);
|
|
|
|
struct ec_group_st {
|
|
const EC_METHOD *meth;
|
|
|
|
EC_POINT *generator;
|
|
BIGNUM order;
|
|
|
|
int curve_name; /* optional NID for named curve */
|
|
|
|
const BN_MONT_CTX *mont_data; /* data for ECDSA inverse */
|
|
|
|
/* The following members are handled by the method functions,
|
|
* even if they appear generic */
|
|
|
|
BIGNUM field; /* For curves over GF(p), this is the modulus. */
|
|
|
|
BIGNUM a, b; /* Curve coefficients. */
|
|
|
|
int a_is_minus3; /* enable optimized point arithmetics for special case */
|
|
|
|
BN_MONT_CTX *mont; /* Montgomery structure. */
|
|
|
|
BIGNUM one; /* The value one. */
|
|
} /* EC_GROUP */;
|
|
|
|
struct ec_point_st {
|
|
const EC_METHOD *meth;
|
|
|
|
BIGNUM X;
|
|
BIGNUM Y;
|
|
BIGNUM Z; /* Jacobian projective coordinates:
|
|
* (X, Y, Z) represents (X/Z^2, Y/Z^3) if Z != 0 */
|
|
} /* EC_POINT */;
|
|
|
|
EC_GROUP *ec_group_new(const EC_METHOD *meth);
|
|
int ec_group_copy(EC_GROUP *dest, const EC_GROUP *src);
|
|
|
|
/* ec_group_get_mont_data returns a Montgomery context for operations in the
|
|
* scalar field of |group|. It may return NULL in the case that |group| is not
|
|
* a built-in group. */
|
|
const BN_MONT_CTX *ec_group_get_mont_data(const EC_GROUP *group);
|
|
|
|
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
|
|
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx);
|
|
|
|
/* method functions in simple.c */
|
|
int ec_GFp_simple_group_init(EC_GROUP *);
|
|
void ec_GFp_simple_group_finish(EC_GROUP *);
|
|
int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *);
|
|
int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b, BN_CTX *);
|
|
unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *);
|
|
int ec_GFp_simple_point_init(EC_POINT *);
|
|
void ec_GFp_simple_point_finish(EC_POINT *);
|
|
void ec_GFp_simple_point_clear_finish(EC_POINT *);
|
|
int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *);
|
|
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
|
|
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x,
|
|
const BIGNUM *y,
|
|
const BIGNUM *z, BN_CTX *);
|
|
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *,
|
|
const EC_POINT *, BIGNUM *x,
|
|
BIGNUM *y, BIGNUM *z,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, const BIGNUM *y,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, int y_bit,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *);
|
|
int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
|
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num,
|
|
EC_POINT * [], BN_CTX *);
|
|
int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
|
|
/* method functions in montgomery.c */
|
|
int ec_GFp_mont_group_init(EC_GROUP *);
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
void ec_GFp_mont_group_finish(EC_GROUP *);
|
|
int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *);
|
|
int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
|
|
int ec_point_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
|
EC_POINT *point, const BIGNUM *x,
|
|
const BIGNUM *y, const BIGNUM *z,
|
|
BN_CTX *ctx);
|
|
|
|
void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
|
|
|
|
const EC_METHOD *EC_GFp_nistp224_method(void);
|
|
const EC_METHOD *EC_GFp_nistp256_method(void);
|
|
|
|
/* EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
|
|
* x86-64 optimized P256. See http://eprint.iacr.org/2013/816. */
|
|
const EC_METHOD *EC_GFp_nistz256_method(void);
|
|
|
|
struct ec_key_st {
|
|
EC_GROUP *group;
|
|
|
|
EC_POINT *pub_key;
|
|
BIGNUM *priv_key;
|
|
|
|
/* fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
|
|
* This is only for the FIPS power-on tests. */
|
|
BIGNUM *fixed_k;
|
|
|
|
unsigned int enc_flag;
|
|
point_conversion_form_t conv_form;
|
|
|
|
CRYPTO_refcount_t references;
|
|
|
|
ECDSA_METHOD *ecdsa_meth;
|
|
|
|
CRYPTO_EX_DATA ex_data;
|
|
} /* EC_KEY */;
|
|
|
|
/* curve_data contains data about a built-in elliptic curve. */
|
|
struct curve_data {
|
|
/* comment is a human-readable string describing the curve. */
|
|
const char *comment;
|
|
/* param_len is the number of bytes needed to store a field element. */
|
|
uint8_t param_len;
|
|
/* data points to an array of 6*|param_len| bytes which hold the field
|
|
* elements of the following (in big-endian order): prime, a, b, generator x,
|
|
* generator y, order. */
|
|
const uint8_t *data;
|
|
};
|
|
|
|
struct built_in_curve {
|
|
int nid;
|
|
const uint8_t *oid;
|
|
uint8_t oid_len;
|
|
const struct curve_data *data;
|
|
const EC_METHOD *method;
|
|
};
|
|
|
|
#define OPENSSL_NUM_BUILT_IN_CURVES 4
|
|
|
|
struct built_in_curves {
|
|
struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
|
|
};
|
|
|
|
/* OPENSSL_built_in_curves returns a pointer to static information about
|
|
* standard curves. The array is terminated with an entry where |nid| is
|
|
* |NID_undef|. */
|
|
const struct built_in_curves *OPENSSL_built_in_curves(void);
|
|
|
|
#if defined(__cplusplus)
|
|
} /* extern C */
|
|
#endif
|
|
|
|
#endif /* OPENSSL_HEADER_EC_INTERNAL_H */
|