0c40a96455
We were sending decode_error, but the spec explicitly says (RFC 5246): unsupported_extension sent by clients that receive an extended server hello containing an extension that they did not put in the corresponding client hello. This message is always fatal. Also add a test for this when it's a known but unoffered extension. We actually end up putting these in different codepaths now due to the custom extensions stuff. Thanks to Eric Rescorla for pointing this out. Change-Id: If6c8033d4cfe69ef8af5678b873b25e0dbadfc4f Reviewed-on: https://boringssl-review.googlesource.com/9061 Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> |
||
---|---|---|
.. | ||
runner | ||
async_bio.cc | ||
async_bio.h | ||
bssl_shim.cc | ||
CMakeLists.txt | ||
packeted_bio.cc | ||
packeted_bio.h | ||
README.md | ||
scoped_types.h | ||
test_config.cc | ||
test_config.h |
BoringSSL SSL Tests
This directory contains BoringSSL's protocol-level test suite.
Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.
Instead, we use a fork of the Go crypto/tls
package, heavily patched with
configurable bugs. This code, along with a test suite and harness written in Go,
lives in the runner
directory. The harness runs BoringSSL via a C/C++ shim
binary which lives in this directory. All communication with the shim binary
occurs with command-line flags, sockets, and standard I/O.
This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.
To run the tests manually, run go test
from the runner
directory. It takes
command-line flags found at the top of runner/runner.go
. The -help
option
also works after using go test -c
to make a runner.test
binary first.
If adding a new test, these files may be a good starting point:
runner/runner.go
: the test harness and all the individual tests.runner/common.go
: contains theConfig
andProtocolBugs
struct which control the Go TLS implementation's behavior.test_config.h
,test_config.cc
: the command-line flags which control the shim's behavior.bssl_shim.cc
: the shim binary itself.