boringssl/tool/speed.cc
David Benjamin 0cce863f74 Use scopers in tool/
Change-Id: I4e61dc57d1ec65e892b1933f35663db164f017eb
Reviewed-on: https://boringssl-review.googlesource.com/11681
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2016-10-24 20:05:42 +00:00

671 lines
21 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <string>
#include <functional>
#include <memory>
#include <vector>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/bn.h>
#include <openssl/curve25519.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/ec_key.h>
#include <openssl/newhope.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#if defined(OPENSSL_WINDOWS)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#elif defined(OPENSSL_APPLE)
#include <sys/time.h>
#else
#include <time.h>
#endif
#include "internal.h"
// TimeResults represents the results of benchmarking a function.
struct TimeResults {
// num_calls is the number of function calls done in the time period.
unsigned num_calls;
// us is the number of microseconds that elapsed in the time period.
unsigned us;
void Print(const std::string &description) {
printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
description.c_str(), us,
(static_cast<double>(num_calls) / us) * 1000000);
}
void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
num_calls, description.c_str(), us,
(static_cast<double>(num_calls) / us) * 1000000,
static_cast<double>(bytes_per_call * num_calls) / us);
}
};
#if defined(OPENSSL_WINDOWS)
static uint64_t time_now() { return GetTickCount64() * 1000; }
#elif defined(OPENSSL_APPLE)
static uint64_t time_now() {
struct timeval tv;
uint64_t ret;
gettimeofday(&tv, NULL);
ret = tv.tv_sec;
ret *= 1000000;
ret += tv.tv_usec;
return ret;
}
#else
static uint64_t time_now() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
uint64_t ret = ts.tv_sec;
ret *= 1000000;
ret += ts.tv_nsec / 1000;
return ret;
}
#endif
static uint64_t g_timeout_seconds = 1;
static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
// total_us is the total amount of time that we'll aim to measure a function
// for.
const uint64_t total_us = g_timeout_seconds * 1000000;
uint64_t start = time_now(), now, delta;
unsigned done = 0, iterations_between_time_checks;
if (!func()) {
return false;
}
now = time_now();
delta = now - start;
if (delta == 0) {
iterations_between_time_checks = 250;
} else {
// Aim for about 100ms between time checks.
iterations_between_time_checks =
static_cast<double>(100000) / static_cast<double>(delta);
if (iterations_between_time_checks > 1000) {
iterations_between_time_checks = 1000;
} else if (iterations_between_time_checks < 1) {
iterations_between_time_checks = 1;
}
}
for (;;) {
for (unsigned i = 0; i < iterations_between_time_checks; i++) {
if (!func()) {
return false;
}
done++;
}
now = time_now();
if (now - start > total_us) {
break;
}
}
results->us = now - start;
results->num_calls = done;
return true;
}
static bool SpeedRSA(const std::string &key_name, RSA *key,
const std::string &selected) {
if (!selected.empty() && key_name.find(selected) == std::string::npos) {
return true;
}
std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
const uint8_t fake_sha256_hash[32] = {0};
unsigned sig_len;
TimeResults results;
if (!TimeFunction(&results,
[key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
/* Usually during RSA signing we're using a long-lived |RSA| that has
* already had all of its |BN_MONT_CTX|s constructed, so it makes
* sense to use |key| directly here. */
return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
sig.get(), &sig_len, key);
})) {
fprintf(stderr, "RSA_sign failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.Print(key_name + " signing");
if (!TimeFunction(&results,
[key, &fake_sha256_hash, &sig, sig_len]() -> bool {
/* Usually during RSA verification we have to parse an RSA key from a
* certificate or similar, in which case we'd need to construct a new
* RSA key, with a new |BN_MONT_CTX| for the public modulus. If we were
* to use |key| directly instead, then these costs wouldn't be
* accounted for. */
bssl::UniquePtr<RSA> verify_key(RSA_new());
if (!verify_key) {
return false;
}
verify_key->n = BN_dup(key->n);
verify_key->e = BN_dup(key->e);
if (!verify_key->n ||
!verify_key->e) {
return false;
}
return RSA_verify(NID_sha256, fake_sha256_hash,
sizeof(fake_sha256_hash), sig.get(), sig_len, key);
})) {
fprintf(stderr, "RSA_verify failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.Print(key_name + " verify");
return true;
}
static uint8_t *align(uint8_t *in, unsigned alignment) {
return reinterpret_cast<uint8_t *>(
(reinterpret_cast<uintptr_t>(in) + alignment) &
~static_cast<size_t>(alignment - 1));
}
static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
size_t chunk_len, size_t ad_len) {
static const unsigned kAlignment = 16;
bssl::ScopedEVP_AEAD_CTX ctx;
const size_t key_len = EVP_AEAD_key_length(aead);
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
const size_t overhead_len = EVP_AEAD_max_overhead(aead);
std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
memset(key.get(), 0, key_len);
std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
memset(nonce.get(), 0, nonce_len);
std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]);
std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
memset(ad.get(), 0, ad_len);
uint8_t *const in = align(in_storage.get(), kAlignment);
memset(in, 0, chunk_len);
uint8_t *const out = align(out_storage.get(), kAlignment);
memset(out, 0, chunk_len + overhead_len);
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH,
evp_aead_seal)) {
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
ERR_print_errors_fp(stderr);
return false;
}
TimeResults results;
if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in,
out, &ctx, &nonce, &ad]() -> bool {
size_t out_len;
return EVP_AEAD_CTX_seal(ctx.get(), out, &out_len,
chunk_len + overhead_len, nonce.get(),
nonce_len, in, chunk_len, ad.get(), ad_len);
})) {
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name + " seal", chunk_len);
return true;
}
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
size_t ad_len, const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) &&
SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) &&
SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len);
}
static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
size_t chunk_len) {
EVP_MD_CTX *ctx = EVP_MD_CTX_create();
uint8_t scratch[8192];
if (chunk_len > sizeof(scratch)) {
return false;
}
TimeResults results;
if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned int md_len;
return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
EVP_DigestUpdate(ctx, scratch, chunk_len) &&
EVP_DigestFinal_ex(ctx, digest, &md_len);
})) {
fprintf(stderr, "EVP_DigestInit_ex failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name, chunk_len);
EVP_MD_CTX_destroy(ctx);
return true;
}
static bool SpeedHash(const EVP_MD *md, const std::string &name,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
SpeedHashChunk(md, name + " (256 bytes)", 256) &&
SpeedHashChunk(md, name + " (8192 bytes)", 8192);
}
static bool SpeedRandomChunk(const std::string name, size_t chunk_len) {
uint8_t scratch[8192];
if (chunk_len > sizeof(scratch)) {
return false;
}
TimeResults results;
if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
RAND_bytes(scratch, chunk_len);
return true;
})) {
return false;
}
results.PrintWithBytes(name, chunk_len);
return true;
}
static bool SpeedRandom(const std::string &selected) {
if (!selected.empty() && selected != "RNG") {
return true;
}
return SpeedRandomChunk("RNG (16 bytes)", 16) &&
SpeedRandomChunk("RNG (256 bytes)", 256) &&
SpeedRandomChunk("RNG (8192 bytes)", 8192);
}
static bool SpeedECDHCurve(const std::string &name, int nid,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
TimeResults results;
if (!TimeFunction(&results, [nid]() -> bool {
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
if (!key ||
!EC_KEY_generate_key(key.get())) {
return false;
}
const EC_GROUP *const group = EC_KEY_get0_group(key.get());
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
bssl::UniquePtr<BIGNUM> x(BN_new());
bssl::UniquePtr<BIGNUM> y(BN_new());
if (!point || !ctx || !x || !y ||
!EC_POINT_mul(group, point.get(), NULL,
EC_KEY_get0_public_key(key.get()),
EC_KEY_get0_private_key(key.get()), ctx.get()) ||
!EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
y.get(), ctx.get())) {
return false;
}
return true;
})) {
return false;
}
results.Print(name);
return true;
}
static bool SpeedECDSACurve(const std::string &name, int nid,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
if (!key ||
!EC_KEY_generate_key(key.get())) {
return false;
}
uint8_t signature[256];
if (ECDSA_size(key.get()) > sizeof(signature)) {
return false;
}
uint8_t digest[20];
memset(digest, 42, sizeof(digest));
unsigned sig_len;
TimeResults results;
if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
key.get()) == 1;
})) {
return false;
}
results.Print(name + " signing");
if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
key.get()) == 1;
})) {
return false;
}
results.Print(name + " verify");
return true;
}
static bool SpeedECDH(const std::string &selected) {
return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
}
static bool SpeedECDSA(const std::string &selected) {
return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
}
static bool Speed25519(const std::string &selected) {
if (!selected.empty() && selected.find("25519") == std::string::npos) {
return true;
}
TimeResults results;
uint8_t public_key[32], private_key[64];
if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
ED25519_keypair(public_key, private_key);
return true;
})) {
return false;
}
results.Print("Ed25519 key generation");
static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
uint8_t signature[64];
if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
return ED25519_sign(signature, kMessage, sizeof(kMessage),
private_key) == 1;
})) {
return false;
}
results.Print("Ed25519 signing");
if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
return ED25519_verify(kMessage, sizeof(kMessage), signature,
public_key) == 1;
})) {
fprintf(stderr, "Ed25519 verify failed.\n");
return false;
}
results.Print("Ed25519 verify");
if (!TimeFunction(&results, []() -> bool {
uint8_t out[32], in[32];
memset(in, 0, sizeof(in));
X25519_public_from_private(out, in);
return true;
})) {
fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
return false;
}
results.Print("Curve25519 base-point multiplication");
if (!TimeFunction(&results, []() -> bool {
uint8_t out[32], in1[32], in2[32];
memset(in1, 0, sizeof(in1));
memset(in2, 0, sizeof(in2));
in1[0] = 1;
in2[0] = 9;
return X25519(out, in1, in2) == 1;
})) {
fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
return false;
}
results.Print("Curve25519 arbitrary point multiplication");
return true;
}
static bool SpeedSPAKE2(const std::string &selected) {
if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
return true;
}
TimeResults results;
static const uint8_t kAliceName[] = {'A'};
static const uint8_t kBobName[] = {'B'};
static const uint8_t kPassword[] = "password";
bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice,
kAliceName, sizeof(kAliceName), kBobName,
sizeof(kBobName)));
uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
size_t alice_msg_len;
if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
sizeof(alice_msg),
kPassword, sizeof(kPassword))) {
fprintf(stderr, "SPAKE2_generate_msg failed.\n");
return false;
}
if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool {
bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob,
kBobName, sizeof(kBobName), kAliceName,
sizeof(kAliceName)));
uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
size_t bob_msg_len, bob_key_len;
if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
sizeof(bob_msg), kPassword,
sizeof(kPassword)) ||
!SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
sizeof(bob_key), alice_msg, alice_msg_len)) {
return false;
}
return true;
})) {
fprintf(stderr, "SPAKE2 failed.\n");
}
results.Print("SPAKE2 over Ed25519");
return true;
}
static bool SpeedNewHope(const std::string &selected) {
if (!selected.empty() && selected.find("newhope") == std::string::npos) {
return true;
}
TimeResults results;
bssl::UniquePtr<NEWHOPE_POLY> sk(NEWHOPE_POLY_new());
uint8_t acceptmsg[NEWHOPE_ACCEPTMSG_LENGTH];
RAND_bytes(acceptmsg, sizeof(acceptmsg));
if (!TimeFunction(&results, [&sk, &acceptmsg]() -> bool {
uint8_t key[SHA256_DIGEST_LENGTH];
uint8_t offermsg[NEWHOPE_OFFERMSG_LENGTH];
NEWHOPE_offer(offermsg, sk.get());
if (!NEWHOPE_finish(key, sk.get(), acceptmsg,
NEWHOPE_ACCEPTMSG_LENGTH)) {
return false;
}
return true;
})) {
fprintf(stderr, "failed to exchange key.\n");
return false;
}
results.Print("newhope key exchange");
return true;
}
static const struct argument kArguments[] = {
{
"-filter", kOptionalArgument,
"A filter on the speed tests to run",
},
{
"-timeout", kOptionalArgument,
"The number of seconds to run each test for (default is 1)",
},
{
"", kOptionalArgument, "",
},
};
bool Speed(const std::vector<std::string> &args) {
std::map<std::string, std::string> args_map;
if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
PrintUsage(kArguments);
return false;
}
std::string selected;
if (args_map.count("-filter") != 0) {
selected = args_map["-filter"];
}
if (args_map.count("-timeout") != 0) {
g_timeout_seconds = atoi(args_map["-timeout"].c_str());
}
bssl::UniquePtr<RSA> key(
RSA_private_key_from_bytes(kDERRSAPrivate2048, kDERRSAPrivate2048Len));
if (key == nullptr) {
fprintf(stderr, "Failed to parse RSA key.\n");
ERR_print_errors_fp(stderr);
return false;
}
if (!SpeedRSA("RSA 2048", key.get(), selected)) {
return false;
}
key.reset(RSA_private_key_from_bytes(kDERRSAPrivate3Prime2048,
kDERRSAPrivate3Prime2048Len));
if (key == nullptr) {
fprintf(stderr, "Failed to parse RSA key.\n");
ERR_print_errors_fp(stderr);
return false;
}
if (!SpeedRSA("RSA 2048 (3 prime, e=3)", key.get(), selected)) {
return false;
}
key.reset(
RSA_private_key_from_bytes(kDERRSAPrivate4096, kDERRSAPrivate4096Len));
if (key == nullptr) {
fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
ERR_print_errors_fp(stderr);
return 1;
}
if (!SpeedRSA("RSA 4096", key.get(), selected)) {
return false;
}
key.reset();
// kTLSADLen is the number of bytes of additional data that TLS passes to
// AEADs.
static const size_t kTLSADLen = 13;
// kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
// These are AEADs that weren't originally defined as AEADs, but which we use
// via the AEAD interface. In order for that to work, they have some TLS
// knowledge in them and construct a couple of the AD bytes internally.
static const size_t kLegacyADLen = kTLSADLen - 2;
if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
selected) ||
!SpeedAEAD(EVP_aead_chacha20_poly1305_old(), "ChaCha20-Poly1305-Old",
kTLSADLen, selected) ||
!SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedHash(EVP_sha1(), "SHA-1", selected) ||
!SpeedHash(EVP_sha256(), "SHA-256", selected) ||
!SpeedHash(EVP_sha512(), "SHA-512", selected) ||
!SpeedRandom(selected) ||
!SpeedECDH(selected) ||
!SpeedECDSA(selected) ||
!Speed25519(selected) ||
!SpeedSPAKE2(selected) ||
!SpeedNewHope(selected)) {
return false;
}
return true;
}