054e682675
Beyond generally eliminating unnecessary includes, eliminate as many includes of headers that declare/define particularly error-prone functionality like strlen, malloc, and free. crypto/err/internal.h was added to remove the dependency on openssl/thread.h from the public openssl/err.h header. The include of <stdlib.h> in openssl/mem.h was retained since it defines OPENSSL_malloc and friends as macros around the stdlib.h functions. The public x509.h, x509v3.h, and ssl.h headers were not changed in order to minimize breakage of source compatibility with external code. Change-Id: I0d264b73ad0a720587774430b2ab8f8275960329 Reviewed-on: https://boringssl-review.googlesource.com/4220 Reviewed-by: Adam Langley <agl@google.com>
417 lines
13 KiB
C
417 lines
13 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]. */
|
|
|
|
#include <openssl/cast.h>
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
#pragma warning(push, 3)
|
|
#include <intrin.h>
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#include "../macros.h"
|
|
|
|
|
|
void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
|
|
int enc) {
|
|
uint32_t d[2];
|
|
|
|
n2l(in, d[0]);
|
|
n2l(in, d[1]);
|
|
if (enc) {
|
|
CAST_encrypt(d, ks);
|
|
} else {
|
|
CAST_decrypt(d, ks);
|
|
}
|
|
l2n(d[0], out);
|
|
l2n(d[1], out);
|
|
}
|
|
|
|
extern const uint32_t CAST_S_table0[256];
|
|
extern const uint32_t CAST_S_table1[256];
|
|
extern const uint32_t CAST_S_table2[256];
|
|
extern const uint32_t CAST_S_table3[256];
|
|
extern const uint32_t CAST_S_table4[256];
|
|
extern const uint32_t CAST_S_table5[256];
|
|
extern const uint32_t CAST_S_table6[256];
|
|
extern const uint32_t CAST_S_table7[256];
|
|
|
|
#if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
|
|
#define ROTL(a, n) (_lrotl(a, n))
|
|
#else
|
|
#define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
|
|
#endif
|
|
|
|
#define E_CAST(n, key, L, R, OP1, OP2, OP3) \
|
|
{ \
|
|
uint32_t a, b, c, d; \
|
|
t = (key[n * 2] OP1 R) & 0xffffffff; \
|
|
t = ROTL(t, (key[n * 2 + 1])); \
|
|
a = CAST_S_table0[(t >> 8) & 0xff]; \
|
|
b = CAST_S_table1[(t)&0xff]; \
|
|
c = CAST_S_table2[(t >> 24) & 0xff]; \
|
|
d = CAST_S_table3[(t >> 16) & 0xff]; \
|
|
L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
|
|
}
|
|
|
|
void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
|
|
uint32_t l, r, t;
|
|
const uint32_t *k;
|
|
|
|
k = &key->data[0];
|
|
l = data[0];
|
|
r = data[1];
|
|
|
|
E_CAST(0, k, l, r, +, ^, -);
|
|
E_CAST(1, k, r, l, ^, -, +);
|
|
E_CAST(2, k, l, r, -, +, ^);
|
|
E_CAST(3, k, r, l, +, ^, -);
|
|
E_CAST(4, k, l, r, ^, -, +);
|
|
E_CAST(5, k, r, l, -, +, ^);
|
|
E_CAST(6, k, l, r, +, ^, -);
|
|
E_CAST(7, k, r, l, ^, -, +);
|
|
E_CAST(8, k, l, r, -, +, ^);
|
|
E_CAST(9, k, r, l, +, ^, -);
|
|
E_CAST(10, k, l, r, ^, -, +);
|
|
E_CAST(11, k, r, l, -, +, ^);
|
|
|
|
if (!key->short_key) {
|
|
E_CAST(12, k, l, r, +, ^, -);
|
|
E_CAST(13, k, r, l, ^, -, +);
|
|
E_CAST(14, k, l, r, -, +, ^);
|
|
E_CAST(15, k, r, l, +, ^, -);
|
|
}
|
|
|
|
data[1] = l & 0xffffffffL;
|
|
data[0] = r & 0xffffffffL;
|
|
}
|
|
|
|
void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
|
|
uint32_t l, r, t;
|
|
const uint32_t *k;
|
|
|
|
k = &key->data[0];
|
|
l = data[0];
|
|
r = data[1];
|
|
|
|
if (!key->short_key) {
|
|
E_CAST(15, k, l, r, +, ^, -);
|
|
E_CAST(14, k, r, l, -, +, ^);
|
|
E_CAST(13, k, l, r, ^, -, +);
|
|
E_CAST(12, k, r, l, +, ^, -);
|
|
}
|
|
|
|
E_CAST(11, k, l, r, -, +, ^);
|
|
E_CAST(10, k, r, l, ^, -, +);
|
|
E_CAST(9, k, l, r, +, ^, -);
|
|
E_CAST(8, k, r, l, -, +, ^);
|
|
E_CAST(7, k, l, r, ^, -, +);
|
|
E_CAST(6, k, r, l, +, ^, -);
|
|
E_CAST(5, k, l, r, -, +, ^);
|
|
E_CAST(4, k, r, l, ^, -, +);
|
|
E_CAST(3, k, l, r, +, ^, -);
|
|
E_CAST(2, k, r, l, -, +, ^);
|
|
E_CAST(1, k, l, r, ^, -, +);
|
|
E_CAST(0, k, r, l, +, ^, -);
|
|
|
|
data[1] = l & 0xffffffffL;
|
|
data[0] = r & 0xffffffffL;
|
|
}
|
|
|
|
void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, long length,
|
|
const CAST_KEY *ks, uint8_t *iv, int enc) {
|
|
uint32_t tin0, tin1;
|
|
uint32_t tout0, tout1, xor0, xor1;
|
|
long l = length;
|
|
uint32_t tin[2];
|
|
|
|
if (enc) {
|
|
n2l(iv, tout0);
|
|
n2l(iv, tout1);
|
|
iv -= 8;
|
|
for (l -= 8; l >= 0; l -= 8) {
|
|
n2l(in, tin0);
|
|
n2l(in, tin1);
|
|
tin0 ^= tout0;
|
|
tin1 ^= tout1;
|
|
tin[0] = tin0;
|
|
tin[1] = tin1;
|
|
CAST_encrypt(tin, ks);
|
|
tout0 = tin[0];
|
|
tout1 = tin[1];
|
|
l2n(tout0, out);
|
|
l2n(tout1, out);
|
|
}
|
|
if (l != -8) {
|
|
n2ln(in, tin0, tin1, l + 8);
|
|
tin0 ^= tout0;
|
|
tin1 ^= tout1;
|
|
tin[0] = tin0;
|
|
tin[1] = tin1;
|
|
CAST_encrypt(tin, ks);
|
|
tout0 = tin[0];
|
|
tout1 = tin[1];
|
|
l2n(tout0, out);
|
|
l2n(tout1, out);
|
|
}
|
|
l2n(tout0, iv);
|
|
l2n(tout1, iv);
|
|
} else {
|
|
n2l(iv, xor0);
|
|
n2l(iv, xor1);
|
|
iv -= 8;
|
|
for (l -= 8; l >= 0; l -= 8) {
|
|
n2l(in, tin0);
|
|
n2l(in, tin1);
|
|
tin[0] = tin0;
|
|
tin[1] = tin1;
|
|
CAST_decrypt(tin, ks);
|
|
tout0 = tin[0] ^ xor0;
|
|
tout1 = tin[1] ^ xor1;
|
|
l2n(tout0, out);
|
|
l2n(tout1, out);
|
|
xor0 = tin0;
|
|
xor1 = tin1;
|
|
}
|
|
if (l != -8) {
|
|
n2l(in, tin0);
|
|
n2l(in, tin1);
|
|
tin[0] = tin0;
|
|
tin[1] = tin1;
|
|
CAST_decrypt(tin, ks);
|
|
tout0 = tin[0] ^ xor0;
|
|
tout1 = tin[1] ^ xor1;
|
|
l2nn(tout0, tout1, out, l + 8);
|
|
xor0 = tin0;
|
|
xor1 = tin1;
|
|
}
|
|
l2n(xor0, iv);
|
|
l2n(xor1, iv);
|
|
}
|
|
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
|
|
tin[0] = tin[1] = 0;
|
|
}
|
|
|
|
#define CAST_exp(l, A, a, n) \
|
|
A[n / 4] = l; \
|
|
a[n + 3] = (l)&0xff; \
|
|
a[n + 2] = (l >> 8) & 0xff; \
|
|
a[n + 1] = (l >> 16) & 0xff; \
|
|
a[n + 0] = (l >> 24) & 0xff;
|
|
#define S4 CAST_S_table4
|
|
#define S5 CAST_S_table5
|
|
#define S6 CAST_S_table6
|
|
#define S7 CAST_S_table7
|
|
|
|
void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
|
|
uint32_t x[16];
|
|
uint32_t z[16];
|
|
uint32_t k[32];
|
|
uint32_t X[4], Z[4];
|
|
uint32_t l, *K;
|
|
size_t i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
x[i] = 0;
|
|
}
|
|
|
|
if (len > 16) {
|
|
len = 16;
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
x[i] = data[i];
|
|
}
|
|
|
|
if (len <= 10) {
|
|
key->short_key = 1;
|
|
} else {
|
|
key->short_key = 0;
|
|
}
|
|
|
|
K = &k[0];
|
|
X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
|
|
X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
|
|
X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
|
|
X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
|
|
|
|
for (;;) {
|
|
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
|
|
CAST_exp(l, Z, z, 0);
|
|
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
|
|
CAST_exp(l, Z, z, 4);
|
|
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
|
|
CAST_exp(l, Z, z, 8);
|
|
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
|
|
CAST_exp(l, Z, z, 12);
|
|
|
|
K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
|
|
K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
|
|
K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
|
|
K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
|
|
|
|
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
|
|
CAST_exp(l, X, x, 0);
|
|
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
|
|
CAST_exp(l, X, x, 4);
|
|
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
|
|
CAST_exp(l, X, x, 8);
|
|
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
|
|
CAST_exp(l, X, x, 12);
|
|
|
|
K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
|
|
K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
|
|
K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
|
|
K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
|
|
|
|
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
|
|
CAST_exp(l, Z, z, 0);
|
|
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
|
|
CAST_exp(l, Z, z, 4);
|
|
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
|
|
CAST_exp(l, Z, z, 8);
|
|
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
|
|
CAST_exp(l, Z, z, 12);
|
|
|
|
K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
|
|
K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
|
|
K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
|
|
K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
|
|
|
|
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
|
|
CAST_exp(l, X, x, 0);
|
|
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
|
|
CAST_exp(l, X, x, 4);
|
|
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
|
|
CAST_exp(l, X, x, 8);
|
|
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
|
|
CAST_exp(l, X, x, 12);
|
|
|
|
K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
|
|
K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
|
|
K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
|
|
K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
|
|
if (K != k) {
|
|
break;
|
|
}
|
|
K += 16;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
key->data[i * 2] = k[i];
|
|
key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
|
|
}
|
|
}
|
|
|
|
/* The input and output encrypted as though 64bit cfb mode is being used. The
|
|
* extra state information to record how much of the 64bit block we have used
|
|
* is contained in *num. */
|
|
void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, long length,
|
|
const CAST_KEY *schedule, uint8_t *ivec, int *num,
|
|
int enc) {
|
|
uint32_t v0, v1, t;
|
|
int n = *num;
|
|
long l = length;
|
|
uint32_t ti[2];
|
|
uint8_t *iv, c, cc;
|
|
|
|
iv = ivec;
|
|
if (enc) {
|
|
while (l--) {
|
|
if (n == 0) {
|
|
n2l(iv, v0);
|
|
ti[0] = v0;
|
|
n2l(iv, v1);
|
|
ti[1] = v1;
|
|
CAST_encrypt((uint32_t *)ti, schedule);
|
|
iv = ivec;
|
|
t = ti[0];
|
|
l2n(t, iv);
|
|
t = ti[1];
|
|
l2n(t, iv);
|
|
iv = ivec;
|
|
}
|
|
c = *(in++) ^ iv[n];
|
|
*(out++) = c;
|
|
iv[n] = c;
|
|
n = (n + 1) & 0x07;
|
|
}
|
|
} else {
|
|
while (l--) {
|
|
if (n == 0) {
|
|
n2l(iv, v0);
|
|
ti[0] = v0;
|
|
n2l(iv, v1);
|
|
ti[1] = v1;
|
|
CAST_encrypt((uint32_t *)ti, schedule);
|
|
iv = ivec;
|
|
t = ti[0];
|
|
l2n(t, iv);
|
|
t = ti[1];
|
|
l2n(t, iv);
|
|
iv = ivec;
|
|
}
|
|
cc = *(in++);
|
|
c = iv[n];
|
|
iv[n] = cc;
|
|
*(out++) = c ^ cc;
|
|
n = (n + 1) & 0x07;
|
|
}
|
|
}
|
|
v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
|
|
*num = n;
|
|
}
|