boringssl/ssl/tls_method.c
David Benjamin daf207a52a Don't use the buffer BIO in TLS.
On the TLS side, we introduce a running buffer of ciphertext. Queuing up
pending data consists of encrypting the record into the buffer. This
effectively reimplements what the buffer BIO was doing previously, but
this resizes to fit the whole flight.

As part of this, rename all the functions to add to the pending flight
to be more uniform. This CL proposes "add_foo" to add to the pending
flight and "flush_flight" to drain it.

We add an add_alert hook for alerts but, for now, only the SSL 3.0
warning alert (sent mid-handshake) uses this mechanism.  Later work will
push this down to the rest of the write path so closure alerts use it
too, as in DTLS. The intended end state is that all the ssl_buffer.c and
wpend_ret logic will only be used for application data and eventually
optionally replaced by the in-place API, while all "incidental" data
will be handled internally.

For now, the two buffers are mutually exclusive. Moving closure alerts
to "incidentals" will change this, but flushing application data early
is tricky due to wpend_ret. (If we call ssl_write_buffer_flush,
do_ssl3_write doesn't realize it still has a wpend_ret to replay.) That
too is all left alone in this change.

To keep the diff down, write_message is retained for now and will be
removed from the state machines in a follow-up change.

BUG=72

Change-Id: Ibce882f5f7196880648f25d5005322ca4055c71d
Reviewed-on: https://boringssl-review.googlesource.com/13224
Reviewed-by: Adam Langley <agl@google.com>
2017-01-25 23:35:47 +00:00

256 lines
7.3 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/buf.h>
#include "../crypto/internal.h"
#include "internal.h"
static int ssl3_version_from_wire(uint16_t *out_version,
uint16_t wire_version) {
switch (wire_version) {
case SSL3_VERSION:
case TLS1_VERSION:
case TLS1_1_VERSION:
case TLS1_2_VERSION:
*out_version = wire_version;
return 1;
case TLS1_3_DRAFT_VERSION:
*out_version = TLS1_3_VERSION;
return 1;
}
return 0;
}
static uint16_t ssl3_version_to_wire(uint16_t version) {
switch (version) {
case SSL3_VERSION:
case TLS1_VERSION:
case TLS1_1_VERSION:
case TLS1_2_VERSION:
return version;
case TLS1_3_VERSION:
return TLS1_3_DRAFT_VERSION;
}
/* It is an error to use this function with an invalid version. */
assert(0);
return 0;
}
static int ssl3_supports_cipher(const SSL_CIPHER *cipher) { return 1; }
static void ssl3_expect_flight(SSL *ssl) {}
static void ssl3_received_flight(SSL *ssl) {}
static int ssl3_set_read_state(SSL *ssl, SSL_AEAD_CTX *aead_ctx) {
if (ssl->s3->rrec.length != 0) {
/* There may not be unprocessed record data at a cipher change. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFERED_MESSAGES_ON_CIPHER_CHANGE);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
SSL_AEAD_CTX_free(aead_ctx);
return 0;
}
OPENSSL_memset(ssl->s3->read_sequence, 0, sizeof(ssl->s3->read_sequence));
SSL_AEAD_CTX_free(ssl->s3->aead_read_ctx);
ssl->s3->aead_read_ctx = aead_ctx;
return 1;
}
static int ssl3_set_write_state(SSL *ssl, SSL_AEAD_CTX *aead_ctx) {
OPENSSL_memset(ssl->s3->write_sequence, 0, sizeof(ssl->s3->write_sequence));
SSL_AEAD_CTX_free(ssl->s3->aead_write_ctx);
ssl->s3->aead_write_ctx = aead_ctx;
return 1;
}
static const SSL_PROTOCOL_METHOD kTLSProtocolMethod = {
0 /* is_dtls */,
SSL3_VERSION,
TLS1_3_VERSION,
ssl3_version_from_wire,
ssl3_version_to_wire,
ssl3_new,
ssl3_free,
ssl3_get_message,
ssl3_get_current_message,
ssl3_release_current_message,
ssl3_read_app_data,
ssl3_read_change_cipher_spec,
ssl3_read_close_notify,
ssl3_write_app_data,
ssl3_dispatch_alert,
ssl3_supports_cipher,
ssl3_init_message,
ssl3_finish_message,
ssl3_add_message,
ssl3_add_change_cipher_spec,
ssl3_add_alert,
ssl3_flush_flight,
ssl3_expect_flight,
ssl3_received_flight,
ssl3_set_read_state,
ssl3_set_write_state,
ssl3_write_message,
};
const SSL_METHOD *TLS_method(void) {
static const SSL_METHOD kMethod = {
0,
&kTLSProtocolMethod,
};
return &kMethod;
}
const SSL_METHOD *SSLv23_method(void) {
return TLS_method();
}
/* Legacy version-locked methods. */
const SSL_METHOD *TLSv1_2_method(void) {
static const SSL_METHOD kMethod = {
TLS1_2_VERSION,
&kTLSProtocolMethod,
};
return &kMethod;
}
const SSL_METHOD *TLSv1_1_method(void) {
static const SSL_METHOD kMethod = {
TLS1_1_VERSION,
&kTLSProtocolMethod,
};
return &kMethod;
}
const SSL_METHOD *TLSv1_method(void) {
static const SSL_METHOD kMethod = {
TLS1_VERSION,
&kTLSProtocolMethod,
};
return &kMethod;
}
const SSL_METHOD *SSLv3_method(void) {
static const SSL_METHOD kMethod = {
SSL3_VERSION,
&kTLSProtocolMethod,
};
return &kMethod;
}
/* Legacy side-specific methods. */
const SSL_METHOD *TLSv1_2_server_method(void) {
return TLSv1_2_method();
}
const SSL_METHOD *TLSv1_1_server_method(void) {
return TLSv1_1_method();
}
const SSL_METHOD *TLSv1_server_method(void) {
return TLSv1_method();
}
const SSL_METHOD *SSLv3_server_method(void) {
return SSLv3_method();
}
const SSL_METHOD *TLSv1_2_client_method(void) {
return TLSv1_2_method();
}
const SSL_METHOD *TLSv1_1_client_method(void) {
return TLSv1_1_method();
}
const SSL_METHOD *TLSv1_client_method(void) {
return TLSv1_method();
}
const SSL_METHOD *SSLv3_client_method(void) {
return SSLv3_method();
}
const SSL_METHOD *SSLv23_server_method(void) {
return SSLv23_method();
}
const SSL_METHOD *SSLv23_client_method(void) {
return SSLv23_method();
}
const SSL_METHOD *TLS_server_method(void) {
return TLS_method();
}
const SSL_METHOD *TLS_client_method(void) {
return TLS_method();
}