boringssl/crypto/perlasm
Adam Langley c1615719ce Add test of assembly code dispatch.
The first attempt involved using Linux's support for hardware
breakpoints to detect when assembly code was run. However, this doesn't
work with SDE, which is a problem.

This version has the assembly code update a global flags variable when
it's run, but only in non-FIPS and non-debug builds.

Update-Note: Assembly files now pay attention to the NDEBUG preprocessor
symbol. Ensure the build passes the symbol in. (If release builds fail
to link due to missing BORINGSSL_function_hit, this is the cause.)

Change-Id: I6b7ced442b7a77d0b4ae148b00c351f68af89a6e
Reviewed-on: https://boringssl-review.googlesource.com/c/33384
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
2019-01-22 20:22:53 +00:00
..
arm-xlate.pl Add a note that generated files are generated. 2018-11-21 20:05:05 +00:00
ppc-xlate.pl Add a note that generated files are generated. 2018-11-21 20:05:05 +00:00
readme Remove filename argument to x86 asm_init. 2017-05-12 14:58:27 +00:00
x86_64-xlate.pl Add test of assembly code dispatch. 2019-01-22 20:22:53 +00:00
x86asm.pl Add test of assembly code dispatch. 2019-01-22 20:22:53 +00:00
x86gas.pl Add test of assembly code dispatch. 2019-01-22 20:22:53 +00:00
x86masm.pl Add test of assembly code dispatch. 2019-01-22 20:22:53 +00:00
x86nasm.pl Add test of assembly code dispatch. 2019-01-22 20:22:53 +00:00

The perl scripts in this directory are my 'hack' to generate
multiple different assembler formats via the one origional script.

The way to use this library is to start with adding the path to this directory
and then include it.

push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";

The first thing we do is setup the file and type of assembler

&asm_init($ARGV[0]);

The first argument is the 'type'.  Currently
'cpp', 'sol', 'a.out', 'elf' or 'win32'.
Argument 2 is the file name.

The reciprocal function is
&asm_finish() which should be called at the end.

There are 2 main 'packages'. x86ms.pl, which is the Microsoft assembler,
and x86unix.pl which is the unix (gas) version.

Functions of interest are:
&external_label("des_SPtrans");	declare and external variable
&LB(reg);			Low byte for a register
&HB(reg);			High byte for a register
&BP(off,base,index,scale)	Byte pointer addressing
&DWP(off,base,index,scale)	Word pointer addressing
&stack_push(num)		Basically a 'sub esp, num*4' with extra
&stack_pop(num)			inverse of stack_push
&function_begin(name,extra)	Start a function with pushing of
				edi, esi, ebx and ebp.  extra is extra win32
				external info that may be required.
&function_begin_B(name,extra)	Same as normal function_begin but no pushing.
&function_end(name)		Call at end of function.
&function_end_A(name)		Standard pop and ret, for use inside functions
&function_end_B(name)		Call at end but with poping or 'ret'.
&swtmp(num)			Address on stack temp word.
&wparam(num)			Parameter number num, that was push
				in C convention.  This all works over pushes
				and pops.
&comment("hello there")		Put in a comment.
&label("loop")			Refer to a label, normally a jmp target.
&set_label("loop")		Set a label at this point.
&data_word(word)		Put in a word of data.

So how does this all hold together?  Given

int calc(int len, int *data)
	{
	int i,j=0;

	for (i=0; i<len; i++)
		{
		j+=other(data[i]);
		}
	}

So a very simple version of this function could be coded as

	push(@INC,"perlasm","../../perlasm");
	require "x86asm.pl";
	
	&asm_init($ARGV[0]);

	&external_label("other");

	$tmp1=	"eax";
	$j=	"edi";
	$data=	"esi";
	$i=	"ebp";

	&comment("a simple function");
	&function_begin("calc");
	&mov(	$data,		&wparam(1)); # data
	&xor(	$j,		$j);
	&xor(	$i,		$i);

	&set_label("loop");
	&cmp(	$i,		&wparam(0));
	&jge(	&label("end"));

	&mov(	$tmp1,		&DWP(0,$data,$i,4));
	&push(	$tmp1);
	&call(	"other");
	&add(	$j,		"eax");
	&pop(	$tmp1);
	&inc(	$i);
	&jmp(	&label("loop"));

	&set_label("end");
	&mov(	"eax",		$j);

	&function_end("calc");

	&asm_finish();

The above example is very very unoptimised but gives an idea of how
things work.