17cf2cb1d2
Most C standard library functions are undefined if passed NULL, even when the corresponding length is zero. This gives them (and, in turn, all functions which call them) surprising behavior on empty arrays. Some compilers will miscompile code due to this rule. See also https://www.imperialviolet.org/2016/06/26/nonnull.html Add OPENSSL_memcpy, etc., wrappers which avoid this problem. BUG=23 Change-Id: I95f42b23e92945af0e681264fffaf578e7f8465e Reviewed-on: https://boringssl-review.googlesource.com/12928 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
641 lines
17 KiB
C
641 lines
17 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#if !defined(__STDC_FORMAT_MACROS)
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <openssl/obj.h>
|
|
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/buf.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/lhash.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "obj_dat.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
|
|
/* These globals are protected by |global_added_lock|. */
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
|
|
|
|
static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
|
|
CRYPTO_STATIC_MUTEX_INIT;
|
|
static unsigned global_next_nid = NUM_NID;
|
|
|
|
static int obj_next_nid(void) {
|
|
int ret;
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
|
|
ret = global_next_nid++;
|
|
CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
|
|
ASN1_OBJECT *r;
|
|
unsigned char *data = NULL;
|
|
char *sn = NULL, *ln = NULL;
|
|
|
|
if (o == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
|
|
/* TODO(fork): this is a little dangerous. */
|
|
return (ASN1_OBJECT *)o;
|
|
}
|
|
|
|
r = ASN1_OBJECT_new();
|
|
if (r == NULL) {
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
|
|
return NULL;
|
|
}
|
|
r->ln = r->sn = NULL;
|
|
|
|
data = OPENSSL_malloc(o->length);
|
|
if (data == NULL) {
|
|
goto err;
|
|
}
|
|
if (o->data != NULL) {
|
|
OPENSSL_memcpy(data, o->data, o->length);
|
|
}
|
|
|
|
/* once data is attached to an object, it remains const */
|
|
r->data = data;
|
|
r->length = o->length;
|
|
r->nid = o->nid;
|
|
|
|
if (o->ln != NULL) {
|
|
ln = OPENSSL_strdup(o->ln);
|
|
if (ln == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (o->sn != NULL) {
|
|
sn = OPENSSL_strdup(o->sn);
|
|
if (sn == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
r->sn = sn;
|
|
r->ln = ln;
|
|
|
|
r->flags =
|
|
o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
|
|
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
|
|
return r;
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
|
|
OPENSSL_free(ln);
|
|
OPENSSL_free(sn);
|
|
OPENSSL_free(data);
|
|
OPENSSL_free(r);
|
|
return NULL;
|
|
}
|
|
|
|
int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
int ret;
|
|
|
|
ret = a->length - b->length;
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
return OPENSSL_memcmp(a->data, b->data, a->length);
|
|
}
|
|
|
|
/* obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
|
|
* an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
|
|
* unsigned int in the array. */
|
|
static int obj_cmp(const void *key, const void *element) {
|
|
unsigned nid = *((const unsigned*) element);
|
|
const ASN1_OBJECT *a = key;
|
|
const ASN1_OBJECT *b = &kObjects[nid];
|
|
|
|
if (a->length < b->length) {
|
|
return -1;
|
|
} else if (a->length > b->length) {
|
|
return 1;
|
|
}
|
|
return OPENSSL_memcmp(a->data, b->data, a->length);
|
|
}
|
|
|
|
int OBJ_obj2nid(const ASN1_OBJECT *obj) {
|
|
const unsigned int *nid_ptr;
|
|
|
|
if (obj == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
if (obj->nid != 0) {
|
|
return obj->nid;
|
|
}
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_data != NULL) {
|
|
ASN1_OBJECT *match;
|
|
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match->nid;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
nid_ptr = bsearch(obj, kNIDsInOIDOrder, NUM_OBJ, sizeof(unsigned), obj_cmp);
|
|
if (nid_ptr == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
return kObjects[*nid_ptr].nid;
|
|
}
|
|
|
|
int OBJ_cbs2nid(const CBS *cbs) {
|
|
if (CBS_len(cbs) > INT_MAX) {
|
|
return NID_undef;
|
|
}
|
|
|
|
ASN1_OBJECT obj;
|
|
OPENSSL_memset(&obj, 0, sizeof(obj));
|
|
obj.data = CBS_data(cbs);
|
|
obj.length = (int)CBS_len(cbs);
|
|
|
|
return OBJ_obj2nid(&obj);
|
|
}
|
|
|
|
/* short_name_cmp is called to search the kNIDsInShortNameOrder array. The
|
|
* |key| argument is name that we're looking for and |element| is a pointer to
|
|
* an unsigned int in the array. */
|
|
static int short_name_cmp(const void *key, const void *element) {
|
|
const char *name = (const char *) key;
|
|
unsigned nid = *((unsigned*) element);
|
|
|
|
return strcmp(name, kObjects[nid].sn);
|
|
}
|
|
|
|
int OBJ_sn2nid(const char *short_name) {
|
|
const unsigned int *nid_ptr;
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_short_name != NULL) {
|
|
ASN1_OBJECT *match, template;
|
|
|
|
template.sn = short_name;
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match->nid;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
nid_ptr = bsearch(short_name, kNIDsInShortNameOrder, NUM_SN, sizeof(unsigned), short_name_cmp);
|
|
if (nid_ptr == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
return kObjects[*nid_ptr].nid;
|
|
}
|
|
|
|
/* long_name_cmp is called to search the kNIDsInLongNameOrder array. The
|
|
* |key| argument is name that we're looking for and |element| is a pointer to
|
|
* an unsigned int in the array. */
|
|
static int long_name_cmp(const void *key, const void *element) {
|
|
const char *name = (const char *) key;
|
|
unsigned nid = *((unsigned*) element);
|
|
|
|
return strcmp(name, kObjects[nid].ln);
|
|
}
|
|
|
|
int OBJ_ln2nid(const char *long_name) {
|
|
const unsigned int *nid_ptr;
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_long_name != NULL) {
|
|
ASN1_OBJECT *match, template;
|
|
|
|
template.ln = long_name;
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match->nid;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
nid_ptr = bsearch(long_name, kNIDsInLongNameOrder, NUM_LN, sizeof(unsigned), long_name_cmp);
|
|
if (nid_ptr == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
return kObjects[*nid_ptr].nid;
|
|
}
|
|
|
|
int OBJ_txt2nid(const char *s) {
|
|
ASN1_OBJECT *obj;
|
|
int nid;
|
|
|
|
obj = OBJ_txt2obj(s, 0 /* search names */);
|
|
nid = OBJ_obj2nid(obj);
|
|
ASN1_OBJECT_free(obj);
|
|
return nid;
|
|
}
|
|
|
|
OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
|
|
CBB oid;
|
|
|
|
if (obj == NULL ||
|
|
!CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
|
|
!CBB_add_bytes(&oid, obj->data, obj->length) ||
|
|
!CBB_flush(out)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
const ASN1_OBJECT *OBJ_nid2obj(int nid) {
|
|
if (nid >= 0 && nid < NUM_NID) {
|
|
if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
|
|
goto err;
|
|
}
|
|
return &kObjects[nid];
|
|
}
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_nid != NULL) {
|
|
ASN1_OBJECT *match, template;
|
|
|
|
template.nid = nid;
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
|
|
return NULL;
|
|
}
|
|
|
|
const char *OBJ_nid2sn(int nid) {
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return obj->sn;
|
|
}
|
|
|
|
const char *OBJ_nid2ln(int nid) {
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return obj->ln;
|
|
}
|
|
|
|
ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
|
|
int nid = NID_undef;
|
|
ASN1_OBJECT *op = NULL;
|
|
unsigned char *buf;
|
|
unsigned char *p;
|
|
const unsigned char *bufp;
|
|
int contents_len, total_len;
|
|
|
|
if (!dont_search_names) {
|
|
nid = OBJ_sn2nid(s);
|
|
if (nid == NID_undef) {
|
|
nid = OBJ_ln2nid(s);
|
|
}
|
|
|
|
if (nid != NID_undef) {
|
|
return (ASN1_OBJECT*) OBJ_nid2obj(nid);
|
|
}
|
|
}
|
|
|
|
/* Work out size of content octets */
|
|
contents_len = a2d_ASN1_OBJECT(NULL, 0, s, -1);
|
|
if (contents_len <= 0) {
|
|
return NULL;
|
|
}
|
|
/* Work out total size */
|
|
total_len = ASN1_object_size(0, contents_len, V_ASN1_OBJECT);
|
|
|
|
buf = OPENSSL_malloc(total_len);
|
|
if (buf == NULL) {
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
p = buf;
|
|
/* Write out tag+length */
|
|
ASN1_put_object(&p, 0, contents_len, V_ASN1_OBJECT, V_ASN1_UNIVERSAL);
|
|
/* Write out contents */
|
|
a2d_ASN1_OBJECT(p, contents_len, s, -1);
|
|
|
|
bufp = buf;
|
|
op = d2i_ASN1_OBJECT(NULL, &bufp, total_len);
|
|
OPENSSL_free(buf);
|
|
|
|
return op;
|
|
}
|
|
|
|
static int strlcpy_int(char *dst, const char *src, int dst_size) {
|
|
size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
|
|
if (ret > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return (int)ret;
|
|
}
|
|
|
|
static int parse_oid_component(CBS *cbs, uint64_t *out) {
|
|
uint64_t v = 0;
|
|
uint8_t b;
|
|
do {
|
|
if (!CBS_get_u8(cbs, &b)) {
|
|
return 0;
|
|
}
|
|
if ((v >> (64 - 7)) != 0) {
|
|
/* The component is too large. */
|
|
return 0;
|
|
}
|
|
if (v == 0 && b == 0x80) {
|
|
/* The component must be minimally encoded. */
|
|
return 0;
|
|
}
|
|
v = (v << 7) | (b & 0x7f);
|
|
|
|
/* Components end at an octet with the high bit cleared. */
|
|
} while (b & 0x80);
|
|
|
|
*out = v;
|
|
return 1;
|
|
}
|
|
|
|
static int add_decimal(CBB *out, uint64_t v) {
|
|
char buf[DECIMAL_SIZE(uint64_t) + 1];
|
|
BIO_snprintf(buf, sizeof(buf), "%" PRIu64, v);
|
|
return CBB_add_bytes(out, (const uint8_t *)buf, strlen(buf));
|
|
}
|
|
|
|
int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
|
|
int always_return_oid) {
|
|
/* Python depends on the empty OID successfully encoding as the empty
|
|
* string. */
|
|
if (obj == NULL || obj->length == 0) {
|
|
return strlcpy_int(out, "", out_len);
|
|
}
|
|
|
|
if (!always_return_oid) {
|
|
int nid = OBJ_obj2nid(obj);
|
|
if (nid != NID_undef) {
|
|
const char *name = OBJ_nid2ln(nid);
|
|
if (name == NULL) {
|
|
name = OBJ_nid2sn(nid);
|
|
}
|
|
if (name != NULL) {
|
|
return strlcpy_int(out, name, out_len);
|
|
}
|
|
}
|
|
}
|
|
|
|
CBB cbb;
|
|
if (!CBB_init(&cbb, 32)) {
|
|
goto err;
|
|
}
|
|
|
|
CBS cbs;
|
|
CBS_init(&cbs, obj->data, obj->length);
|
|
|
|
/* The first component is 40 * value1 + value2, where value1 is 0, 1, or 2. */
|
|
uint64_t v;
|
|
if (!parse_oid_component(&cbs, &v)) {
|
|
goto err;
|
|
}
|
|
|
|
if (v >= 80) {
|
|
if (!CBB_add_bytes(&cbb, (const uint8_t *)"2.", 2) ||
|
|
!add_decimal(&cbb, v - 80)) {
|
|
goto err;
|
|
}
|
|
} else if (!add_decimal(&cbb, v / 40) ||
|
|
!CBB_add_u8(&cbb, '.') ||
|
|
!add_decimal(&cbb, v % 40)) {
|
|
goto err;
|
|
}
|
|
|
|
while (CBS_len(&cbs) != 0) {
|
|
if (!parse_oid_component(&cbs, &v) ||
|
|
!CBB_add_u8(&cbb, '.') ||
|
|
!add_decimal(&cbb, v)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
uint8_t *txt;
|
|
size_t txt_len;
|
|
if (!CBB_add_u8(&cbb, '\0') ||
|
|
!CBB_finish(&cbb, &txt, &txt_len)) {
|
|
goto err;
|
|
}
|
|
|
|
int ret = strlcpy_int(out, (const char *)txt, out_len);
|
|
OPENSSL_free(txt);
|
|
return ret;
|
|
|
|
err:
|
|
CBB_cleanup(&cbb);
|
|
if (out_len > 0) {
|
|
out[0] = '\0';
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static uint32_t hash_nid(const ASN1_OBJECT *obj) {
|
|
return obj->nid;
|
|
}
|
|
|
|
static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
return a->nid - b->nid;
|
|
}
|
|
|
|
static uint32_t hash_data(const ASN1_OBJECT *obj) {
|
|
return OPENSSL_hash32(obj->data, obj->length);
|
|
}
|
|
|
|
static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
int i = a->length - b->length;
|
|
if (i) {
|
|
return i;
|
|
}
|
|
return OPENSSL_memcmp(a->data, b->data, a->length);
|
|
}
|
|
|
|
static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
|
|
return lh_strhash(obj->sn);
|
|
}
|
|
|
|
static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
return strcmp(a->sn, b->sn);
|
|
}
|
|
|
|
static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
|
|
return lh_strhash(obj->ln);
|
|
}
|
|
|
|
static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
return strcmp(a->ln, b->ln);
|
|
}
|
|
|
|
/* obj_add_object inserts |obj| into the various global hashes for run-time
|
|
* added objects. It returns one on success or zero otherwise. */
|
|
static int obj_add_object(ASN1_OBJECT *obj) {
|
|
int ok;
|
|
ASN1_OBJECT *old_object;
|
|
|
|
obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
|
|
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
|
|
if (global_added_by_nid == NULL) {
|
|
global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
|
|
global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
|
|
global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
|
|
global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
|
|
}
|
|
|
|
/* We don't pay attention to |old_object| (which contains any previous object
|
|
* that was evicted from the hashes) because we don't have a reference count
|
|
* on ASN1_OBJECT values. Also, we should never have duplicates nids and so
|
|
* should always have objects in |global_added_by_nid|. */
|
|
|
|
ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
|
|
if (obj->length != 0 && obj->data != NULL) {
|
|
ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
|
|
}
|
|
if (obj->sn != NULL) {
|
|
ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
|
|
}
|
|
if (obj->ln != NULL) {
|
|
ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
|
|
|
|
return ok;
|
|
}
|
|
|
|
int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
|
|
int ret = NID_undef;
|
|
ASN1_OBJECT *op = NULL;
|
|
unsigned char *buf = NULL;
|
|
int len;
|
|
|
|
len = a2d_ASN1_OBJECT(NULL, 0, oid, -1);
|
|
if (len <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
buf = OPENSSL_malloc(len);
|
|
if (buf == NULL) {
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
len = a2d_ASN1_OBJECT(buf, len, oid, -1);
|
|
if (len == 0) {
|
|
goto err;
|
|
}
|
|
|
|
op = (ASN1_OBJECT *)ASN1_OBJECT_create(obj_next_nid(), buf, len, short_name,
|
|
long_name);
|
|
if (op == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (obj_add_object(op)) {
|
|
ret = op->nid;
|
|
}
|
|
op = NULL;
|
|
|
|
err:
|
|
ASN1_OBJECT_free(op);
|
|
OPENSSL_free(buf);
|
|
|
|
return ret;
|
|
}
|