You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

214 lines
7.5 KiB

  1. /*
  2. * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/evp.h>
  10. #include <assert.h>
  11. #include <openssl/err.h>
  12. #include <openssl/mem.h>
  13. #include <openssl/type_check.h>
  14. #include "../internal.h"
  15. // This file implements scrypt, described in RFC 7914.
  16. //
  17. // Note scrypt refers to both "blocks" and a "block size" parameter, r. These
  18. // are two different notions of blocks. A Salsa20 block is 64 bytes long,
  19. // represented in this implementation by 16 |uint32_t|s. |r| determines the
  20. // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r|
  21. // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and
  22. // scrypt blocks, respectively.
  23. // A block_t is a Salsa20 block.
  24. typedef struct { uint32_t words[16]; } block_t;
  25. OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding");
  26. #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
  27. // salsa208_word_specification implements the Salsa20/8 core function, also
  28. // described in RFC 7914, section 3. It modifies the block at |inout|
  29. // in-place.
  30. static void salsa208_word_specification(block_t *inout) {
  31. block_t x;
  32. OPENSSL_memcpy(&x, inout, sizeof(x));
  33. for (int i = 8; i > 0; i -= 2) {
  34. x.words[4] ^= R(x.words[0] + x.words[12], 7);
  35. x.words[8] ^= R(x.words[4] + x.words[0], 9);
  36. x.words[12] ^= R(x.words[8] + x.words[4], 13);
  37. x.words[0] ^= R(x.words[12] + x.words[8], 18);
  38. x.words[9] ^= R(x.words[5] + x.words[1], 7);
  39. x.words[13] ^= R(x.words[9] + x.words[5], 9);
  40. x.words[1] ^= R(x.words[13] + x.words[9], 13);
  41. x.words[5] ^= R(x.words[1] + x.words[13], 18);
  42. x.words[14] ^= R(x.words[10] + x.words[6], 7);
  43. x.words[2] ^= R(x.words[14] + x.words[10], 9);
  44. x.words[6] ^= R(x.words[2] + x.words[14], 13);
  45. x.words[10] ^= R(x.words[6] + x.words[2], 18);
  46. x.words[3] ^= R(x.words[15] + x.words[11], 7);
  47. x.words[7] ^= R(x.words[3] + x.words[15], 9);
  48. x.words[11] ^= R(x.words[7] + x.words[3], 13);
  49. x.words[15] ^= R(x.words[11] + x.words[7], 18);
  50. x.words[1] ^= R(x.words[0] + x.words[3], 7);
  51. x.words[2] ^= R(x.words[1] + x.words[0], 9);
  52. x.words[3] ^= R(x.words[2] + x.words[1], 13);
  53. x.words[0] ^= R(x.words[3] + x.words[2], 18);
  54. x.words[6] ^= R(x.words[5] + x.words[4], 7);
  55. x.words[7] ^= R(x.words[6] + x.words[5], 9);
  56. x.words[4] ^= R(x.words[7] + x.words[6], 13);
  57. x.words[5] ^= R(x.words[4] + x.words[7], 18);
  58. x.words[11] ^= R(x.words[10] + x.words[9], 7);
  59. x.words[8] ^= R(x.words[11] + x.words[10], 9);
  60. x.words[9] ^= R(x.words[8] + x.words[11], 13);
  61. x.words[10] ^= R(x.words[9] + x.words[8], 18);
  62. x.words[12] ^= R(x.words[15] + x.words[14], 7);
  63. x.words[13] ^= R(x.words[12] + x.words[15], 9);
  64. x.words[14] ^= R(x.words[13] + x.words[12], 13);
  65. x.words[15] ^= R(x.words[14] + x.words[13], 18);
  66. }
  67. for (int i = 0; i < 16; ++i) {
  68. inout->words[i] += x.words[i];
  69. }
  70. }
  71. // xor_block sets |*out| to be |*a| XOR |*b|.
  72. static void xor_block(block_t *out, const block_t *a, const block_t *b) {
  73. for (size_t i = 0; i < 16; i++) {
  74. out->words[i] = a->words[i] ^ b->words[i];
  75. }
  76. }
  77. // scryptBlockMix implements the function described in RFC 7914, section 4. B'
  78. // is written to |out|. |out| and |B| may not alias and must be each one scrypt
  79. // block (2 * |r| Salsa20 blocks) long.
  80. static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) {
  81. assert(out != B);
  82. block_t X;
  83. OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X));
  84. for (uint64_t i = 0; i < r * 2; i++) {
  85. xor_block(&X, &X, &B[i]);
  86. salsa208_word_specification(&X);
  87. // This implements the permutation in step 3.
  88. OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X));
  89. }
  90. }
  91. // scryptROMix implements the function described in RFC 7914, section 5. |B| is
  92. // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and
  93. // |V| are scratch space allocated by the caller. |T| must have space for one
  94. // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt
  95. // blocks (2 * |r| * |N| Salsa20 blocks).
  96. static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T,
  97. block_t *V) {
  98. // Steps 1 and 2.
  99. OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t));
  100. for (uint64_t i = 1; i < N; i++) {
  101. scryptBlockMix(&V[2 * r * i /* scrypt block i */],
  102. &V[2 * r * (i - 1) /* scrypt block i-1 */], r);
  103. }
  104. scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r);
  105. // Step 3.
  106. for (uint64_t i = 0; i < N; i++) {
  107. // Note this assumes |N| <= 2^32 and is a power of 2.
  108. uint32_t j = B[2 * r - 1].words[0] & (N - 1);
  109. for (size_t k = 0; k < 2 * r; k++) {
  110. xor_block(&T[k], &B[k], &V[2 * r * j + k]);
  111. }
  112. scryptBlockMix(B, T, r);
  113. }
  114. }
  115. // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the
  116. // bounds on p in section 6:
  117. //
  118. // p <= ((2^32-1) * hLen) / MFLen iff
  119. // p <= ((2^32-1) * 32) / (128 * r) iff
  120. // p * r <= (2^30-1)
  121. #define SCRYPT_PR_MAX ((1 << 30) - 1)
  122. // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by
  123. // |EVP_PBE_scrypt|.
  124. #define SCRYPT_MAX_MEM (1024 * 1024 * 32)
  125. int EVP_PBE_scrypt(const char *password, size_t password_len,
  126. const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r,
  127. uint64_t p, size_t max_mem, uint8_t *out_key,
  128. size_t key_len) {
  129. if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r ||
  130. // |N| must be a power of two.
  131. N < 2 || (N & (N - 1)) ||
  132. // We only support |N| <= 2^32 in |scryptROMix|.
  133. N > UINT64_C(1) << 32 ||
  134. // Check that |N| < 2^(128×r / 8).
  135. (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) {
  136. OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS);
  137. return 0;
  138. }
  139. // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N|
  140. // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s.
  141. if (max_mem == 0) {
  142. max_mem = SCRYPT_MAX_MEM;
  143. }
  144. size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t));
  145. if (max_scrypt_blocks < p + 1 ||
  146. max_scrypt_blocks - p - 1 < N) {
  147. OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
  148. return 0;
  149. }
  150. // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which
  151. // is no bigger than uint64_t, so none of these operations may overflow.
  152. OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t");
  153. size_t B_blocks = p * 2 * r;
  154. size_t B_bytes = B_blocks * sizeof(block_t);
  155. size_t T_blocks = 2 * r;
  156. size_t V_blocks = N * 2 * r;
  157. block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t));
  158. if (B == NULL) {
  159. OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
  160. return 0;
  161. }
  162. int ret = 0;
  163. block_t *T = B + B_blocks;
  164. block_t *V = T + T_blocks;
  165. // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure
  166. // or |iterations| of 0 (we pass 1 here). This is consistent with
  167. // the documented failure conditions of EVP_PBE_scrypt.
  168. if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1,
  169. EVP_sha256(), B_bytes, (uint8_t *)B)) {
  170. goto err;
  171. }
  172. for (uint64_t i = 0; i < p; i++) {
  173. scryptROMix(B + 2 * r * i, r, N, T, V);
  174. }
  175. if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1,
  176. EVP_sha256(), key_len, out_key)) {
  177. goto err;
  178. }
  179. ret = 1;
  180. err:
  181. OPENSSL_free(B);
  182. return ret;
  183. }