You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

843 lines
25 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/x509.h>
  57. #include <string.h>
  58. #include <openssl/asn1.h>
  59. #include <openssl/err.h>
  60. #include <openssl/mem.h>
  61. #include <openssl/obj.h>
  62. #include <openssl/x509v3.h>
  63. #include "../internal.h"
  64. #include "../x509v3/internal.h"
  65. /*
  66. * Although this file is in crypto/x509 for layering purposes, it emits
  67. * errors from the ASN.1 module for OpenSSL compatibility.
  68. */
  69. #define ASN1_GEN_FLAG 0x10000
  70. #define ASN1_GEN_FLAG_IMP (ASN1_GEN_FLAG|1)
  71. #define ASN1_GEN_FLAG_EXP (ASN1_GEN_FLAG|2)
  72. #define ASN1_GEN_FLAG_TAG (ASN1_GEN_FLAG|3)
  73. #define ASN1_GEN_FLAG_BITWRAP (ASN1_GEN_FLAG|4)
  74. #define ASN1_GEN_FLAG_OCTWRAP (ASN1_GEN_FLAG|5)
  75. #define ASN1_GEN_FLAG_SEQWRAP (ASN1_GEN_FLAG|6)
  76. #define ASN1_GEN_FLAG_SETWRAP (ASN1_GEN_FLAG|7)
  77. #define ASN1_GEN_FLAG_FORMAT (ASN1_GEN_FLAG|8)
  78. #define ASN1_GEN_STR(str,val) {str, sizeof(str) - 1, val}
  79. #define ASN1_FLAG_EXP_MAX 20
  80. /* Maximum number of nested sequences */
  81. #define ASN1_GEN_SEQ_MAX_DEPTH 50
  82. /* Input formats */
  83. /* ASCII: default */
  84. #define ASN1_GEN_FORMAT_ASCII 1
  85. /* UTF8 */
  86. #define ASN1_GEN_FORMAT_UTF8 2
  87. /* Hex */
  88. #define ASN1_GEN_FORMAT_HEX 3
  89. /* List of bits */
  90. #define ASN1_GEN_FORMAT_BITLIST 4
  91. struct tag_name_st {
  92. const char *strnam;
  93. int len;
  94. int tag;
  95. };
  96. typedef struct {
  97. int exp_tag;
  98. int exp_class;
  99. int exp_constructed;
  100. int exp_pad;
  101. long exp_len;
  102. } tag_exp_type;
  103. typedef struct {
  104. int imp_tag;
  105. int imp_class;
  106. int utype;
  107. int format;
  108. const char *str;
  109. tag_exp_type exp_list[ASN1_FLAG_EXP_MAX];
  110. int exp_count;
  111. } tag_exp_arg;
  112. static ASN1_TYPE *generate_v3(char *str, X509V3_CTX *cnf, int depth,
  113. int *perr);
  114. static int bitstr_cb(const char *elem, int len, void *bitstr);
  115. static int asn1_cb(const char *elem, int len, void *bitstr);
  116. static int append_exp(tag_exp_arg *arg, int exp_tag, int exp_class,
  117. int exp_constructed, int exp_pad, int imp_ok);
  118. static int parse_tagging(const char *vstart, int vlen, int *ptag,
  119. int *pclass);
  120. static ASN1_TYPE *asn1_multi(int utype, const char *section, X509V3_CTX *cnf,
  121. int depth, int *perr);
  122. static ASN1_TYPE *asn1_str2type(const char *str, int format, int utype);
  123. static int asn1_str2tag(const char *tagstr, int len);
  124. ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf)
  125. {
  126. X509V3_CTX cnf;
  127. if (!nconf)
  128. return ASN1_generate_v3(str, NULL);
  129. X509V3_set_nconf(&cnf, nconf);
  130. return ASN1_generate_v3(str, &cnf);
  131. }
  132. ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf)
  133. {
  134. int err = 0;
  135. ASN1_TYPE *ret = generate_v3(str, cnf, 0, &err);
  136. if (err)
  137. OPENSSL_PUT_ERROR(ASN1, err);
  138. return ret;
  139. }
  140. static ASN1_TYPE *generate_v3(char *str, X509V3_CTX *cnf, int depth,
  141. int *perr)
  142. {
  143. ASN1_TYPE *ret;
  144. tag_exp_arg asn1_tags;
  145. tag_exp_type *etmp;
  146. int i, len;
  147. unsigned char *orig_der = NULL, *new_der = NULL;
  148. const unsigned char *cpy_start;
  149. unsigned char *p;
  150. const unsigned char *cp;
  151. int cpy_len;
  152. long hdr_len = 0;
  153. int hdr_constructed = 0, hdr_tag, hdr_class;
  154. int r;
  155. asn1_tags.imp_tag = -1;
  156. asn1_tags.imp_class = -1;
  157. asn1_tags.format = ASN1_GEN_FORMAT_ASCII;
  158. asn1_tags.exp_count = 0;
  159. if (CONF_parse_list(str, ',', 1, asn1_cb, &asn1_tags) != 0) {
  160. *perr = ASN1_R_UNKNOWN_TAG;
  161. return NULL;
  162. }
  163. if ((asn1_tags.utype == V_ASN1_SEQUENCE)
  164. || (asn1_tags.utype == V_ASN1_SET)) {
  165. if (!cnf) {
  166. *perr = ASN1_R_SEQUENCE_OR_SET_NEEDS_CONFIG;
  167. return NULL;
  168. }
  169. if (depth >= ASN1_GEN_SEQ_MAX_DEPTH) {
  170. *perr = ASN1_R_ILLEGAL_NESTED_TAGGING;
  171. return NULL;
  172. }
  173. ret = asn1_multi(asn1_tags.utype, asn1_tags.str, cnf, depth, perr);
  174. } else
  175. ret = asn1_str2type(asn1_tags.str, asn1_tags.format, asn1_tags.utype);
  176. if (!ret)
  177. return NULL;
  178. /* If no tagging return base type */
  179. if ((asn1_tags.imp_tag == -1) && (asn1_tags.exp_count == 0))
  180. return ret;
  181. /* Generate the encoding */
  182. cpy_len = i2d_ASN1_TYPE(ret, &orig_der);
  183. ASN1_TYPE_free(ret);
  184. ret = NULL;
  185. /* Set point to start copying for modified encoding */
  186. cpy_start = orig_der;
  187. /* Do we need IMPLICIT tagging? */
  188. if (asn1_tags.imp_tag != -1) {
  189. /* If IMPLICIT we will replace the underlying tag */
  190. /* Skip existing tag+len */
  191. r = ASN1_get_object(&cpy_start, &hdr_len, &hdr_tag, &hdr_class,
  192. cpy_len);
  193. if (r & 0x80)
  194. goto err;
  195. /* Update copy length */
  196. cpy_len -= cpy_start - orig_der;
  197. /*
  198. * For IMPLICIT tagging the length should match the original length
  199. * and constructed flag should be consistent.
  200. */
  201. if (r & 0x1) {
  202. /* Indefinite length constructed */
  203. hdr_constructed = 2;
  204. hdr_len = 0;
  205. } else
  206. /* Just retain constructed flag */
  207. hdr_constructed = r & V_ASN1_CONSTRUCTED;
  208. /*
  209. * Work out new length with IMPLICIT tag: ignore constructed because
  210. * it will mess up if indefinite length
  211. */
  212. len = ASN1_object_size(0, hdr_len, asn1_tags.imp_tag);
  213. } else
  214. len = cpy_len;
  215. /* Work out length in any EXPLICIT, starting from end */
  216. for (i = 0, etmp = asn1_tags.exp_list + asn1_tags.exp_count - 1;
  217. i < asn1_tags.exp_count; i++, etmp--) {
  218. /* Content length: number of content octets + any padding */
  219. len += etmp->exp_pad;
  220. etmp->exp_len = len;
  221. /* Total object length: length including new header */
  222. len = ASN1_object_size(0, len, etmp->exp_tag);
  223. }
  224. /* Allocate buffer for new encoding */
  225. new_der = OPENSSL_malloc(len);
  226. if (!new_der)
  227. goto err;
  228. /* Generate tagged encoding */
  229. p = new_der;
  230. /* Output explicit tags first */
  231. for (i = 0, etmp = asn1_tags.exp_list; i < asn1_tags.exp_count;
  232. i++, etmp++) {
  233. ASN1_put_object(&p, etmp->exp_constructed, etmp->exp_len,
  234. etmp->exp_tag, etmp->exp_class);
  235. if (etmp->exp_pad)
  236. *p++ = 0;
  237. }
  238. /* If IMPLICIT, output tag */
  239. if (asn1_tags.imp_tag != -1) {
  240. if (asn1_tags.imp_class == V_ASN1_UNIVERSAL
  241. && (asn1_tags.imp_tag == V_ASN1_SEQUENCE
  242. || asn1_tags.imp_tag == V_ASN1_SET))
  243. hdr_constructed = V_ASN1_CONSTRUCTED;
  244. ASN1_put_object(&p, hdr_constructed, hdr_len,
  245. asn1_tags.imp_tag, asn1_tags.imp_class);
  246. }
  247. /* Copy across original encoding */
  248. OPENSSL_memcpy(p, cpy_start, cpy_len);
  249. cp = new_der;
  250. /* Obtain new ASN1_TYPE structure */
  251. ret = d2i_ASN1_TYPE(NULL, &cp, len);
  252. err:
  253. if (orig_der)
  254. OPENSSL_free(orig_der);
  255. if (new_der)
  256. OPENSSL_free(new_der);
  257. return ret;
  258. }
  259. static int asn1_cb(const char *elem, int len, void *bitstr)
  260. {
  261. tag_exp_arg *arg = bitstr;
  262. int i;
  263. int utype;
  264. int vlen = 0;
  265. const char *p, *vstart = NULL;
  266. int tmp_tag, tmp_class;
  267. if (elem == NULL)
  268. return -1;
  269. for (i = 0, p = elem; i < len; p++, i++) {
  270. /* Look for the ':' in name value pairs */
  271. if (*p == ':') {
  272. vstart = p + 1;
  273. vlen = len - (vstart - elem);
  274. len = p - elem;
  275. break;
  276. }
  277. }
  278. utype = asn1_str2tag(elem, len);
  279. if (utype == -1) {
  280. OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNKNOWN_TAG);
  281. ERR_add_error_data(2, "tag=", elem);
  282. return -1;
  283. }
  284. /* If this is not a modifier mark end of string and exit */
  285. if (!(utype & ASN1_GEN_FLAG)) {
  286. arg->utype = utype;
  287. arg->str = vstart;
  288. /* If no value and not end of string, error */
  289. if (!vstart && elem[len]) {
  290. OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE);
  291. return -1;
  292. }
  293. return 0;
  294. }
  295. switch (utype) {
  296. case ASN1_GEN_FLAG_IMP:
  297. /* Check for illegal multiple IMPLICIT tagging */
  298. if (arg->imp_tag != -1) {
  299. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_NESTED_TAGGING);
  300. return -1;
  301. }
  302. if (!parse_tagging(vstart, vlen, &arg->imp_tag, &arg->imp_class))
  303. return -1;
  304. break;
  305. case ASN1_GEN_FLAG_EXP:
  306. if (!parse_tagging(vstart, vlen, &tmp_tag, &tmp_class))
  307. return -1;
  308. if (!append_exp(arg, tmp_tag, tmp_class, 1, 0, 0))
  309. return -1;
  310. break;
  311. case ASN1_GEN_FLAG_SEQWRAP:
  312. if (!append_exp(arg, V_ASN1_SEQUENCE, V_ASN1_UNIVERSAL, 1, 0, 1))
  313. return -1;
  314. break;
  315. case ASN1_GEN_FLAG_SETWRAP:
  316. if (!append_exp(arg, V_ASN1_SET, V_ASN1_UNIVERSAL, 1, 0, 1))
  317. return -1;
  318. break;
  319. case ASN1_GEN_FLAG_BITWRAP:
  320. if (!append_exp(arg, V_ASN1_BIT_STRING, V_ASN1_UNIVERSAL, 0, 1, 1))
  321. return -1;
  322. break;
  323. case ASN1_GEN_FLAG_OCTWRAP:
  324. if (!append_exp(arg, V_ASN1_OCTET_STRING, V_ASN1_UNIVERSAL, 0, 0, 1))
  325. return -1;
  326. break;
  327. case ASN1_GEN_FLAG_FORMAT:
  328. if (!vstart) {
  329. OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNKNOWN_FORMAT);
  330. return -1;
  331. }
  332. if (!strncmp(vstart, "ASCII", 5))
  333. arg->format = ASN1_GEN_FORMAT_ASCII;
  334. else if (!strncmp(vstart, "UTF8", 4))
  335. arg->format = ASN1_GEN_FORMAT_UTF8;
  336. else if (!strncmp(vstart, "HEX", 3))
  337. arg->format = ASN1_GEN_FORMAT_HEX;
  338. else if (!strncmp(vstart, "BITLIST", 7))
  339. arg->format = ASN1_GEN_FORMAT_BITLIST;
  340. else {
  341. OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNKNOWN_FORMAT);
  342. return -1;
  343. }
  344. break;
  345. }
  346. return 1;
  347. }
  348. static int parse_tagging(const char *vstart, int vlen, int *ptag, int *pclass)
  349. {
  350. char erch[2];
  351. long tag_num;
  352. char *eptr;
  353. if (!vstart)
  354. return 0;
  355. tag_num = strtoul(vstart, &eptr, 10);
  356. /* Check we haven't gone past max length: should be impossible */
  357. if (eptr && *eptr && (eptr > vstart + vlen))
  358. return 0;
  359. if (tag_num < 0) {
  360. OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_NUMBER);
  361. return 0;
  362. }
  363. *ptag = tag_num;
  364. /* If we have non numeric characters, parse them */
  365. if (eptr)
  366. vlen -= eptr - vstart;
  367. else
  368. vlen = 0;
  369. if (vlen) {
  370. switch (*eptr) {
  371. case 'U':
  372. *pclass = V_ASN1_UNIVERSAL;
  373. break;
  374. case 'A':
  375. *pclass = V_ASN1_APPLICATION;
  376. break;
  377. case 'P':
  378. *pclass = V_ASN1_PRIVATE;
  379. break;
  380. case 'C':
  381. *pclass = V_ASN1_CONTEXT_SPECIFIC;
  382. break;
  383. default:
  384. erch[0] = *eptr;
  385. erch[1] = 0;
  386. OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_MODIFIER);
  387. ERR_add_error_data(2, "Char=", erch);
  388. return 0;
  389. break;
  390. }
  391. } else
  392. *pclass = V_ASN1_CONTEXT_SPECIFIC;
  393. return 1;
  394. }
  395. /* Handle multiple types: SET and SEQUENCE */
  396. static ASN1_TYPE *asn1_multi(int utype, const char *section, X509V3_CTX *cnf,
  397. int depth, int *perr)
  398. {
  399. ASN1_TYPE *ret = NULL;
  400. STACK_OF(ASN1_TYPE) *sk = NULL;
  401. STACK_OF(CONF_VALUE) *sect = NULL;
  402. unsigned char *der = NULL;
  403. int derlen;
  404. size_t i;
  405. sk = sk_ASN1_TYPE_new_null();
  406. if (!sk)
  407. goto bad;
  408. if (section) {
  409. if (!cnf)
  410. goto bad;
  411. sect = X509V3_get_section(cnf, (char *)section);
  412. if (!sect)
  413. goto bad;
  414. for (i = 0; i < sk_CONF_VALUE_num(sect); i++) {
  415. ASN1_TYPE *typ =
  416. generate_v3(sk_CONF_VALUE_value(sect, i)->value, cnf,
  417. depth + 1, perr);
  418. if (!typ)
  419. goto bad;
  420. if (!sk_ASN1_TYPE_push(sk, typ))
  421. goto bad;
  422. }
  423. }
  424. /*
  425. * Now we has a STACK of the components, convert to the correct form
  426. */
  427. if (utype == V_ASN1_SET)
  428. derlen = i2d_ASN1_SET_ANY(sk, &der);
  429. else
  430. derlen = i2d_ASN1_SEQUENCE_ANY(sk, &der);
  431. if (derlen < 0)
  432. goto bad;
  433. if (!(ret = ASN1_TYPE_new()))
  434. goto bad;
  435. if (!(ret->value.asn1_string = ASN1_STRING_type_new(utype)))
  436. goto bad;
  437. ret->type = utype;
  438. ret->value.asn1_string->data = der;
  439. ret->value.asn1_string->length = derlen;
  440. der = NULL;
  441. bad:
  442. if (der)
  443. OPENSSL_free(der);
  444. if (sk)
  445. sk_ASN1_TYPE_pop_free(sk, ASN1_TYPE_free);
  446. if (sect)
  447. X509V3_section_free(cnf, sect);
  448. return ret;
  449. }
  450. static int append_exp(tag_exp_arg *arg, int exp_tag, int exp_class,
  451. int exp_constructed, int exp_pad, int imp_ok)
  452. {
  453. tag_exp_type *exp_tmp;
  454. /* Can only have IMPLICIT if permitted */
  455. if ((arg->imp_tag != -1) && !imp_ok) {
  456. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_IMPLICIT_TAG);
  457. return 0;
  458. }
  459. if (arg->exp_count == ASN1_FLAG_EXP_MAX) {
  460. OPENSSL_PUT_ERROR(ASN1, ASN1_R_DEPTH_EXCEEDED);
  461. return 0;
  462. }
  463. exp_tmp = &arg->exp_list[arg->exp_count++];
  464. /*
  465. * If IMPLICIT set tag to implicit value then reset implicit tag since it
  466. * has been used.
  467. */
  468. if (arg->imp_tag != -1) {
  469. exp_tmp->exp_tag = arg->imp_tag;
  470. exp_tmp->exp_class = arg->imp_class;
  471. arg->imp_tag = -1;
  472. arg->imp_class = -1;
  473. } else {
  474. exp_tmp->exp_tag = exp_tag;
  475. exp_tmp->exp_class = exp_class;
  476. }
  477. exp_tmp->exp_constructed = exp_constructed;
  478. exp_tmp->exp_pad = exp_pad;
  479. return 1;
  480. }
  481. static int asn1_str2tag(const char *tagstr, int len)
  482. {
  483. unsigned int i;
  484. static const struct tag_name_st *tntmp, tnst[] = {
  485. ASN1_GEN_STR("BOOL", V_ASN1_BOOLEAN),
  486. ASN1_GEN_STR("BOOLEAN", V_ASN1_BOOLEAN),
  487. ASN1_GEN_STR("NULL", V_ASN1_NULL),
  488. ASN1_GEN_STR("INT", V_ASN1_INTEGER),
  489. ASN1_GEN_STR("INTEGER", V_ASN1_INTEGER),
  490. ASN1_GEN_STR("ENUM", V_ASN1_ENUMERATED),
  491. ASN1_GEN_STR("ENUMERATED", V_ASN1_ENUMERATED),
  492. ASN1_GEN_STR("OID", V_ASN1_OBJECT),
  493. ASN1_GEN_STR("OBJECT", V_ASN1_OBJECT),
  494. ASN1_GEN_STR("UTCTIME", V_ASN1_UTCTIME),
  495. ASN1_GEN_STR("UTC", V_ASN1_UTCTIME),
  496. ASN1_GEN_STR("GENERALIZEDTIME", V_ASN1_GENERALIZEDTIME),
  497. ASN1_GEN_STR("GENTIME", V_ASN1_GENERALIZEDTIME),
  498. ASN1_GEN_STR("OCT", V_ASN1_OCTET_STRING),
  499. ASN1_GEN_STR("OCTETSTRING", V_ASN1_OCTET_STRING),
  500. ASN1_GEN_STR("BITSTR", V_ASN1_BIT_STRING),
  501. ASN1_GEN_STR("BITSTRING", V_ASN1_BIT_STRING),
  502. ASN1_GEN_STR("UNIVERSALSTRING", V_ASN1_UNIVERSALSTRING),
  503. ASN1_GEN_STR("UNIV", V_ASN1_UNIVERSALSTRING),
  504. ASN1_GEN_STR("IA5", V_ASN1_IA5STRING),
  505. ASN1_GEN_STR("IA5STRING", V_ASN1_IA5STRING),
  506. ASN1_GEN_STR("UTF8", V_ASN1_UTF8STRING),
  507. ASN1_GEN_STR("UTF8String", V_ASN1_UTF8STRING),
  508. ASN1_GEN_STR("BMP", V_ASN1_BMPSTRING),
  509. ASN1_GEN_STR("BMPSTRING", V_ASN1_BMPSTRING),
  510. ASN1_GEN_STR("VISIBLESTRING", V_ASN1_VISIBLESTRING),
  511. ASN1_GEN_STR("VISIBLE", V_ASN1_VISIBLESTRING),
  512. ASN1_GEN_STR("PRINTABLESTRING", V_ASN1_PRINTABLESTRING),
  513. ASN1_GEN_STR("PRINTABLE", V_ASN1_PRINTABLESTRING),
  514. ASN1_GEN_STR("T61", V_ASN1_T61STRING),
  515. ASN1_GEN_STR("T61STRING", V_ASN1_T61STRING),
  516. ASN1_GEN_STR("TELETEXSTRING", V_ASN1_T61STRING),
  517. ASN1_GEN_STR("GeneralString", V_ASN1_GENERALSTRING),
  518. ASN1_GEN_STR("GENSTR", V_ASN1_GENERALSTRING),
  519. ASN1_GEN_STR("NUMERIC", V_ASN1_NUMERICSTRING),
  520. ASN1_GEN_STR("NUMERICSTRING", V_ASN1_NUMERICSTRING),
  521. /* Special cases */
  522. ASN1_GEN_STR("SEQUENCE", V_ASN1_SEQUENCE),
  523. ASN1_GEN_STR("SEQ", V_ASN1_SEQUENCE),
  524. ASN1_GEN_STR("SET", V_ASN1_SET),
  525. /* type modifiers */
  526. /* Explicit tag */
  527. ASN1_GEN_STR("EXP", ASN1_GEN_FLAG_EXP),
  528. ASN1_GEN_STR("EXPLICIT", ASN1_GEN_FLAG_EXP),
  529. /* Implicit tag */
  530. ASN1_GEN_STR("IMP", ASN1_GEN_FLAG_IMP),
  531. ASN1_GEN_STR("IMPLICIT", ASN1_GEN_FLAG_IMP),
  532. /* OCTET STRING wrapper */
  533. ASN1_GEN_STR("OCTWRAP", ASN1_GEN_FLAG_OCTWRAP),
  534. /* SEQUENCE wrapper */
  535. ASN1_GEN_STR("SEQWRAP", ASN1_GEN_FLAG_SEQWRAP),
  536. /* SET wrapper */
  537. ASN1_GEN_STR("SETWRAP", ASN1_GEN_FLAG_SETWRAP),
  538. /* BIT STRING wrapper */
  539. ASN1_GEN_STR("BITWRAP", ASN1_GEN_FLAG_BITWRAP),
  540. ASN1_GEN_STR("FORM", ASN1_GEN_FLAG_FORMAT),
  541. ASN1_GEN_STR("FORMAT", ASN1_GEN_FLAG_FORMAT),
  542. };
  543. if (len == -1)
  544. len = strlen(tagstr);
  545. tntmp = tnst;
  546. for (i = 0; i < sizeof(tnst) / sizeof(struct tag_name_st); i++, tntmp++) {
  547. if ((len == tntmp->len) && !strncmp(tntmp->strnam, tagstr, len))
  548. return tntmp->tag;
  549. }
  550. return -1;
  551. }
  552. static ASN1_TYPE *asn1_str2type(const char *str, int format, int utype)
  553. {
  554. ASN1_TYPE *atmp = NULL;
  555. CONF_VALUE vtmp;
  556. unsigned char *rdata;
  557. long rdlen;
  558. int no_unused = 1;
  559. if (!(atmp = ASN1_TYPE_new())) {
  560. OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
  561. return NULL;
  562. }
  563. if (!str)
  564. str = "";
  565. switch (utype) {
  566. case V_ASN1_NULL:
  567. if (str && *str) {
  568. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_NULL_VALUE);
  569. goto bad_form;
  570. }
  571. break;
  572. case V_ASN1_BOOLEAN:
  573. if (format != ASN1_GEN_FORMAT_ASCII) {
  574. OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ASCII_FORMAT);
  575. goto bad_form;
  576. }
  577. vtmp.name = NULL;
  578. vtmp.section = NULL;
  579. vtmp.value = (char *)str;
  580. if (!X509V3_get_value_bool(&vtmp, &atmp->value.boolean)) {
  581. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_BOOLEAN);
  582. goto bad_str;
  583. }
  584. break;
  585. case V_ASN1_INTEGER:
  586. case V_ASN1_ENUMERATED:
  587. if (format != ASN1_GEN_FORMAT_ASCII) {
  588. OPENSSL_PUT_ERROR(ASN1, ASN1_R_INTEGER_NOT_ASCII_FORMAT);
  589. goto bad_form;
  590. }
  591. if (!(atmp->value.integer = s2i_ASN1_INTEGER(NULL, (char *)str))) {
  592. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_INTEGER);
  593. goto bad_str;
  594. }
  595. break;
  596. case V_ASN1_OBJECT:
  597. if (format != ASN1_GEN_FORMAT_ASCII) {
  598. OPENSSL_PUT_ERROR(ASN1, ASN1_R_OBJECT_NOT_ASCII_FORMAT);
  599. goto bad_form;
  600. }
  601. if (!(atmp->value.object = OBJ_txt2obj(str, 0))) {
  602. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OBJECT);
  603. goto bad_str;
  604. }
  605. break;
  606. case V_ASN1_UTCTIME:
  607. case V_ASN1_GENERALIZEDTIME:
  608. if (format != ASN1_GEN_FORMAT_ASCII) {
  609. OPENSSL_PUT_ERROR(ASN1, ASN1_R_TIME_NOT_ASCII_FORMAT);
  610. goto bad_form;
  611. }
  612. if (!(atmp->value.asn1_string = ASN1_STRING_new())) {
  613. OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
  614. goto bad_str;
  615. }
  616. if (!ASN1_STRING_set(atmp->value.asn1_string, str, -1)) {
  617. OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
  618. goto bad_str;
  619. }
  620. atmp->value.asn1_string->type = utype;
  621. if (!ASN1_TIME_check(atmp->value.asn1_string)) {
  622. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_TIME_VALUE);
  623. goto bad_str;
  624. }
  625. break;
  626. case V_ASN1_BMPSTRING:
  627. case V_ASN1_PRINTABLESTRING:
  628. case V_ASN1_IA5STRING:
  629. case V_ASN1_T61STRING:
  630. case V_ASN1_UTF8STRING:
  631. case V_ASN1_VISIBLESTRING:
  632. case V_ASN1_UNIVERSALSTRING:
  633. case V_ASN1_GENERALSTRING:
  634. case V_ASN1_NUMERICSTRING:
  635. if (format == ASN1_GEN_FORMAT_ASCII)
  636. format = MBSTRING_ASC;
  637. else if (format == ASN1_GEN_FORMAT_UTF8)
  638. format = MBSTRING_UTF8;
  639. else {
  640. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_FORMAT);
  641. goto bad_form;
  642. }
  643. if (ASN1_mbstring_copy(&atmp->value.asn1_string, (unsigned char *)str,
  644. -1, format, ASN1_tag2bit(utype)) <= 0) {
  645. OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
  646. goto bad_str;
  647. }
  648. break;
  649. case V_ASN1_BIT_STRING:
  650. case V_ASN1_OCTET_STRING:
  651. if (!(atmp->value.asn1_string = ASN1_STRING_new())) {
  652. OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
  653. goto bad_form;
  654. }
  655. if (format == ASN1_GEN_FORMAT_HEX) {
  656. if (!(rdata = x509v3_hex_to_bytes((char *)str, &rdlen))) {
  657. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_HEX);
  658. goto bad_str;
  659. }
  660. atmp->value.asn1_string->data = rdata;
  661. atmp->value.asn1_string->length = rdlen;
  662. atmp->value.asn1_string->type = utype;
  663. } else if (format == ASN1_GEN_FORMAT_ASCII)
  664. ASN1_STRING_set(atmp->value.asn1_string, str, -1);
  665. else if ((format == ASN1_GEN_FORMAT_BITLIST)
  666. && (utype == V_ASN1_BIT_STRING)) {
  667. if (!CONF_parse_list
  668. (str, ',', 1, bitstr_cb, atmp->value.bit_string)) {
  669. OPENSSL_PUT_ERROR(ASN1, ASN1_R_LIST_ERROR);
  670. goto bad_str;
  671. }
  672. no_unused = 0;
  673. } else {
  674. OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_BITSTRING_FORMAT);
  675. goto bad_form;
  676. }
  677. if ((utype == V_ASN1_BIT_STRING) && no_unused) {
  678. atmp->value.asn1_string->flags
  679. &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
  680. atmp->value.asn1_string->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  681. }
  682. break;
  683. default:
  684. OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNSUPPORTED_TYPE);
  685. goto bad_str;
  686. break;
  687. }
  688. atmp->type = utype;
  689. return atmp;
  690. bad_str:
  691. ERR_add_error_data(2, "string=", str);
  692. bad_form:
  693. ASN1_TYPE_free(atmp);
  694. return NULL;
  695. }
  696. static int bitstr_cb(const char *elem, int len, void *bitstr)
  697. {
  698. long bitnum;
  699. char *eptr;
  700. if (!elem)
  701. return 0;
  702. bitnum = strtoul(elem, &eptr, 10);
  703. if (eptr && *eptr && (eptr != elem + len))
  704. return 0;
  705. if (bitnum < 0) {
  706. OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_NUMBER);
  707. return 0;
  708. }
  709. if (!ASN1_BIT_STRING_set_bit(bitstr, bitnum, 1)) {
  710. OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
  711. return 0;
  712. }
  713. return 1;
  714. }