boringssl/ssl/test/handshake_util.cc
David Benjamin 69e91902f7 Work around missing MSan interceptor for posix_spawn.
Change-Id: I910dbfd0f6b0b4ef5a0c5155ee45a1658e1f4e70
Reviewed-on: https://boringssl-review.googlesource.com/30704
Reviewed-by: Adam Langley <agl@google.com>
2018-08-09 22:09:48 +00:00

474 lines
15 KiB
C++

/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "handshake_util.h"
#include <assert.h>
#if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)
#include <errno.h>
#include <fcntl.h>
#include <spawn.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif
#include <functional>
#include "async_bio.h"
#include "packeted_bio.h"
#include "test_config.h"
#include "test_state.h"
#include <openssl/ssl.h>
using namespace bssl;
bool RetryAsync(SSL *ssl, int ret) {
// No error; don't retry.
if (ret >= 0) {
return false;
}
TestState *test_state = GetTestState(ssl);
assert(GetTestConfig(ssl)->async);
if (test_state->packeted_bio != nullptr &&
PacketedBioAdvanceClock(test_state->packeted_bio)) {
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously.
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
int timeout_ret = DTLSv1_handle_timeout(ssl);
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
if (timeout_ret < 0) {
fprintf(stderr, "Error retransmitting.\n");
return false;
}
return true;
}
// See if we needed to read or write more. If so, allow one byte through on
// the appropriate end to maximally stress the state machine.
switch (SSL_get_error(ssl, ret)) {
case SSL_ERROR_WANT_READ:
AsyncBioAllowRead(test_state->async_bio, 1);
return true;
case SSL_ERROR_WANT_WRITE:
AsyncBioAllowWrite(test_state->async_bio, 1);
return true;
case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
UniquePtr<EVP_PKEY> pkey =
LoadPrivateKey(GetTestConfig(ssl)->send_channel_id);
if (!pkey) {
return false;
}
test_state->channel_id = std::move(pkey);
return true;
}
case SSL_ERROR_WANT_X509_LOOKUP:
test_state->cert_ready = true;
return true;
case SSL_ERROR_PENDING_SESSION:
test_state->session = std::move(test_state->pending_session);
return true;
case SSL_ERROR_PENDING_CERTIFICATE:
test_state->early_callback_ready = true;
return true;
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
test_state->private_key_retries++;
return true;
case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
test_state->custom_verify_ready = true;
return true;
default:
return false;
}
}
int CheckIdempotentError(const char *name, SSL *ssl,
std::function<int()> func) {
int ret = func();
int ssl_err = SSL_get_error(ssl, ret);
uint32_t err = ERR_peek_error();
if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) {
int ret2 = func();
int ssl_err2 = SSL_get_error(ssl, ret2);
uint32_t err2 = ERR_peek_error();
if (ret != ret2 || ssl_err != ssl_err2 || err != err2) {
fprintf(stderr, "Repeating %s did not replay the error.\n", name);
char buf[256];
ERR_error_string_n(err, buf, sizeof(buf));
fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf);
ERR_error_string_n(err2, buf, sizeof(buf));
fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf);
// runner treats exit code 90 as always failing. Otherwise, it may
// accidentally consider the result an expected protocol failure.
exit(90);
}
}
return ret;
}
#if defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)
// MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff.
static void MoveBIOs(SSL *dest, SSL *src) {
BIO *rbio = SSL_get_rbio(src);
BIO_up_ref(rbio);
SSL_set0_rbio(dest, rbio);
BIO *wbio = SSL_get_wbio(src);
BIO_up_ref(wbio);
SSL_set0_wbio(dest, wbio);
SSL_set0_rbio(src, nullptr);
SSL_set0_wbio(src, nullptr);
}
static bool HandoffReady(SSL *ssl, int ret) {
return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF;
}
static ssize_t read_eintr(int fd, void *out, size_t len) {
ssize_t ret;
do {
ret = read(fd, out, len);
} while (ret < 0 && errno == EINTR);
return ret;
}
static ssize_t write_eintr(int fd, const void *in, size_t len) {
ssize_t ret;
do {
ret = write(fd, in, len);
} while (ret < 0 && errno == EINTR);
return ret;
}
static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) {
pid_t ret;
do {
ret = waitpid(pid, wstatus, options);
} while (ret < 0 && errno == EINTR);
return ret;
}
// Proxy relays data between |socket|, which is connected to the client, and the
// handshaker, which is connected to the numerically specified file descriptors,
// until the handshaker returns control.
static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) {
for (;;) {
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(wfd, &rfds);
FD_SET(control, &rfds);
int fd_max = wfd > control ? wfd : control;
if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) {
perror("select");
return false;
}
char buf[64];
ssize_t bytes;
if (FD_ISSET(wfd, &rfds) &&
(bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) {
char *b = buf;
while (bytes) {
int written = BIO_write(socket, b, bytes);
if (!written) {
fprintf(stderr, "BIO_write wrote nothing\n");
return false;
}
if (written < 0) {
if (async) {
AsyncBioAllowWrite(socket, 1);
continue;
}
fprintf(stderr, "BIO_write failed\n");
return false;
}
b += written;
bytes -= written;
}
// Flush all pending data from the handshaker to the client before
// considering control messages.
continue;
}
if (!FD_ISSET(control, &rfds)) {
continue;
}
char msg;
if (read_eintr(control, &msg, 1) != 1) {
perror("read");
return false;
}
switch (msg) {
case kControlMsgHandback:
return true;
case kControlMsgError:
return false;
case kControlMsgWantRead:
break;
default:
fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
return false;
}
char readbuf[64];
if (async) {
AsyncBioAllowRead(socket, 1);
}
int read = BIO_read(socket, readbuf, sizeof(readbuf));
if (read < 1) {
fprintf(stderr, "BIO_read failed\n");
return false;
}
ssize_t written = write_eintr(rfd, readbuf, read);
if (written == -1) {
perror("write");
return false;
}
if (written != read) {
fprintf(stderr, "short write (%zu of %d bytes)\n", written, read);
return false;
}
// The handshaker blocks on the control channel, so we have to signal
// it that the data have been written.
msg = kControlMsgWriteCompleted;
if (write_eintr(control, &msg, 1) != 1) {
perror("write");
return false;
}
}
}
class ScopedFD {
public:
explicit ScopedFD(int fd): fd_(fd) {}
~ScopedFD() { close(fd_); }
private:
const int fd_;
};
// RunHandshaker forks and execs the handshaker binary, handing off |input|,
// and, after proxying some amount of handshake traffic, handing back |out|.
static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume,
const Array<uint8_t> &input,
Array<uint8_t> *out) {
if (config->handshaker_path.empty()) {
fprintf(stderr, "no -handshaker-path specified\n");
return false;
}
struct stat dummy;
if (stat(config->handshaker_path.c_str(), &dummy) == -1) {
perror(config->handshaker_path.c_str());
return false;
}
// A datagram socket guarantees that writes are all-or-nothing.
int control[2];
if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) {
perror("socketpair");
return false;
}
int rfd[2], wfd[2];
// We use pipes, rather than some other mechanism, for their buffers. During
// the handshake, this process acts as a dumb proxy until receiving the
// handback signal, which arrives asynchronously. The race condition means
// that this process could incorrectly proxy post-handshake data from the
// client to the handshaker.
//
// To avoid this, this process never proxies data to the handshaker that the
// handshaker has not explicitly requested as a result of hitting
// |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the
// two processes synchronize over the |control| channel.
if (pipe(rfd) != 0 || pipe(wfd) != 0) {
perror("pipe2");
return false;
}
fflush(stdout);
fflush(stderr);
std::vector<char *> args;
bssl::UniquePtr<char> handshaker_path(
OPENSSL_strdup(config->handshaker_path.c_str()));
args.push_back(handshaker_path.get());
char resume[] = "-handshaker-resume";
if (is_resume) {
args.push_back(resume);
}
// config->argv omits argv[0].
for (int j = 0; j < config->argc; ++j) {
args.push_back(config->argv[j]);
}
args.push_back(nullptr);
posix_spawn_file_actions_t actions;
if (posix_spawn_file_actions_init(&actions) != 0 ||
posix_spawn_file_actions_addclose(&actions, control[0]) ||
posix_spawn_file_actions_addclose(&actions, rfd[1]) ||
posix_spawn_file_actions_addclose(&actions, wfd[0])) {
return false;
}
assert(kFdControl != rfd[0]);
assert(kFdControl != wfd[1]);
if (control[1] != kFdControl &&
posix_spawn_file_actions_adddup2(&actions, control[1], kFdControl) != 0) {
return false;
}
assert(kFdProxyToHandshaker != wfd[1]);
if (rfd[0] != kFdProxyToHandshaker &&
posix_spawn_file_actions_adddup2(&actions, rfd[0],
kFdProxyToHandshaker) != 0) {
return false;
}
if (wfd[1] != kFdHandshakerToProxy &&
posix_spawn_file_actions_adddup2(&actions, wfd[1],
kFdHandshakerToProxy) != 0) {
return false;
}
// MSan doesn't know that |posix_spawn| initializes its output, so initialize
// it to -1.
pid_t handshaker_pid = -1;
int ret = posix_spawn(&handshaker_pid, args[0], &actions, nullptr,
args.data(), nullptr);
if (posix_spawn_file_actions_destroy(&actions) != 0 ||
ret != 0) {
return false;
}
close(control[1]);
close(rfd[0]);
close(wfd[1]);
ScopedFD rfd_closer(rfd[1]);
ScopedFD wfd_closer(wfd[0]);
ScopedFD control_closer(control[0]);
if (write_eintr(control[0], input.data(), input.size()) == -1) {
perror("write");
return false;
}
bool ok = Proxy(bio, config->async, control[0], rfd[1], wfd[0]);
int wstatus;
if (waitpid_eintr(handshaker_pid, &wstatus, 0) != handshaker_pid) {
perror("waitpid");
return false;
}
if (ok && wstatus) {
fprintf(stderr, "handshaker exited irregularly\n");
return false;
}
if (!ok) {
return false; // This is a "good", i.e. expected, error.
}
constexpr size_t kBufSize = 1024 * 1024;
bssl::UniquePtr<uint8_t> buf((uint8_t *) OPENSSL_malloc(kBufSize));
int len = read_eintr(control[0], buf.get(), kBufSize);
if (len == -1) {
perror("read");
return false;
}
out->CopyFrom({buf.get(), (size_t)len});
return true;
}
// PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to
// be passed to the handshaker. The serialized state includes both the SSL
// handoff, as well test-related state.
static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer,
Array<uint8_t> *out_handoff) {
SSL_set_handoff_mode(ssl, 1);
const TestConfig *config = GetTestConfig(ssl);
int ret = -1;
do {
ret = CheckIdempotentError(
"SSL_do_handshake", ssl,
[&]() -> int { return SSL_do_handshake(ssl); });
} while (!HandoffReady(ssl, ret) &&
config->async &&
RetryAsync(ssl, ret));
if (!HandoffReady(ssl, ret)) {
fprintf(stderr, "Handshake failed while waiting for handoff.\n");
return false;
}
ScopedCBB cbb;
if (!CBB_init(cbb.get(), 512) ||
!SSL_serialize_handoff(ssl, cbb.get()) ||
!writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) ||
!SerializeContextState(ssl->ctx.get(), cbb.get()) ||
!GetTestState(ssl)->Serialize(cbb.get())) {
fprintf(stderr, "Handoff serialisation failed.\n");
return false;
}
return CBBFinishArray(cbb.get(), out_handoff);
}
// DoSplitHandshake delegates the SSL handshake to a separate process, called
// the handshaker. This process proxies I/O between the handshaker and the
// client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is
// replaced with a new |SSL| object, in a way that is intended to be invisible
// to the caller.
bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer,
bool is_resume) {
assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get()));
Array<uint8_t> handshaker_input;
const TestConfig *config = GetTestConfig(ssl->get());
// out is the response from the handshaker, which includes a serialized
// handback message, but also serialized updates to the |TestState|.
Array<uint8_t> out;
if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) ||
!RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume,
handshaker_input, &out)) {
fprintf(stderr, "Handoff failed.\n");
return false;
}
UniquePtr<SSL> ssl_handback =
config->NewSSL((*ssl)->ctx.get(), nullptr, false, nullptr);
if (!ssl_handback) {
return false;
}
CBS output, handback;
CBS_init(&output, out.data(), out.size());
if (!CBS_get_u24_length_prefixed(&output, &handback) ||
!DeserializeContextState(&output, ssl_handback->ctx.get()) ||
!SetTestState(ssl_handback.get(), TestState::Deserialize(
&output, ssl_handback->ctx.get())) ||
!GetTestState(ssl_handback.get()) ||
!writer->WriteHandback(handback) ||
!SSL_apply_handback(ssl_handback.get(), handback)) {
fprintf(stderr, "Handback failed.\n");
return false;
}
MoveBIOs(ssl_handback.get(), ssl->get());
GetTestState(ssl_handback.get())->async_bio =
GetTestState(ssl->get())->async_bio;
GetTestState(ssl->get())->async_bio = nullptr;
*ssl = std::move(ssl_handback);
return true;
}
#endif // defined(OPENSSL_LINUX) && !defined(OPENSSL_ANDROID)