boringssl/crypto/bio/bio_test.c
Adam Langley 3e719319be Lowercase some Windows headers.
MinGW on Linux needs lowercase include files. On Windows this doesn't
matter since the filesystems are case-insensitive, but building
BoringSSL on Linux with MinGW has case-sensitive filesystems.

Change-Id: Id9c120d819071b041341fbb978352812d6d073bc
Reviewed-on: https://boringssl-review.googlesource.com/4090
Reviewed-by: Adam Langley <agl@google.com>
2015-03-31 22:21:42 +00:00

363 lines
10 KiB
C

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 201410L
#endif
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
#pragma warning(push, 3)
#include <winsock2.h>
#include <ws2tcpip.h>
#pragma warning(pop)
#endif
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#define MIN(a, b) ((a < b) ? a : b)
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
return close(sock);
}
static void print_socket_error(const char *func) {
perror(func);
}
#else
static void print_socket_error(const char *func) {
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif
static int test_socket_connect(void) {
int listening_sock = socket(AF_INET, SOCK_STREAM, 0);
int sock;
struct sockaddr_in sin;
socklen_t sockaddr_len = sizeof(sin);
static const char kTestMessage[] = "test";
char hostname[80], buf[5];
BIO *bio;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
print_socket_error("inet_pton");
return 0;
}
if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) {
print_socket_error("bind");
return 0;
}
if (listen(listening_sock, 1)) {
print_socket_error("listen");
return 0;
}
if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) ||
sockaddr_len != sizeof(sin)) {
print_socket_error("getsockname");
return 0;
}
BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1",
ntohs(sin.sin_port));
bio = BIO_new_connect(hostname);
if (!bio) {
fprintf(stderr, "BIO_new_connect failed.\n");
return 0;
}
if (BIO_write(bio, kTestMessage, sizeof(kTestMessage)) !=
sizeof(kTestMessage)) {
fprintf(stderr, "BIO_write failed.\n");
BIO_print_errors_fp(stderr);
return 0;
}
sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len);
if (sock < 0) {
print_socket_error("accept");
return 0;
}
if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) {
print_socket_error("read");
return 0;
}
if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) {
return 0;
}
closesocket(sock);
closesocket(listening_sock);
BIO_free(bio);
return 1;
}
/* bio_read_zero_copy_wrapper is a wrapper around the zero-copy APIs to make
* testing easier. */
static size_t bio_read_zero_copy_wrapper(BIO *bio, uint8_t *data, size_t len) {
uint8_t *read_buf;
size_t read_buf_offset;
size_t available_bytes;
size_t len_read = 0;
do {
if (!BIO_zero_copy_get_read_buf(bio, &read_buf, &read_buf_offset,
&available_bytes)) {
return 0;
}
available_bytes = MIN(available_bytes, len - len_read);
memmove(data + len_read, read_buf + read_buf_offset, available_bytes);
BIO_zero_copy_get_read_buf_done(bio, available_bytes);
len_read += available_bytes;
} while (len - len_read > 0 && available_bytes > 0);
return len_read;
}
/* bio_write_zero_copy_wrapper is a wrapper around the zero-copy APIs to make
* testing easier. */
static size_t bio_write_zero_copy_wrapper(BIO *bio, const uint8_t *data,
size_t len) {
uint8_t *write_buf;
size_t write_buf_offset;
size_t available_bytes;
size_t len_written = 0;
do {
if (!BIO_zero_copy_get_write_buf(bio, &write_buf, &write_buf_offset,
&available_bytes)) {
return 0;
}
available_bytes = MIN(available_bytes, len - len_written);
memmove(write_buf + write_buf_offset, data + len_written, available_bytes);
BIO_zero_copy_get_write_buf_done(bio, available_bytes);
len_written += available_bytes;
} while (len - len_written > 0 && available_bytes > 0);
return len_written;
}
static int test_zero_copy_bio_pairs(void) {
/* Test read and write, especially triggering the ring buffer wrap-around.*/
BIO* bio1;
BIO* bio2;
size_t i, j;
uint8_t bio1_application_send_buffer[1024];
uint8_t bio2_application_recv_buffer[1024];
size_t total_read = 0;
size_t total_write = 0;
uint8_t* write_buf;
size_t write_buf_offset;
size_t available_bytes;
size_t bytes_left;
const size_t kLengths[] = {254, 255, 256, 257, 510, 511, 512, 513};
/* These trigger ring buffer wrap around. */
const size_t kPartialLengths[] = {0, 1, 2, 3, 128, 255, 256, 257, 511, 512};
static const size_t kBufferSize = 512;
srand(1);
for (i = 0; i < sizeof(bio1_application_send_buffer); i++) {
bio1_application_send_buffer[i] = rand() & 255;
}
/* Transfer bytes from bio1_application_send_buffer to
* bio2_application_recv_buffer in various ways. */
for (i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
for (j = 0; j < sizeof(kPartialLengths) / sizeof(kPartialLengths[0]); j++) {
total_write = 0;
total_read = 0;
BIO_new_bio_pair(&bio1, kBufferSize, &bio2, kBufferSize);
total_write += bio_write_zero_copy_wrapper(
bio1, bio1_application_send_buffer, kLengths[i]);
/* This tests interleaved read/write calls. Do a read between zero copy
* write calls. */
if (!BIO_zero_copy_get_write_buf(bio1, &write_buf, &write_buf_offset,
&available_bytes)) {
return 0;
}
/* Free kPartialLengths[j] bytes in the beginning of bio1 write buffer.
* This enables ring buffer wrap around for the next write. */
total_read += BIO_read(bio2, bio2_application_recv_buffer + total_read,
kPartialLengths[j]);
size_t interleaved_write_len = MIN(kPartialLengths[j], available_bytes);
/* Write the data for the interleaved write call. If the buffer becomes
* empty after a read, the write offset is normally set to 0. Check that
* this does not happen for interleaved read/write and that
* |write_buf_offset| is still valid. */
memcpy(write_buf + write_buf_offset,
bio1_application_send_buffer + total_write, interleaved_write_len);
if (BIO_zero_copy_get_write_buf_done(bio1, interleaved_write_len)) {
total_write += interleaved_write_len;
}
/* Do another write in case |write_buf_offset| was wrapped */
total_write += bio_write_zero_copy_wrapper(
bio1, bio1_application_send_buffer + total_write,
kPartialLengths[j] - interleaved_write_len);
/* Drain the rest. */
bytes_left = BIO_pending(bio2);
total_read += bio_read_zero_copy_wrapper(
bio2, bio2_application_recv_buffer + total_read, bytes_left);
BIO_free(bio1);
BIO_free(bio2);
if (total_read != total_write) {
fprintf(stderr, "Lengths not equal in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return 0;
}
if (total_read > kLengths[i] + kPartialLengths[j]) {
fprintf(stderr, "Bad lengths in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return 0;
}
if (memcmp(bio1_application_send_buffer, bio2_application_recv_buffer,
total_read) != 0) {
fprintf(stderr, "Buffers not equal in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return 0;
}
}
}
return 1;
}
static int test_printf(void) {
/* Test a short output, a very long one, and various sizes around
* 256 (the size of the buffer) to ensure edge cases are correct. */
static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 };
BIO *bio;
char string[1024];
int ret;
const uint8_t *contents;
size_t i, len;
bio = BIO_new(BIO_s_mem());
if (!bio) {
fprintf(stderr, "BIO_new failed\n");
return 0;
}
for (i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
if (kLengths[i] >= sizeof(string)) {
fprintf(stderr, "Bad test string length\n");
return 0;
}
memset(string, 'a', sizeof(string));
string[kLengths[i]] = '\0';
ret = BIO_printf(bio, "test %s", string);
if (ret != 5 + kLengths[i]) {
fprintf(stderr, "BIO_printf failed: %d\n", ret);
return 0;
}
if (!BIO_mem_contents(bio, &contents, &len)) {
fprintf(stderr, "BIO_mem_contents failed\n");
return 0;
}
if (len != 5 + kLengths[i] ||
strncmp((const char *)contents, "test ", 5) != 0 ||
strncmp((const char *)contents + 5, string, kLengths[i]) != 0) {
fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents);
return 0;
}
if (!BIO_reset(bio)) {
fprintf(stderr, "BIO_reset failed\n");
return 0;
}
}
BIO_free(bio);
return 1;
}
int main(void) {
#if defined(OPENSSL_WINDOWS)
WSADATA wsa_data;
WORD wsa_version;
int wsa_err;
#endif
CRYPTO_library_init();
ERR_load_crypto_strings();
#if defined(OPENSSL_WINDOWS)
/* Initialize Winsock. */
wsa_version = MAKEWORD(2, 2);
wsa_err = WSAStartup(wsa_version, &wsa_data);
if (wsa_err != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
return 1;
}
if (wsa_data.wVersion != wsa_version) {
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
return 1;
}
#endif
if (!test_socket_connect()) {
return 1;
}
if (!test_printf()) {
return 1;
}
if (!test_zero_copy_bio_pairs()) {
return 1;
}
printf("PASS\n");
return 0;
}