231cb82145
Estonian IDs issued between September 2014 to September 2015 are broken and use negative moduli. They last five years and are common enough that we need to work around this bug. Add parallel "buggy" versions of BN_cbs2unsigned and RSA_parse_public_key which tolerate this mistake, to align with OpenSSL's previous behavior. This code is currently hooked up to rsa_pub_decode in RSA_ASN1_METHOD so that d2i_X509 is tolerant. (This isn't a huge deal as the rest of that stack still uses the legacy ASN.1 code which is overly lenient in many other ways.) In future, when Chromium isn't using crypto/x509 and has more unified certificate handling code, we can put client certificates under a slightly different codepath, so this needn't hold for all certificates forever. Then in September 2019, when the broken Estonian certificates all expire, we can purge this codepath altogether. BUG=532048 Change-Id: Iadb245048c71dba2eec45dd066c4a6e077140751 Reviewed-on: https://boringssl-review.googlesource.com/5894 Reviewed-by: Adam Langley <agl@google.com>
469 lines
14 KiB
C
469 lines
14 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2000.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/asn1t.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
static int parse_integer_buggy(CBS *cbs, BIGNUM **out, int buggy) {
|
|
assert(*out == NULL);
|
|
*out = BN_new();
|
|
if (*out == NULL) {
|
|
return 0;
|
|
}
|
|
if (buggy) {
|
|
return BN_cbs2unsigned_buggy(cbs, *out);
|
|
}
|
|
return BN_cbs2unsigned(cbs, *out);
|
|
}
|
|
|
|
static int parse_integer(CBS *cbs, BIGNUM **out) {
|
|
return parse_integer_buggy(cbs, out, 0 /* not buggy */);
|
|
}
|
|
|
|
static int marshal_integer(CBB *cbb, BIGNUM *bn) {
|
|
if (bn == NULL) {
|
|
/* An RSA object may be missing some components. */
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
return BN_bn2cbb(cbb, bn);
|
|
}
|
|
|
|
static RSA *parse_public_key(CBS *cbs, int buggy) {
|
|
RSA *ret = RSA_new();
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
CBS child;
|
|
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
|
|
!parse_integer_buggy(&child, &ret->n, buggy) ||
|
|
!parse_integer(&child, &ret->e) ||
|
|
CBS_len(&child) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
RSA *RSA_parse_public_key(CBS *cbs) {
|
|
return parse_public_key(cbs, 0 /* not buggy */);
|
|
}
|
|
|
|
RSA *RSA_parse_public_key_buggy(CBS *cbs) {
|
|
/* Estonian IDs issued between September 2014 to September 2015 are broken and
|
|
* use negative moduli. They last five years and are common enough that we
|
|
* need to work around this bug. See https://crbug.com/532048.
|
|
*
|
|
* TODO(davidben): Remove this code and callers in September 2019 when all the
|
|
* bad certificates have expired. */
|
|
return parse_public_key(cbs, 1 /* buggy */);
|
|
}
|
|
|
|
RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) {
|
|
CBS cbs;
|
|
CBS_init(&cbs, in, in_len);
|
|
RSA *ret = RSA_parse_public_key(&cbs);
|
|
if (ret == NULL || CBS_len(&cbs) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) {
|
|
CBB child;
|
|
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
|
|
!marshal_integer(&child, rsa->n) ||
|
|
!marshal_integer(&child, rsa->e) ||
|
|
!CBB_flush(cbb)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
|
|
const RSA *rsa) {
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
if (!CBB_init(&cbb, 0) ||
|
|
!RSA_marshal_public_key(&cbb, rsa) ||
|
|
!CBB_finish(&cbb, out_bytes, out_len)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
CBB_cleanup(&cbb);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* kVersionTwoPrime and kVersionMulti are the supported values of the version
|
|
* field of an RSAPrivateKey structure (RFC 3447). */
|
|
static const uint64_t kVersionTwoPrime = 0;
|
|
static const uint64_t kVersionMulti = 1;
|
|
|
|
/* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and
|
|
* advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on
|
|
* success or NULL on error. The |r| and |method_mod| fields of the result are
|
|
* set to NULL. */
|
|
static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) {
|
|
RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime));
|
|
if (ret == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
memset(ret, 0, sizeof(RSA_additional_prime));
|
|
|
|
CBS child;
|
|
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
|
|
!parse_integer(&child, &ret->prime) ||
|
|
!parse_integer(&child, &ret->exp) ||
|
|
!parse_integer(&child, &ret->coeff) ||
|
|
CBS_len(&child) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_additional_prime_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
RSA *RSA_parse_private_key(CBS *cbs) {
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *product_of_primes_so_far = NULL;
|
|
RSA *ret = RSA_new();
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
CBS child;
|
|
uint64_t version;
|
|
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1_uint64(&child, &version) ||
|
|
(version != kVersionTwoPrime && version != kVersionMulti) ||
|
|
!parse_integer(&child, &ret->n) ||
|
|
!parse_integer(&child, &ret->e) ||
|
|
!parse_integer(&child, &ret->d) ||
|
|
!parse_integer(&child, &ret->p) ||
|
|
!parse_integer(&child, &ret->q) ||
|
|
!parse_integer(&child, &ret->dmp1) ||
|
|
!parse_integer(&child, &ret->dmq1) ||
|
|
!parse_integer(&child, &ret->iqmp)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION);
|
|
goto err;
|
|
}
|
|
|
|
/* Multi-prime RSA requires a newer version. */
|
|
if (version == kVersionMulti &&
|
|
CBS_peek_asn1_tag(&child, CBS_ASN1_SEQUENCE)) {
|
|
CBS other_prime_infos;
|
|
if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(&other_prime_infos) == 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
goto err;
|
|
}
|
|
ret->additional_primes = sk_RSA_additional_prime_new_null();
|
|
if (ret->additional_primes == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
product_of_primes_so_far = BN_new();
|
|
if (ctx == NULL ||
|
|
product_of_primes_so_far == NULL ||
|
|
!BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
while (CBS_len(&other_prime_infos) > 0) {
|
|
RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos);
|
|
if (ap == NULL) {
|
|
goto err;
|
|
}
|
|
if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
RSA_additional_prime_free(ap);
|
|
goto err;
|
|
}
|
|
ap->r = BN_dup(product_of_primes_so_far);
|
|
if (ap->r == NULL ||
|
|
!BN_mul(product_of_primes_so_far, product_of_primes_so_far,
|
|
ap->prime, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CBS_len(&child) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
goto err;
|
|
}
|
|
|
|
BN_CTX_free(ctx);
|
|
BN_free(product_of_primes_so_far);
|
|
return ret;
|
|
|
|
err:
|
|
BN_CTX_free(ctx);
|
|
BN_free(product_of_primes_so_far);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) {
|
|
CBS cbs;
|
|
CBS_init(&cbs, in, in_len);
|
|
RSA *ret = RSA_parse_private_key(&cbs);
|
|
if (ret == NULL || CBS_len(&cbs) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
|
|
RSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) {
|
|
const int is_multiprime =
|
|
sk_RSA_additional_prime_num(rsa->additional_primes) > 0;
|
|
|
|
CBB child;
|
|
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1_uint64(&child,
|
|
is_multiprime ? kVersionMulti : kVersionTwoPrime) ||
|
|
!marshal_integer(&child, rsa->n) ||
|
|
!marshal_integer(&child, rsa->e) ||
|
|
!marshal_integer(&child, rsa->d) ||
|
|
!marshal_integer(&child, rsa->p) ||
|
|
!marshal_integer(&child, rsa->q) ||
|
|
!marshal_integer(&child, rsa->dmp1) ||
|
|
!marshal_integer(&child, rsa->dmq1) ||
|
|
!marshal_integer(&child, rsa->iqmp)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (is_multiprime) {
|
|
CBB other_prime_infos;
|
|
if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
size_t i;
|
|
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) {
|
|
RSA_additional_prime *ap =
|
|
sk_RSA_additional_prime_value(rsa->additional_primes, i);
|
|
CBB other_prime_info;
|
|
if (!CBB_add_asn1(&other_prime_infos, &other_prime_info,
|
|
CBS_ASN1_SEQUENCE) ||
|
|
!marshal_integer(&other_prime_info, ap->prime) ||
|
|
!marshal_integer(&other_prime_info, ap->exp) ||
|
|
!marshal_integer(&other_prime_info, ap->coeff)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!CBB_flush(cbb)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
|
|
const RSA *rsa) {
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
if (!CBB_init(&cbb, 0) ||
|
|
!RSA_marshal_private_key(&cbb, rsa) ||
|
|
!CBB_finish(&cbb, out_bytes, out_len)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
|
|
CBB_cleanup(&cbb);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) {
|
|
if (len < 0) {
|
|
return NULL;
|
|
}
|
|
CBS cbs;
|
|
CBS_init(&cbs, *inp, (size_t)len);
|
|
RSA *ret = RSA_parse_public_key(&cbs);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
if (out != NULL) {
|
|
RSA_free(*out);
|
|
*out = ret;
|
|
}
|
|
*inp += (size_t)len - CBS_len(&cbs);
|
|
return ret;
|
|
}
|
|
|
|
int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_public_key_to_bytes(&der, &der_len, in)) {
|
|
return -1;
|
|
}
|
|
if (der_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
OPENSSL_free(der);
|
|
return -1;
|
|
}
|
|
if (outp != NULL) {
|
|
if (*outp == NULL) {
|
|
*outp = der;
|
|
der = NULL;
|
|
} else {
|
|
memcpy(*outp, der, der_len);
|
|
*outp += der_len;
|
|
}
|
|
}
|
|
OPENSSL_free(der);
|
|
return (int)der_len;
|
|
}
|
|
|
|
RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) {
|
|
if (len < 0) {
|
|
return NULL;
|
|
}
|
|
CBS cbs;
|
|
CBS_init(&cbs, *inp, (size_t)len);
|
|
RSA *ret = RSA_parse_private_key(&cbs);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
if (out != NULL) {
|
|
RSA_free(*out);
|
|
*out = ret;
|
|
}
|
|
*inp += (size_t)len - CBS_len(&cbs);
|
|
return ret;
|
|
}
|
|
|
|
int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_private_key_to_bytes(&der, &der_len, in)) {
|
|
return -1;
|
|
}
|
|
if (der_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
OPENSSL_free(der);
|
|
return -1;
|
|
}
|
|
if (outp != NULL) {
|
|
if (*outp == NULL) {
|
|
*outp = der;
|
|
der = NULL;
|
|
} else {
|
|
memcpy(*outp, der, der_len);
|
|
*outp += der_len;
|
|
}
|
|
}
|
|
OPENSSL_free(der);
|
|
return (int)der_len;
|
|
}
|
|
|
|
ASN1_SEQUENCE(RSA_PSS_PARAMS) = {
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0),
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1),
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2),
|
|
ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3),
|
|
} ASN1_SEQUENCE_END(RSA_PSS_PARAMS);
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS);
|
|
|
|
RSA *RSAPublicKey_dup(const RSA *rsa) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) {
|
|
return NULL;
|
|
}
|
|
RSA *ret = RSA_public_key_from_bytes(der, der_len);
|
|
OPENSSL_free(der);
|
|
return ret;
|
|
}
|
|
|
|
RSA *RSAPrivateKey_dup(const RSA *rsa) {
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) {
|
|
return NULL;
|
|
}
|
|
RSA *ret = RSA_private_key_from_bytes(der, der_len);
|
|
OPENSSL_free(der);
|
|
return ret;
|
|
}
|