You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1306 rivejä
45 KiB

  1. /* Copyright (c) 2015, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. /* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
  15. *
  16. * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
  17. * and Adam Langley's public domain 64-bit C implementation of curve25519. */
  18. #include <openssl/base.h>
  19. #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
  20. !defined(OPENSSL_SMALL)
  21. #include <openssl/bn.h>
  22. #include <openssl/ec.h>
  23. #include <openssl/err.h>
  24. #include <openssl/mem.h>
  25. #include <openssl/obj.h>
  26. #include <string.h>
  27. #include "internal.h"
  28. typedef uint8_t u8;
  29. typedef uint64_t u64;
  30. typedef int64_t s64;
  31. /* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
  32. * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
  33. * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
  34. * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-limb
  35. * representation is an 'felem'; a 7-widelimb representation is a 'widefelem'.
  36. * Even within felems, bits of adjacent limbs overlap, and we don't always
  37. * reduce the representations: we ensure that inputs to each felem
  38. * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, and
  39. * fit into a 128-bit word without overflow. The coefficients are then again
  40. * partially reduced to obtain an felem satisfying a_i < 2^57. We only reduce
  41. * to the unique minimal representation at the end of the computation. */
  42. typedef uint64_t limb;
  43. typedef __uint128_t widelimb;
  44. typedef limb felem[4];
  45. typedef widelimb widefelem[7];
  46. /* Field element represented as a byte arrary. 28*8 = 224 bits is also the
  47. * group order size for the elliptic curve, and we also use this type for
  48. * scalars for point multiplication. */
  49. typedef u8 felem_bytearray[28];
  50. static const felem_bytearray nistp224_curve_params[5] = {
  51. {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
  52. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  53. 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  54. {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
  55. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  56. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
  57. {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
  58. 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B,
  59. 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
  60. {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
  61. 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32,
  62. 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
  63. {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
  64. 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5,
  65. 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}};
  66. /* Precomputed multiples of the standard generator
  67. * Points are given in coordinates (X, Y, Z) where Z normally is 1
  68. * (0 for the point at infinity).
  69. * For each field element, slice a_0 is word 0, etc.
  70. *
  71. * The table has 2 * 16 elements, starting with the following:
  72. * index | bits | point
  73. * ------+---------+------------------------------
  74. * 0 | 0 0 0 0 | 0G
  75. * 1 | 0 0 0 1 | 1G
  76. * 2 | 0 0 1 0 | 2^56G
  77. * 3 | 0 0 1 1 | (2^56 + 1)G
  78. * 4 | 0 1 0 0 | 2^112G
  79. * 5 | 0 1 0 1 | (2^112 + 1)G
  80. * 6 | 0 1 1 0 | (2^112 + 2^56)G
  81. * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
  82. * 8 | 1 0 0 0 | 2^168G
  83. * 9 | 1 0 0 1 | (2^168 + 1)G
  84. * 10 | 1 0 1 0 | (2^168 + 2^56)G
  85. * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
  86. * 12 | 1 1 0 0 | (2^168 + 2^112)G
  87. * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
  88. * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
  89. * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
  90. * followed by a copy of this with each element multiplied by 2^28.
  91. *
  92. * The reason for this is so that we can clock bits into four different
  93. * locations when doing simple scalar multiplies against the base point,
  94. * and then another four locations using the second 16 elements. */
  95. static const felem g_pre_comp[2][16][3] = {
  96. {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
  97. {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
  98. {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
  99. {1, 0, 0, 0}},
  100. {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
  101. {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
  102. {1, 0, 0, 0}},
  103. {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
  104. {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
  105. {1, 0, 0, 0}},
  106. {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
  107. {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
  108. {1, 0, 0, 0}},
  109. {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
  110. {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
  111. {1, 0, 0, 0}},
  112. {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
  113. {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
  114. {1, 0, 0, 0}},
  115. {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
  116. {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
  117. {1, 0, 0, 0}},
  118. {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
  119. {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
  120. {1, 0, 0, 0}},
  121. {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
  122. {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
  123. {1, 0, 0, 0}},
  124. {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
  125. {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
  126. {1, 0, 0, 0}},
  127. {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
  128. {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
  129. {1, 0, 0, 0}},
  130. {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
  131. {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
  132. {1, 0, 0, 0}},
  133. {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
  134. {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
  135. {1, 0, 0, 0}},
  136. {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
  137. {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
  138. {1, 0, 0, 0}},
  139. {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
  140. {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
  141. {1, 0, 0, 0}}},
  142. {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
  143. {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
  144. {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
  145. {1, 0, 0, 0}},
  146. {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
  147. {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
  148. {1, 0, 0, 0}},
  149. {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
  150. {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
  151. {1, 0, 0, 0}},
  152. {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
  153. {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
  154. {1, 0, 0, 0}},
  155. {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
  156. {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
  157. {1, 0, 0, 0}},
  158. {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
  159. {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
  160. {1, 0, 0, 0}},
  161. {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
  162. {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
  163. {1, 0, 0, 0}},
  164. {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
  165. {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
  166. {1, 0, 0, 0}},
  167. {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
  168. {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
  169. {1, 0, 0, 0}},
  170. {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
  171. {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
  172. {1, 0, 0, 0}},
  173. {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
  174. {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
  175. {1, 0, 0, 0}},
  176. {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
  177. {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
  178. {1, 0, 0, 0}},
  179. {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
  180. {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
  181. {1, 0, 0, 0}},
  182. {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
  183. {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
  184. {1, 0, 0, 0}},
  185. {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
  186. {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
  187. {1, 0, 0, 0}}}};
  188. /* Helper functions to convert field elements to/from internal representation */
  189. static void bin28_to_felem(felem out, const u8 in[28]) {
  190. out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
  191. out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
  192. out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
  193. out[3] = (*((const uint64_t *)(in + 20))) >> 8;
  194. }
  195. static void felem_to_bin28(u8 out[28], const felem in) {
  196. unsigned i;
  197. for (i = 0; i < 7; ++i) {
  198. out[i] = in[0] >> (8 * i);
  199. out[i + 7] = in[1] >> (8 * i);
  200. out[i + 14] = in[2] >> (8 * i);
  201. out[i + 21] = in[3] >> (8 * i);
  202. }
  203. }
  204. /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
  205. static void flip_endian(u8 *out, const u8 *in, unsigned len) {
  206. unsigned i;
  207. for (i = 0; i < len; ++i) {
  208. out[i] = in[len - 1 - i];
  209. }
  210. }
  211. /* From OpenSSL BIGNUM to internal representation */
  212. static int BN_to_felem(felem out, const BIGNUM *bn) {
  213. /* BN_bn2bin eats leading zeroes */
  214. felem_bytearray b_out;
  215. memset(b_out, 0, sizeof(b_out));
  216. unsigned num_bytes = BN_num_bytes(bn);
  217. if (num_bytes > sizeof(b_out) ||
  218. BN_is_negative(bn)) {
  219. OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
  220. return 0;
  221. }
  222. felem_bytearray b_in;
  223. num_bytes = BN_bn2bin(bn, b_in);
  224. flip_endian(b_out, b_in, num_bytes);
  225. bin28_to_felem(out, b_out);
  226. return 1;
  227. }
  228. /* From internal representation to OpenSSL BIGNUM */
  229. static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) {
  230. felem_bytearray b_in, b_out;
  231. felem_to_bin28(b_in, in);
  232. flip_endian(b_out, b_in, sizeof(b_out));
  233. return BN_bin2bn(b_out, sizeof(b_out), out);
  234. }
  235. /* Field operations, using the internal representation of field elements.
  236. * NB! These operations are specific to our point multiplication and cannot be
  237. * expected to be correct in general - e.g., multiplication with a large scalar
  238. * will cause an overflow. */
  239. static void felem_one(felem out) {
  240. out[0] = 1;
  241. out[1] = 0;
  242. out[2] = 0;
  243. out[3] = 0;
  244. }
  245. static void felem_assign(felem out, const felem in) {
  246. out[0] = in[0];
  247. out[1] = in[1];
  248. out[2] = in[2];
  249. out[3] = in[3];
  250. }
  251. /* Sum two field elements: out += in */
  252. static void felem_sum(felem out, const felem in) {
  253. out[0] += in[0];
  254. out[1] += in[1];
  255. out[2] += in[2];
  256. out[3] += in[3];
  257. }
  258. /* Get negative value: out = -in */
  259. /* Assumes in[i] < 2^57 */
  260. static void felem_neg(felem out, const felem in) {
  261. static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
  262. static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
  263. static const limb two58m42m2 =
  264. (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
  265. /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
  266. out[0] = two58p2 - in[0];
  267. out[1] = two58m42m2 - in[1];
  268. out[2] = two58m2 - in[2];
  269. out[3] = two58m2 - in[3];
  270. }
  271. /* Subtract field elements: out -= in */
  272. /* Assumes in[i] < 2^57 */
  273. static void felem_diff(felem out, const felem in) {
  274. static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
  275. static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
  276. static const limb two58m42m2 =
  277. (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
  278. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  279. out[0] += two58p2;
  280. out[1] += two58m42m2;
  281. out[2] += two58m2;
  282. out[3] += two58m2;
  283. out[0] -= in[0];
  284. out[1] -= in[1];
  285. out[2] -= in[2];
  286. out[3] -= in[3];
  287. }
  288. /* Subtract in unreduced 128-bit mode: out -= in */
  289. /* Assumes in[i] < 2^119 */
  290. static void widefelem_diff(widefelem out, const widefelem in) {
  291. static const widelimb two120 = ((widelimb)1) << 120;
  292. static const widelimb two120m64 =
  293. (((widelimb)1) << 120) - (((widelimb)1) << 64);
  294. static const widelimb two120m104m64 =
  295. (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
  296. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  297. out[0] += two120;
  298. out[1] += two120m64;
  299. out[2] += two120m64;
  300. out[3] += two120;
  301. out[4] += two120m104m64;
  302. out[5] += two120m64;
  303. out[6] += two120m64;
  304. out[0] -= in[0];
  305. out[1] -= in[1];
  306. out[2] -= in[2];
  307. out[3] -= in[3];
  308. out[4] -= in[4];
  309. out[5] -= in[5];
  310. out[6] -= in[6];
  311. }
  312. /* Subtract in mixed mode: out128 -= in64 */
  313. /* in[i] < 2^63 */
  314. static void felem_diff_128_64(widefelem out, const felem in) {
  315. static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
  316. static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
  317. static const widelimb two64m48m8 =
  318. (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
  319. /* Add 0 mod 2^224-2^96+1 to ensure out > in */
  320. out[0] += two64p8;
  321. out[1] += two64m48m8;
  322. out[2] += two64m8;
  323. out[3] += two64m8;
  324. out[0] -= in[0];
  325. out[1] -= in[1];
  326. out[2] -= in[2];
  327. out[3] -= in[3];
  328. }
  329. /* Multiply a field element by a scalar: out = out * scalar
  330. * The scalars we actually use are small, so results fit without overflow */
  331. static void felem_scalar(felem out, const limb scalar) {
  332. out[0] *= scalar;
  333. out[1] *= scalar;
  334. out[2] *= scalar;
  335. out[3] *= scalar;
  336. }
  337. /* Multiply an unreduced field element by a scalar: out = out * scalar
  338. * The scalars we actually use are small, so results fit without overflow */
  339. static void widefelem_scalar(widefelem out, const widelimb scalar) {
  340. out[0] *= scalar;
  341. out[1] *= scalar;
  342. out[2] *= scalar;
  343. out[3] *= scalar;
  344. out[4] *= scalar;
  345. out[5] *= scalar;
  346. out[6] *= scalar;
  347. }
  348. /* Square a field element: out = in^2 */
  349. static void felem_square(widefelem out, const felem in) {
  350. limb tmp0, tmp1, tmp2;
  351. tmp0 = 2 * in[0];
  352. tmp1 = 2 * in[1];
  353. tmp2 = 2 * in[2];
  354. out[0] = ((widelimb)in[0]) * in[0];
  355. out[1] = ((widelimb)in[0]) * tmp1;
  356. out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
  357. out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
  358. out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
  359. out[5] = ((widelimb)in[3]) * tmp2;
  360. out[6] = ((widelimb)in[3]) * in[3];
  361. }
  362. /* Multiply two field elements: out = in1 * in2 */
  363. static void felem_mul(widefelem out, const felem in1, const felem in2) {
  364. out[0] = ((widelimb)in1[0]) * in2[0];
  365. out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
  366. out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] +
  367. ((widelimb)in1[2]) * in2[0];
  368. out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] +
  369. ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
  370. out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] +
  371. ((widelimb)in1[3]) * in2[1];
  372. out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
  373. out[6] = ((widelimb)in1[3]) * in2[3];
  374. }
  375. /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
  376. * Requires in[i] < 2^126,
  377. * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
  378. static void felem_reduce(felem out, const widefelem in) {
  379. static const widelimb two127p15 =
  380. (((widelimb)1) << 127) + (((widelimb)1) << 15);
  381. static const widelimb two127m71 =
  382. (((widelimb)1) << 127) - (((widelimb)1) << 71);
  383. static const widelimb two127m71m55 =
  384. (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
  385. widelimb output[5];
  386. /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
  387. output[0] = in[0] + two127p15;
  388. output[1] = in[1] + two127m71m55;
  389. output[2] = in[2] + two127m71;
  390. output[3] = in[3];
  391. output[4] = in[4];
  392. /* Eliminate in[4], in[5], in[6] */
  393. output[4] += in[6] >> 16;
  394. output[3] += (in[6] & 0xffff) << 40;
  395. output[2] -= in[6];
  396. output[3] += in[5] >> 16;
  397. output[2] += (in[5] & 0xffff) << 40;
  398. output[1] -= in[5];
  399. output[2] += output[4] >> 16;
  400. output[1] += (output[4] & 0xffff) << 40;
  401. output[0] -= output[4];
  402. /* Carry 2 -> 3 -> 4 */
  403. output[3] += output[2] >> 56;
  404. output[2] &= 0x00ffffffffffffff;
  405. output[4] = output[3] >> 56;
  406. output[3] &= 0x00ffffffffffffff;
  407. /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
  408. /* Eliminate output[4] */
  409. output[2] += output[4] >> 16;
  410. /* output[2] < 2^56 + 2^56 = 2^57 */
  411. output[1] += (output[4] & 0xffff) << 40;
  412. output[0] -= output[4];
  413. /* Carry 0 -> 1 -> 2 -> 3 */
  414. output[1] += output[0] >> 56;
  415. out[0] = output[0] & 0x00ffffffffffffff;
  416. output[2] += output[1] >> 56;
  417. /* output[2] < 2^57 + 2^72 */
  418. out[1] = output[1] & 0x00ffffffffffffff;
  419. output[3] += output[2] >> 56;
  420. /* output[3] <= 2^56 + 2^16 */
  421. out[2] = output[2] & 0x00ffffffffffffff;
  422. /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
  423. * out[3] <= 2^56 + 2^16 (due to final carry),
  424. * so out < 2*p */
  425. out[3] = output[3];
  426. }
  427. static void felem_square_reduce(felem out, const felem in) {
  428. widefelem tmp;
  429. felem_square(tmp, in);
  430. felem_reduce(out, tmp);
  431. }
  432. static void felem_mul_reduce(felem out, const felem in1, const felem in2) {
  433. widefelem tmp;
  434. felem_mul(tmp, in1, in2);
  435. felem_reduce(out, tmp);
  436. }
  437. /* Reduce to unique minimal representation.
  438. * Requires 0 <= in < 2*p (always call felem_reduce first) */
  439. static void felem_contract(felem out, const felem in) {
  440. static const int64_t two56 = ((limb)1) << 56;
  441. /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
  442. /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
  443. int64_t tmp[4], a;
  444. tmp[0] = in[0];
  445. tmp[1] = in[1];
  446. tmp[2] = in[2];
  447. tmp[3] = in[3];
  448. /* Case 1: a = 1 iff in >= 2^224 */
  449. a = (in[3] >> 56);
  450. tmp[0] -= a;
  451. tmp[1] += a << 40;
  452. tmp[3] &= 0x00ffffffffffffff;
  453. /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
  454. * the lower part is non-zero */
  455. a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
  456. (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
  457. a &= 0x00ffffffffffffff;
  458. /* turn a into an all-one mask (if a = 0) or an all-zero mask */
  459. a = (a - 1) >> 63;
  460. /* subtract 2^224 - 2^96 + 1 if a is all-one */
  461. tmp[3] &= a ^ 0xffffffffffffffff;
  462. tmp[2] &= a ^ 0xffffffffffffffff;
  463. tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
  464. tmp[0] -= 1 & a;
  465. /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
  466. * be non-zero, so we only need one step */
  467. a = tmp[0] >> 63;
  468. tmp[0] += two56 & a;
  469. tmp[1] -= 1 & a;
  470. /* carry 1 -> 2 -> 3 */
  471. tmp[2] += tmp[1] >> 56;
  472. tmp[1] &= 0x00ffffffffffffff;
  473. tmp[3] += tmp[2] >> 56;
  474. tmp[2] &= 0x00ffffffffffffff;
  475. /* Now 0 <= out < p */
  476. out[0] = tmp[0];
  477. out[1] = tmp[1];
  478. out[2] = tmp[2];
  479. out[3] = tmp[3];
  480. }
  481. /* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
  482. * elements are reduced to in < 2^225, so we only need to check three cases: 0,
  483. * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
  484. static limb felem_is_zero(const felem in) {
  485. limb zero = in[0] | in[1] | in[2] | in[3];
  486. zero = (((int64_t)(zero)-1) >> 63) & 1;
  487. limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
  488. (in[2] ^ 0x00ffffffffffffff) |
  489. (in[3] ^ 0x00ffffffffffffff);
  490. two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
  491. limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
  492. (in[2] ^ 0x00ffffffffffffff) |
  493. (in[3] ^ 0x01ffffffffffffff);
  494. two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
  495. return (zero | two224m96p1 | two225m97p2);
  496. }
  497. static limb felem_is_zero_int(const felem in) {
  498. return (int)(felem_is_zero(in) & ((limb)1));
  499. }
  500. /* Invert a field element */
  501. /* Computation chain copied from djb's code */
  502. static void felem_inv(felem out, const felem in) {
  503. felem ftmp, ftmp2, ftmp3, ftmp4;
  504. widefelem tmp;
  505. unsigned i;
  506. felem_square(tmp, in);
  507. felem_reduce(ftmp, tmp); /* 2 */
  508. felem_mul(tmp, in, ftmp);
  509. felem_reduce(ftmp, tmp); /* 2^2 - 1 */
  510. felem_square(tmp, ftmp);
  511. felem_reduce(ftmp, tmp); /* 2^3 - 2 */
  512. felem_mul(tmp, in, ftmp);
  513. felem_reduce(ftmp, tmp); /* 2^3 - 1 */
  514. felem_square(tmp, ftmp);
  515. felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
  516. felem_square(tmp, ftmp2);
  517. felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
  518. felem_square(tmp, ftmp2);
  519. felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
  520. felem_mul(tmp, ftmp2, ftmp);
  521. felem_reduce(ftmp, tmp); /* 2^6 - 1 */
  522. felem_square(tmp, ftmp);
  523. felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
  524. for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
  525. felem_square(tmp, ftmp2);
  526. felem_reduce(ftmp2, tmp);
  527. }
  528. felem_mul(tmp, ftmp2, ftmp);
  529. felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
  530. felem_square(tmp, ftmp2);
  531. felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
  532. for (i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
  533. felem_square(tmp, ftmp3);
  534. felem_reduce(ftmp3, tmp);
  535. }
  536. felem_mul(tmp, ftmp3, ftmp2);
  537. felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
  538. felem_square(tmp, ftmp2);
  539. felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
  540. for (i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
  541. felem_square(tmp, ftmp3);
  542. felem_reduce(ftmp3, tmp);
  543. }
  544. felem_mul(tmp, ftmp3, ftmp2);
  545. felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
  546. felem_square(tmp, ftmp3);
  547. felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
  548. for (i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
  549. felem_square(tmp, ftmp4);
  550. felem_reduce(ftmp4, tmp);
  551. }
  552. felem_mul(tmp, ftmp3, ftmp4);
  553. felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
  554. felem_square(tmp, ftmp3);
  555. felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
  556. for (i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
  557. felem_square(tmp, ftmp4);
  558. felem_reduce(ftmp4, tmp);
  559. }
  560. felem_mul(tmp, ftmp2, ftmp4);
  561. felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
  562. for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
  563. felem_square(tmp, ftmp2);
  564. felem_reduce(ftmp2, tmp);
  565. }
  566. felem_mul(tmp, ftmp2, ftmp);
  567. felem_reduce(ftmp, tmp); /* 2^126 - 1 */
  568. felem_square(tmp, ftmp);
  569. felem_reduce(ftmp, tmp); /* 2^127 - 2 */
  570. felem_mul(tmp, ftmp, in);
  571. felem_reduce(ftmp, tmp); /* 2^127 - 1 */
  572. for (i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
  573. felem_square(tmp, ftmp);
  574. felem_reduce(ftmp, tmp);
  575. }
  576. felem_mul(tmp, ftmp, ftmp3);
  577. felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
  578. }
  579. /* Copy in constant time:
  580. * if icopy == 1, copy in to out,
  581. * if icopy == 0, copy out to itself. */
  582. static void copy_conditional(felem out, const felem in, limb icopy) {
  583. unsigned i;
  584. /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
  585. const limb copy = -icopy;
  586. for (i = 0; i < 4; ++i) {
  587. const limb tmp = copy & (in[i] ^ out[i]);
  588. out[i] ^= tmp;
  589. }
  590. }
  591. /* ELLIPTIC CURVE POINT OPERATIONS
  592. *
  593. * Points are represented in Jacobian projective coordinates:
  594. * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
  595. * or to the point at infinity if Z == 0. */
  596. /* Double an elliptic curve point:
  597. * (X', Y', Z') = 2 * (X, Y, Z), where
  598. * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
  599. * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
  600. * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
  601. * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
  602. * while x_out == y_in is not (maybe this works, but it's not tested). */
  603. static void point_double(felem x_out, felem y_out, felem z_out,
  604. const felem x_in, const felem y_in, const felem z_in) {
  605. widefelem tmp, tmp2;
  606. felem delta, gamma, beta, alpha, ftmp, ftmp2;
  607. felem_assign(ftmp, x_in);
  608. felem_assign(ftmp2, x_in);
  609. /* delta = z^2 */
  610. felem_square(tmp, z_in);
  611. felem_reduce(delta, tmp);
  612. /* gamma = y^2 */
  613. felem_square(tmp, y_in);
  614. felem_reduce(gamma, tmp);
  615. /* beta = x*gamma */
  616. felem_mul(tmp, x_in, gamma);
  617. felem_reduce(beta, tmp);
  618. /* alpha = 3*(x-delta)*(x+delta) */
  619. felem_diff(ftmp, delta);
  620. /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
  621. felem_sum(ftmp2, delta);
  622. /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
  623. felem_scalar(ftmp2, 3);
  624. /* ftmp2[i] < 3 * 2^58 < 2^60 */
  625. felem_mul(tmp, ftmp, ftmp2);
  626. /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
  627. felem_reduce(alpha, tmp);
  628. /* x' = alpha^2 - 8*beta */
  629. felem_square(tmp, alpha);
  630. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  631. felem_assign(ftmp, beta);
  632. felem_scalar(ftmp, 8);
  633. /* ftmp[i] < 8 * 2^57 = 2^60 */
  634. felem_diff_128_64(tmp, ftmp);
  635. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  636. felem_reduce(x_out, tmp);
  637. /* z' = (y + z)^2 - gamma - delta */
  638. felem_sum(delta, gamma);
  639. /* delta[i] < 2^57 + 2^57 = 2^58 */
  640. felem_assign(ftmp, y_in);
  641. felem_sum(ftmp, z_in);
  642. /* ftmp[i] < 2^57 + 2^57 = 2^58 */
  643. felem_square(tmp, ftmp);
  644. /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
  645. felem_diff_128_64(tmp, delta);
  646. /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
  647. felem_reduce(z_out, tmp);
  648. /* y' = alpha*(4*beta - x') - 8*gamma^2 */
  649. felem_scalar(beta, 4);
  650. /* beta[i] < 4 * 2^57 = 2^59 */
  651. felem_diff(beta, x_out);
  652. /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
  653. felem_mul(tmp, alpha, beta);
  654. /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
  655. felem_square(tmp2, gamma);
  656. /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
  657. widefelem_scalar(tmp2, 8);
  658. /* tmp2[i] < 8 * 2^116 = 2^119 */
  659. widefelem_diff(tmp, tmp2);
  660. /* tmp[i] < 2^119 + 2^120 < 2^121 */
  661. felem_reduce(y_out, tmp);
  662. }
  663. /* Add two elliptic curve points:
  664. * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
  665. * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
  666. * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
  667. * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
  668. * X_1)^2 - X_3) -
  669. * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
  670. * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
  671. *
  672. * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
  673. /* This function is not entirely constant-time: it includes a branch for
  674. * checking whether the two input points are equal, (while not equal to the
  675. * point at infinity). This case never happens during single point
  676. * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
  677. static void point_add(felem x3, felem y3, felem z3, const felem x1,
  678. const felem y1, const felem z1, const int mixed,
  679. const felem x2, const felem y2, const felem z2) {
  680. felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
  681. widefelem tmp, tmp2;
  682. limb z1_is_zero, z2_is_zero, x_equal, y_equal;
  683. if (!mixed) {
  684. /* ftmp2 = z2^2 */
  685. felem_square(tmp, z2);
  686. felem_reduce(ftmp2, tmp);
  687. /* ftmp4 = z2^3 */
  688. felem_mul(tmp, ftmp2, z2);
  689. felem_reduce(ftmp4, tmp);
  690. /* ftmp4 = z2^3*y1 */
  691. felem_mul(tmp2, ftmp4, y1);
  692. felem_reduce(ftmp4, tmp2);
  693. /* ftmp2 = z2^2*x1 */
  694. felem_mul(tmp2, ftmp2, x1);
  695. felem_reduce(ftmp2, tmp2);
  696. } else {
  697. /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
  698. /* ftmp4 = z2^3*y1 */
  699. felem_assign(ftmp4, y1);
  700. /* ftmp2 = z2^2*x1 */
  701. felem_assign(ftmp2, x1);
  702. }
  703. /* ftmp = z1^2 */
  704. felem_square(tmp, z1);
  705. felem_reduce(ftmp, tmp);
  706. /* ftmp3 = z1^3 */
  707. felem_mul(tmp, ftmp, z1);
  708. felem_reduce(ftmp3, tmp);
  709. /* tmp = z1^3*y2 */
  710. felem_mul(tmp, ftmp3, y2);
  711. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  712. /* ftmp3 = z1^3*y2 - z2^3*y1 */
  713. felem_diff_128_64(tmp, ftmp4);
  714. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  715. felem_reduce(ftmp3, tmp);
  716. /* tmp = z1^2*x2 */
  717. felem_mul(tmp, ftmp, x2);
  718. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  719. /* ftmp = z1^2*x2 - z2^2*x1 */
  720. felem_diff_128_64(tmp, ftmp2);
  721. /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
  722. felem_reduce(ftmp, tmp);
  723. /* the formulae are incorrect if the points are equal
  724. * so we check for this and do doubling if this happens */
  725. x_equal = felem_is_zero(ftmp);
  726. y_equal = felem_is_zero(ftmp3);
  727. z1_is_zero = felem_is_zero(z1);
  728. z2_is_zero = felem_is_zero(z2);
  729. /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
  730. if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
  731. point_double(x3, y3, z3, x1, y1, z1);
  732. return;
  733. }
  734. /* ftmp5 = z1*z2 */
  735. if (!mixed) {
  736. felem_mul(tmp, z1, z2);
  737. felem_reduce(ftmp5, tmp);
  738. } else {
  739. /* special case z2 = 0 is handled later */
  740. felem_assign(ftmp5, z1);
  741. }
  742. /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
  743. felem_mul(tmp, ftmp, ftmp5);
  744. felem_reduce(z_out, tmp);
  745. /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
  746. felem_assign(ftmp5, ftmp);
  747. felem_square(tmp, ftmp);
  748. felem_reduce(ftmp, tmp);
  749. /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
  750. felem_mul(tmp, ftmp, ftmp5);
  751. felem_reduce(ftmp5, tmp);
  752. /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  753. felem_mul(tmp, ftmp2, ftmp);
  754. felem_reduce(ftmp2, tmp);
  755. /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  756. felem_mul(tmp, ftmp4, ftmp5);
  757. /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
  758. /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
  759. felem_square(tmp2, ftmp3);
  760. /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
  761. /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
  762. felem_diff_128_64(tmp2, ftmp5);
  763. /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
  764. /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  765. felem_assign(ftmp5, ftmp2);
  766. felem_scalar(ftmp5, 2);
  767. /* ftmp5[i] < 2 * 2^57 = 2^58 */
  768. /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
  769. 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
  770. felem_diff_128_64(tmp2, ftmp5);
  771. /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
  772. felem_reduce(x_out, tmp2);
  773. /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
  774. felem_diff(ftmp2, x_out);
  775. /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
  776. /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
  777. felem_mul(tmp2, ftmp3, ftmp2);
  778. /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
  779. /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
  780. z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
  781. widefelem_diff(tmp2, tmp);
  782. /* tmp2[i] < 2^118 + 2^120 < 2^121 */
  783. felem_reduce(y_out, tmp2);
  784. /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
  785. * the point at infinity, so we need to check for this separately */
  786. /* if point 1 is at infinity, copy point 2 to output, and vice versa */
  787. copy_conditional(x_out, x2, z1_is_zero);
  788. copy_conditional(x_out, x1, z2_is_zero);
  789. copy_conditional(y_out, y2, z1_is_zero);
  790. copy_conditional(y_out, y1, z2_is_zero);
  791. copy_conditional(z_out, z2, z1_is_zero);
  792. copy_conditional(z_out, z1, z2_is_zero);
  793. felem_assign(x3, x_out);
  794. felem_assign(y3, y_out);
  795. felem_assign(z3, z_out);
  796. }
  797. /* select_point selects the |idx|th point from a precomputation table and
  798. * copies it to out. */
  799. static void select_point(const u64 idx, unsigned int size,
  800. const felem pre_comp[/*size*/][3], felem out[3]) {
  801. unsigned i, j;
  802. limb *outlimbs = &out[0][0];
  803. memset(outlimbs, 0, 3 * sizeof(felem));
  804. for (i = 0; i < size; i++) {
  805. const limb *inlimbs = &pre_comp[i][0][0];
  806. u64 mask = i ^ idx;
  807. mask |= mask >> 4;
  808. mask |= mask >> 2;
  809. mask |= mask >> 1;
  810. mask &= 1;
  811. mask--;
  812. for (j = 0; j < 4 * 3; j++) {
  813. outlimbs[j] |= inlimbs[j] & mask;
  814. }
  815. }
  816. }
  817. /* get_bit returns the |i|th bit in |in| */
  818. static char get_bit(const felem_bytearray in, unsigned i) {
  819. if (i >= 224) {
  820. return 0;
  821. }
  822. return (in[i >> 3] >> (i & 7)) & 1;
  823. }
  824. /* Interleaved point multiplication using precomputed point multiples:
  825. * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
  826. * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
  827. * of the generator, using certain (large) precomputed multiples in g_pre_comp.
  828. * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
  829. static void batch_mul(felem x_out, felem y_out, felem z_out,
  830. const felem_bytearray scalars[],
  831. const unsigned num_points, const u8 *g_scalar,
  832. const int mixed, const felem pre_comp[][17][3]) {
  833. int i, skip;
  834. unsigned num;
  835. unsigned gen_mul = (g_scalar != NULL);
  836. felem nq[3], tmp[4];
  837. u64 bits;
  838. u8 sign, digit;
  839. /* set nq to the point at infinity */
  840. memset(nq, 0, 3 * sizeof(felem));
  841. /* Loop over all scalars msb-to-lsb, interleaving additions
  842. * of multiples of the generator (two in each of the last 28 rounds)
  843. * and additions of other points multiples (every 5th round). */
  844. skip = 1; /* save two point operations in the first round */
  845. for (i = (num_points ? 220 : 27); i >= 0; --i) {
  846. /* double */
  847. if (!skip) {
  848. point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
  849. }
  850. /* add multiples of the generator */
  851. if (gen_mul && (i <= 27)) {
  852. /* first, look 28 bits upwards */
  853. bits = get_bit(g_scalar, i + 196) << 3;
  854. bits |= get_bit(g_scalar, i + 140) << 2;
  855. bits |= get_bit(g_scalar, i + 84) << 1;
  856. bits |= get_bit(g_scalar, i + 28);
  857. /* select the point to add, in constant time */
  858. select_point(bits, 16, g_pre_comp[1], tmp);
  859. if (!skip) {
  860. point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
  861. tmp[0], tmp[1], tmp[2]);
  862. } else {
  863. memcpy(nq, tmp, 3 * sizeof(felem));
  864. skip = 0;
  865. }
  866. /* second, look at the current position */
  867. bits = get_bit(g_scalar, i + 168) << 3;
  868. bits |= get_bit(g_scalar, i + 112) << 2;
  869. bits |= get_bit(g_scalar, i + 56) << 1;
  870. bits |= get_bit(g_scalar, i);
  871. /* select the point to add, in constant time */
  872. select_point(bits, 16, g_pre_comp[0], tmp);
  873. point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
  874. tmp[1], tmp[2]);
  875. }
  876. /* do other additions every 5 doublings */
  877. if (num_points && (i % 5 == 0)) {
  878. /* loop over all scalars */
  879. for (num = 0; num < num_points; ++num) {
  880. bits = get_bit(scalars[num], i + 4) << 5;
  881. bits |= get_bit(scalars[num], i + 3) << 4;
  882. bits |= get_bit(scalars[num], i + 2) << 3;
  883. bits |= get_bit(scalars[num], i + 1) << 2;
  884. bits |= get_bit(scalars[num], i) << 1;
  885. bits |= get_bit(scalars[num], i - 1);
  886. ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
  887. /* select the point to add or subtract */
  888. select_point(digit, 17, pre_comp[num], tmp);
  889. felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
  890. copy_conditional(tmp[1], tmp[3], sign);
  891. if (!skip) {
  892. point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
  893. tmp[1], tmp[2]);
  894. } else {
  895. memcpy(nq, tmp, 3 * sizeof(felem));
  896. skip = 0;
  897. }
  898. }
  899. }
  900. }
  901. felem_assign(x_out, nq[0]);
  902. felem_assign(y_out, nq[1]);
  903. felem_assign(z_out, nq[2]);
  904. }
  905. int ec_GFp_nistp224_group_init(EC_GROUP *group) {
  906. int ret;
  907. ret = ec_GFp_simple_group_init(group);
  908. group->a_is_minus3 = 1;
  909. return ret;
  910. }
  911. int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
  912. const BIGNUM *a, const BIGNUM *b,
  913. BN_CTX *ctx) {
  914. int ret = 0;
  915. BN_CTX *new_ctx = NULL;
  916. BIGNUM *curve_p, *curve_a, *curve_b;
  917. if (ctx == NULL) {
  918. ctx = BN_CTX_new();
  919. new_ctx = ctx;
  920. if (ctx == NULL) {
  921. return 0;
  922. }
  923. }
  924. BN_CTX_start(ctx);
  925. if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
  926. ((curve_a = BN_CTX_get(ctx)) == NULL) ||
  927. ((curve_b = BN_CTX_get(ctx)) == NULL)) {
  928. goto err;
  929. }
  930. BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
  931. BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
  932. BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
  933. if (BN_cmp(curve_p, p) ||
  934. BN_cmp(curve_a, a) ||
  935. BN_cmp(curve_b, b)) {
  936. OPENSSL_PUT_ERROR(EC, EC_R_WRONG_CURVE_PARAMETERS);
  937. goto err;
  938. }
  939. ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
  940. err:
  941. BN_CTX_end(ctx);
  942. BN_CTX_free(new_ctx);
  943. return ret;
  944. }
  945. /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
  946. * (X', Y') = (X/Z^2, Y/Z^3) */
  947. int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
  948. const EC_POINT *point,
  949. BIGNUM *x, BIGNUM *y,
  950. BN_CTX *ctx) {
  951. felem z1, z2, x_in, y_in, x_out, y_out;
  952. widefelem tmp;
  953. if (EC_POINT_is_at_infinity(group, point)) {
  954. OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
  955. return 0;
  956. }
  957. if (!BN_to_felem(x_in, &point->X) ||
  958. !BN_to_felem(y_in, &point->Y) ||
  959. !BN_to_felem(z1, &point->Z)) {
  960. return 0;
  961. }
  962. felem_inv(z2, z1);
  963. felem_square(tmp, z2);
  964. felem_reduce(z1, tmp);
  965. felem_mul(tmp, x_in, z1);
  966. felem_reduce(x_in, tmp);
  967. felem_contract(x_out, x_in);
  968. if (x != NULL && !felem_to_BN(x, x_out)) {
  969. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  970. return 0;
  971. }
  972. felem_mul(tmp, z1, z2);
  973. felem_reduce(z1, tmp);
  974. felem_mul(tmp, y_in, z1);
  975. felem_reduce(y_in, tmp);
  976. felem_contract(y_out, y_in);
  977. if (y != NULL && !felem_to_BN(y, y_out)) {
  978. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  979. return 0;
  980. }
  981. return 1;
  982. }
  983. static void make_points_affine(size_t num, felem points[/*num*/][3],
  984. felem tmp_felems[/*num+1*/]) {
  985. /* Runs in constant time, unless an input is the point at infinity
  986. * (which normally shouldn't happen). */
  987. ec_GFp_nistp_points_make_affine_internal(
  988. num, points, sizeof(felem), tmp_felems, (void (*)(void *))felem_one,
  989. (int (*)(const void *))felem_is_zero_int,
  990. (void (*)(void *, const void *))felem_assign,
  991. (void (*)(void *, const void *))felem_square_reduce,
  992. (void (*)(void *, const void *, const void *))felem_mul_reduce,
  993. (void (*)(void *, const void *))felem_inv,
  994. (void (*)(void *, const void *))felem_contract);
  995. }
  996. int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
  997. const BIGNUM *g_scalar, const EC_POINT *p_,
  998. const BIGNUM *p_scalar_, BN_CTX *ctx) {
  999. /* TODO: This function used to take |points| and |scalars| as arrays of
  1000. * |num| elements. The code below should be simplified to work in terms of
  1001. * |p_| and |p_scalar_|. */
  1002. size_t num = p_ != NULL ? 1 : 0;
  1003. const EC_POINT **points = p_ != NULL ? &p_ : NULL;
  1004. BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
  1005. int ret = 0;
  1006. int j;
  1007. unsigned i;
  1008. int mixed = 0;
  1009. BN_CTX *new_ctx = NULL;
  1010. BIGNUM *x, *y, *z, *tmp_scalar;
  1011. felem_bytearray g_secret;
  1012. felem_bytearray *secrets = NULL;
  1013. felem(*pre_comp)[17][3] = NULL;
  1014. felem *tmp_felems = NULL;
  1015. felem_bytearray tmp;
  1016. unsigned num_bytes;
  1017. size_t num_points = num;
  1018. felem x_in, y_in, z_in, x_out, y_out, z_out;
  1019. const EC_POINT *p = NULL;
  1020. const BIGNUM *p_scalar = NULL;
  1021. if (ctx == NULL) {
  1022. ctx = BN_CTX_new();
  1023. new_ctx = ctx;
  1024. if (ctx == NULL) {
  1025. return 0;
  1026. }
  1027. }
  1028. BN_CTX_start(ctx);
  1029. if ((x = BN_CTX_get(ctx)) == NULL ||
  1030. (y = BN_CTX_get(ctx)) == NULL ||
  1031. (z = BN_CTX_get(ctx)) == NULL ||
  1032. (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
  1033. goto err;
  1034. }
  1035. if (num_points > 0) {
  1036. if (num_points >= 3) {
  1037. /* unless we precompute multiples for just one or two points,
  1038. * converting those into affine form is time well spent */
  1039. mixed = 1;
  1040. }
  1041. secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
  1042. pre_comp = OPENSSL_malloc(num_points * sizeof(felem[17][3]));
  1043. if (mixed) {
  1044. tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
  1045. }
  1046. if (secrets == NULL ||
  1047. pre_comp == NULL ||
  1048. (mixed && tmp_felems == NULL)) {
  1049. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  1050. goto err;
  1051. }
  1052. /* we treat NULL scalars as 0, and NULL points as points at infinity,
  1053. * i.e., they contribute nothing to the linear combination */
  1054. memset(secrets, 0, num_points * sizeof(felem_bytearray));
  1055. memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
  1056. for (i = 0; i < num_points; ++i) {
  1057. if (i == num) {
  1058. /* the generator */
  1059. p = EC_GROUP_get0_generator(group);
  1060. p_scalar = g_scalar;
  1061. } else {
  1062. /* the i^th point */
  1063. p = points[i];
  1064. p_scalar = scalars[i];
  1065. }
  1066. if (p_scalar != NULL && p != NULL) {
  1067. /* reduce g_scalar to 0 <= g_scalar < 2^224 */
  1068. if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
  1069. /* this is an unusual input, and we don't guarantee
  1070. * constant-timeness */
  1071. if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
  1072. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  1073. goto err;
  1074. }
  1075. num_bytes = BN_bn2bin(tmp_scalar, tmp);
  1076. } else {
  1077. num_bytes = BN_bn2bin(p_scalar, tmp);
  1078. }
  1079. flip_endian(secrets[i], tmp, num_bytes);
  1080. /* precompute multiples */
  1081. if (!BN_to_felem(x_out, &p->X) ||
  1082. !BN_to_felem(y_out, &p->Y) ||
  1083. !BN_to_felem(z_out, &p->Z)) {
  1084. goto err;
  1085. }
  1086. felem_assign(pre_comp[i][1][0], x_out);
  1087. felem_assign(pre_comp[i][1][1], y_out);
  1088. felem_assign(pre_comp[i][1][2], z_out);
  1089. for (j = 2; j <= 16; ++j) {
  1090. if (j & 1) {
  1091. point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
  1092. pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
  1093. 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
  1094. pre_comp[i][j - 1][2]);
  1095. } else {
  1096. point_double(pre_comp[i][j][0], pre_comp[i][j][1],
  1097. pre_comp[i][j][2], pre_comp[i][j / 2][0],
  1098. pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
  1099. }
  1100. }
  1101. }
  1102. }
  1103. if (mixed) {
  1104. make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
  1105. }
  1106. }
  1107. if (g_scalar != NULL) {
  1108. memset(g_secret, 0, sizeof(g_secret));
  1109. /* reduce g_scalar to 0 <= g_scalar < 2^224 */
  1110. if (BN_num_bits(g_scalar) > 224 || BN_is_negative(g_scalar)) {
  1111. /* this is an unusual input, and we don't guarantee constant-timeness */
  1112. if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
  1113. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  1114. goto err;
  1115. }
  1116. num_bytes = BN_bn2bin(tmp_scalar, tmp);
  1117. } else {
  1118. num_bytes = BN_bn2bin(g_scalar, tmp);
  1119. }
  1120. flip_endian(g_secret, tmp, num_bytes);
  1121. }
  1122. batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
  1123. num_points, g_scalar != NULL ? g_secret : NULL, mixed,
  1124. (const felem(*)[17][3])pre_comp);
  1125. /* reduce the output to its unique minimal representation */
  1126. felem_contract(x_in, x_out);
  1127. felem_contract(y_in, y_out);
  1128. felem_contract(z_in, z_out);
  1129. if (!felem_to_BN(x, x_in) ||
  1130. !felem_to_BN(y, y_in) ||
  1131. !felem_to_BN(z, z_in)) {
  1132. OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
  1133. goto err;
  1134. }
  1135. ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
  1136. err:
  1137. BN_CTX_end(ctx);
  1138. BN_CTX_free(new_ctx);
  1139. OPENSSL_free(secrets);
  1140. OPENSSL_free(pre_comp);
  1141. OPENSSL_free(tmp_felems);
  1142. return ret;
  1143. }
  1144. const EC_METHOD *EC_GFp_nistp224_method(void) {
  1145. static const EC_METHOD ret = {ec_GFp_nistp224_group_init,
  1146. ec_GFp_simple_group_finish,
  1147. ec_GFp_simple_group_clear_finish,
  1148. ec_GFp_simple_group_copy,
  1149. ec_GFp_nistp224_group_set_curve,
  1150. ec_GFp_nistp224_point_get_affine_coordinates,
  1151. ec_GFp_nistp224_points_mul,
  1152. 0 /* check_pub_key_order */,
  1153. ec_GFp_simple_field_mul,
  1154. ec_GFp_simple_field_sqr,
  1155. 0 /* field_encode */,
  1156. 0 /* field_decode */,
  1157. 0 /* field_set_to_one */};
  1158. return &ret;
  1159. }
  1160. #endif /* 64_BIT && !WINDOWS && !SMALL */