2c66e079ab
access_denied is only used to indicate client cert errors and Chrome maps it to ERR_SSL_BAD_CLIENT_AUTH_CERT accordingly: access_denied A valid certificate was received, but when access control was applied, the sender decided not to proceed with negotiation. This message is always fatal. We don't appear to be the cause of Chrome's recent ERR_SSL_BAD_CLIENT_AUTH_CERT spike, but we should send these correctly nonetheless. If the early callback fails, handshake_failure seems the most appropriate ("I was unable to find suitable parameters"). There isn't really an alert that matches DoS, but internal_error seems okay? internal_error An internal error unrelated to the peer or the correctness of the protocol (such as a memory allocation failure) makes it impossible to continue. This message is always fatal. There's nothing wrong, per se, with your ClientHello, but I just can't deal with it right now. Please go away. Change-Id: Icd1c998c09dc42daa4b309c1a4a0f136b85eb69d Reviewed-on: https://boringssl-review.googlesource.com/11084 Commit-Queue: David Benjamin <davidben@google.com> Commit-Queue: Adam Langley <agl@google.com> Reviewed-by: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> |
||
---|---|---|
.. | ||
runner | ||
async_bio.cc | ||
async_bio.h | ||
bssl_shim.cc | ||
CMakeLists.txt | ||
packeted_bio.cc | ||
packeted_bio.h | ||
PORTING.md | ||
README.md | ||
test_config.cc | ||
test_config.h |
BoringSSL SSL Tests
This directory contains BoringSSL's protocol-level test suite.
Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.
Instead, we use a fork of the Go crypto/tls
package, heavily patched with
configurable bugs. This code, along with a test suite and harness written in Go,
lives in the runner
directory. The harness runs BoringSSL via a C/C++ shim
binary which lives in this directory. All communication with the shim binary
occurs with command-line flags, sockets, and standard I/O.
This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.
To run the tests manually, run go test
from the runner
directory. It takes
command-line flags found at the top of runner/runner.go
. The -help
option
also works after using go test -c
to make a runner.test
binary first.
If adding a new test, these files may be a good starting point:
runner/runner.go
: the test harness and all the individual tests.runner/common.go
: contains theConfig
andProtocolBugs
struct which control the Go TLS implementation's behavior.test_config.h
,test_config.cc
: the command-line flags which control the shim's behavior.bssl_shim.cc
: the shim binary itself.
For porting the test suite to a different implementation see PORTING.md.