boringssl/crypto/bn/bn_test.cc
Rob Sloan 2ee1edfb7e Add BN_get_u64 so that Android doesn't have to reach into the BIGNUM structs
BUG=97

Change-Id: I4799cc99511e73af44def1d4daa36a8b4699f62d
Reviewed-on: https://boringssl-review.googlesource.com/12904
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-01-03 14:23:09 +00:00

1587 lines
48 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
/* Per C99, various stdint.h and inttypes.h macros (the latter used by bn.h) are
* unavailable in C++ unless some macros are defined. C++11 overruled this
* decision, but older Android NDKs still require it. */
#if !defined(__STDC_CONSTANT_MACROS)
#define __STDC_CONSTANT_MACROS
#endif
#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <utility>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../internal.h"
#include "../test/file_test.h"
#include "../test/test_util.h"
static int HexToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_hex2bn(&raw, in);
out->reset(raw);
return ret;
}
static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *attribute) {
std::string hex;
if (!t->GetAttribute(&hex, attribute)) {
return nullptr;
}
bssl::UniquePtr<BIGNUM> ret;
if (HexToBIGNUM(&ret, hex.c_str()) != static_cast<int>(hex.size())) {
t->PrintLine("Could not decode '%s'.", hex.c_str());
return nullptr;
}
return ret;
}
static bool GetInt(FileTest *t, int *out, const char *attribute) {
bssl::UniquePtr<BIGNUM> ret = GetBIGNUM(t, attribute);
if (!ret) {
return false;
}
BN_ULONG word = BN_get_word(ret.get());
if (word > INT_MAX) {
return false;
}
*out = static_cast<int>(word);
return true;
}
static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation,
const BIGNUM *expected, const BIGNUM *actual) {
if (BN_cmp(expected, actual) == 0) {
return true;
}
bssl::UniquePtr<char> expected_str(BN_bn2hex(expected));
bssl::UniquePtr<char> actual_str(BN_bn2hex(actual));
if (!expected_str || !actual_str) {
return false;
}
t->PrintLine("Got %s =", operation);
t->PrintLine("\t%s", actual_str.get());
t->PrintLine("wanted:");
t->PrintLine("\t%s", expected_str.get());
return false;
}
static bool TestSum(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
bssl::UniquePtr<BIGNUM> sum = GetBIGNUM(t, "Sum");
if (!a || !b || !sum) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_add(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) ||
!BN_sub(ret.get(), sum.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) ||
!BN_sub(ret.get(), sum.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) {
return false;
}
// Test that the functions work when |r| and |a| point to the same |BIGNUM|,
// or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where
// all of |r|, |a|, and |b| point to the same |BIGNUM|.
if (!BN_copy(ret.get(), a.get()) ||
!BN_add(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A + B (r is a)", sum.get(), ret.get()) ||
!BN_copy(ret.get(), b.get()) ||
!BN_add(ret.get(), a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A + B (r is b)", sum.get(), ret.get()) ||
!BN_copy(ret.get(), sum.get()) ||
!BN_sub(ret.get(), ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A (r is a)", b.get(), ret.get()) ||
!BN_copy(ret.get(), a.get()) ||
!BN_sub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A (r is b)", b.get(), ret.get()) ||
!BN_copy(ret.get(), sum.get()) ||
!BN_sub(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B (r is a)", a.get(), ret.get()) ||
!BN_copy(ret.get(), b.get()) ||
!BN_sub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B (r is b)", a.get(), ret.get())) {
return false;
}
// Test |BN_uadd| and |BN_usub| with the prerequisites they are documented as
// having. Note that these functions are frequently used when the
// prerequisites don't hold. In those cases, they are supposed to work as if
// the prerequisite hold, but we don't test that yet. TODO: test that.
if (!BN_is_negative(a.get()) &&
!BN_is_negative(b.get()) && BN_cmp(a.get(), b.get()) >= 0) {
if (!BN_uadd(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A +u B", sum.get(), ret.get()) ||
!BN_usub(ret.get(), sum.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u A", b.get(), ret.get()) ||
!BN_usub(ret.get(), sum.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u B", a.get(), ret.get())) {
return false;
}
// Test that the functions work when |r| and |a| point to the same |BIGNUM|,
// or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where
// all of |r|, |a|, and |b| point to the same |BIGNUM|.
if (!BN_copy(ret.get(), a.get()) ||
!BN_uadd(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A +u B (r is a)", sum.get(), ret.get()) ||
!BN_copy(ret.get(), b.get()) ||
!BN_uadd(ret.get(), a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A +u B (r is b)", sum.get(), ret.get()) ||
!BN_copy(ret.get(), sum.get()) ||
!BN_usub(ret.get(), ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u A (r is a)", b.get(), ret.get()) ||
!BN_copy(ret.get(), a.get()) ||
!BN_usub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u A (r is b)", b.get(), ret.get()) ||
!BN_copy(ret.get(), sum.get()) ||
!BN_usub(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u B (r is a)", a.get(), ret.get()) ||
!BN_copy(ret.get(), b.get()) ||
!BN_usub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u B (r is b)", a.get(), ret.get())) {
return false;
}
}
// Test with |BN_add_word| and |BN_sub_word| if |b| is small enough.
BN_ULONG b_word = BN_get_word(b.get());
if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) {
if (!BN_copy(ret.get(), a.get()) ||
!BN_add_word(ret.get(), b_word) ||
!ExpectBIGNUMsEqual(t, "A + B (word)", sum.get(), ret.get()) ||
!BN_copy(ret.get(), sum.get()) ||
!BN_sub_word(ret.get(), b_word) ||
!ExpectBIGNUMsEqual(t, "Sum - B (word)", a.get(), ret.get())) {
return false;
}
}
return true;
}
static bool TestLShift1(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> lshift1 = GetBIGNUM(t, "LShift1");
bssl::UniquePtr<BIGNUM> zero(BN_new());
if (!a || !lshift1 || !zero) {
return false;
}
BN_zero(zero.get());
bssl::UniquePtr<BIGNUM> ret(BN_new()), two(BN_new()), remainder(BN_new());
if (!ret || !two || !remainder ||
!BN_set_word(two.get(), 2) ||
!BN_add(ret.get(), a.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) ||
!BN_mul(ret.get(), a.get(), two.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) ||
!BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) ||
!BN_lshift1(ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) ||
!BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) ||
!BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) {
return false;
}
// Set the LSB to 1 and test rshift1 again.
if (!BN_set_bit(lshift1.get(), 0) ||
!BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) ||
!BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestLShift(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> lshift = GetBIGNUM(t, "LShift");
int n = 0;
if (!a || !lshift || !GetInt(t, &n, "N")) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_lshift(ret.get(), a.get(), n) ||
!ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) ||
!BN_rshift(ret.get(), lshift.get(), n) ||
!ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestRShift(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> rshift = GetBIGNUM(t, "RShift");
int n = 0;
if (!a || !rshift || !GetInt(t, &n, "N")) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_rshift(ret.get(), a.get(), n) ||
!ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) {
return false;
}
return true;
}
static bool TestSquare(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> square = GetBIGNUM(t, "Square");
bssl::UniquePtr<BIGNUM> zero(BN_new());
if (!a || !square || !zero) {
return false;
}
BN_zero(zero.get());
bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new());
if (!ret || !remainder ||
!BN_sqr(ret.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A^2", square.get(), ret.get()) ||
!BN_mul(ret.get(), a.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) ||
!BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) {
return false;
}
BN_set_negative(a.get(), 0);
if (!BN_sqrt(ret.get(), square.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "sqrt(Square)", a.get(), ret.get())) {
return false;
}
// BN_sqrt should fail on non-squares and negative numbers.
if (!BN_is_zero(square.get())) {
bssl::UniquePtr<BIGNUM> tmp(BN_new());
if (!tmp || !BN_copy(tmp.get(), square.get())) {
return false;
}
BN_set_negative(tmp.get(), 1);
if (BN_sqrt(ret.get(), tmp.get(), ctx)) {
t->PrintLine("BN_sqrt succeeded on a negative number");
return false;
}
ERR_clear_error();
BN_set_negative(tmp.get(), 0);
if (!BN_add(tmp.get(), tmp.get(), BN_value_one())) {
return false;
}
if (BN_sqrt(ret.get(), tmp.get(), ctx)) {
t->PrintLine("BN_sqrt succeeded on a non-square");
return false;
}
ERR_clear_error();
}
return true;
}
static bool TestProduct(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
bssl::UniquePtr<BIGNUM> product = GetBIGNUM(t, "Product");
bssl::UniquePtr<BIGNUM> zero(BN_new());
if (!a || !b || !product || !zero) {
return false;
}
BN_zero(zero.get());
bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new());
if (!ret || !remainder ||
!BN_mul(ret.get(), a.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) ||
!BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) ||
!BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) {
return false;
}
return true;
}
static bool TestQuotient(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
bssl::UniquePtr<BIGNUM> quotient = GetBIGNUM(t, "Quotient");
bssl::UniquePtr<BIGNUM> remainder = GetBIGNUM(t, "Remainder");
if (!a || !b || !quotient || !remainder) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new()), ret2(BN_new());
if (!ret || !ret2 ||
!BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) ||
!BN_mul(ret.get(), quotient.get(), b.get(), ctx) ||
!BN_add(ret.get(), ret.get(), remainder.get()) ||
!ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) {
return false;
}
// Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough.
BN_ULONG b_word = BN_get_word(b.get());
if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) {
BN_ULONG remainder_word = BN_get_word(remainder.get());
assert(remainder_word != (BN_ULONG)-1);
if (!BN_copy(ret.get(), a.get())) {
return false;
}
BN_ULONG ret_word = BN_div_word(ret.get(), b_word);
if (ret_word != remainder_word) {
t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1
"\n",
ret_word, remainder_word);
return false;
}
if (!ExpectBIGNUMsEqual(t, "A / B (word)", quotient.get(), ret.get())) {
return false;
}
ret_word = BN_mod_word(a.get(), b_word);
if (ret_word != remainder_word) {
t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1
"\n",
ret_word, remainder_word);
return false;
}
}
// Test BN_nnmod.
if (!BN_is_negative(b.get())) {
bssl::UniquePtr<BIGNUM> nnmod(BN_new());
if (!nnmod ||
!BN_copy(nnmod.get(), remainder.get()) ||
(BN_is_negative(nnmod.get()) &&
!BN_add(nnmod.get(), nnmod.get(), b.get())) ||
!BN_nnmod(ret.get(), a.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A % B (non-negative)", nnmod.get(),
ret.get())) {
return false;
}
}
return true;
}
static bool TestModMul(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M");
bssl::UniquePtr<BIGNUM> mod_mul = GetBIGNUM(t, "ModMul");
if (!a || !b || !m || !mod_mul) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_mod_mul(ret.get(), a.get(), b.get(), m.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * B (mod M)", mod_mul.get(), ret.get())) {
return false;
}
if (BN_is_odd(m.get())) {
// Reduce |a| and |b| and test the Montgomery version.
bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new());
bssl::UniquePtr<BIGNUM> a_tmp(BN_new()), b_tmp(BN_new());
if (!mont || !a_tmp || !b_tmp ||
!BN_MONT_CTX_set(mont.get(), m.get(), ctx) ||
!BN_nnmod(a_tmp.get(), a.get(), m.get(), ctx) ||
!BN_nnmod(b_tmp.get(), b.get(), m.get(), ctx) ||
!BN_to_montgomery(a_tmp.get(), a_tmp.get(), mont.get(), ctx) ||
!BN_to_montgomery(b_tmp.get(), b_tmp.get(), mont.get(), ctx) ||
!BN_mod_mul_montgomery(ret.get(), a_tmp.get(), b_tmp.get(), mont.get(),
ctx) ||
!BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * B (mod M) (Montgomery)",
mod_mul.get(), ret.get())) {
return false;
}
}
return true;
}
static bool TestModExp(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> e = GetBIGNUM(t, "E");
bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M");
bssl::UniquePtr<BIGNUM> mod_exp = GetBIGNUM(t, "ModExp");
if (!a || !e || !m || !mod_exp) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_mod_exp(ret.get(), a.get(), e.get(), m.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A ^ E (mod M)", mod_exp.get(), ret.get())) {
return false;
}
if (BN_is_odd(m.get())) {
if (!BN_mod_exp_mont(ret.get(), a.get(), e.get(), m.get(), ctx, NULL) ||
!ExpectBIGNUMsEqual(t, "A ^ E (mod M) (Montgomery)", mod_exp.get(),
ret.get()) ||
!BN_mod_exp_mont_consttime(ret.get(), a.get(), e.get(), m.get(), ctx,
NULL) ||
!ExpectBIGNUMsEqual(t, "A ^ E (mod M) (constant-time)", mod_exp.get(),
ret.get())) {
return false;
}
}
return true;
}
static bool TestExp(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> e = GetBIGNUM(t, "E");
bssl::UniquePtr<BIGNUM> exp = GetBIGNUM(t, "Exp");
if (!a || !e || !exp) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_exp(ret.get(), a.get(), e.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A ^ E", exp.get(), ret.get())) {
return false;
}
return true;
}
static bool TestModSqrt(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> p = GetBIGNUM(t, "P");
bssl::UniquePtr<BIGNUM> mod_sqrt = GetBIGNUM(t, "ModSqrt");
bssl::UniquePtr<BIGNUM> mod_sqrt2(BN_new());
if (!a || !p || !mod_sqrt || !mod_sqrt2 ||
// There are two possible answers.
!BN_sub(mod_sqrt2.get(), p.get(), mod_sqrt.get())) {
return false;
}
// -0 is 0, not P.
if (BN_is_zero(mod_sqrt.get())) {
BN_zero(mod_sqrt2.get());
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_mod_sqrt(ret.get(), a.get(), p.get(), ctx)) {
return false;
}
if (BN_cmp(ret.get(), mod_sqrt2.get()) != 0 &&
!ExpectBIGNUMsEqual(t, "sqrt(A) (mod P)", mod_sqrt.get(), ret.get())) {
return false;
}
return true;
}
static bool TestNotModSquare(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> not_mod_square = GetBIGNUM(t, "NotModSquare");
bssl::UniquePtr<BIGNUM> p = GetBIGNUM(t, "P");
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!not_mod_square || !p || !ret) {
return false;
}
if (BN_mod_sqrt(ret.get(), not_mod_square.get(), p.get(), ctx)) {
t->PrintLine("BN_mod_sqrt unexpectedly succeeded.");
return false;
}
uint32_t err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_BN &&
ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
ERR_clear_error();
return true;
}
return false;
}
static bool TestModInv(FileTest *t, BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M");
bssl::UniquePtr<BIGNUM> mod_inv = GetBIGNUM(t, "ModInv");
if (!a || !m || !mod_inv) {
return false;
}
bssl::UniquePtr<BIGNUM> ret(BN_new());
if (!ret ||
!BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "inv(A) (mod M)", mod_inv.get(), ret.get())) {
return false;
}
BN_set_flags(a.get(), BN_FLG_CONSTTIME);
if (!ret ||
!BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "inv(A) (mod M) (constant-time)", mod_inv.get(),
ret.get())) {
return false;
}
return true;
}
struct Test {
const char *name;
bool (*func)(FileTest *t, BN_CTX *ctx);
};
static const Test kTests[] = {
{"Sum", TestSum},
{"LShift1", TestLShift1},
{"LShift", TestLShift},
{"RShift", TestRShift},
{"Square", TestSquare},
{"Product", TestProduct},
{"Quotient", TestQuotient},
{"ModMul", TestModMul},
{"ModExp", TestModExp},
{"Exp", TestExp},
{"ModSqrt", TestModSqrt},
{"NotModSquare", TestNotModSquare},
{"ModInv", TestModInv},
};
static bool RunTest(FileTest *t, void *arg) {
BN_CTX *ctx = reinterpret_cast<BN_CTX *>(arg);
for (const Test &test : kTests) {
if (t->GetType() != test.name) {
continue;
}
return test.func(t, ctx);
}
t->PrintLine("Unknown test type: %s", t->GetType().c_str());
return false;
}
static bool TestBN2BinPadded(BN_CTX *ctx) {
uint8_t zeros[256], out[256], reference[128];
OPENSSL_memset(zeros, 0, sizeof(zeros));
// Test edge case at 0.
bssl::UniquePtr<BIGNUM> n(BN_new());
if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in an empty buffer.\n");
return false;
}
OPENSSL_memset(out, -1, sizeof(out));
if (!BN_bn2bin_padded(out, sizeof(out), n.get())) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n");
return false;
}
if (OPENSSL_memcmp(zeros, out, sizeof(out))) {
fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n");
return false;
}
// Test a random numbers at various byte lengths.
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
if (!BN_rand(n.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_num_bytes(n.get()) != bytes ||
BN_bn2bin(n.get(), reference) != bytes) {
fprintf(stderr, "Bad result from BN_rand; bytes.\n");
return false;
}
// Empty buffer should fail.
if (BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"BN_bn2bin_padded incorrectly succeeded on empty buffer.\n");
return false;
}
// One byte short should fail.
if (BN_bn2bin_padded(out, bytes - 1, n.get())) {
fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n");
return false;
}
// Exactly right size should encode.
if (!BN_bn2bin_padded(out, bytes, n.get()) ||
OPENSSL_memcmp(out, reference, bytes) != 0) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up one byte extra.
if (!BN_bn2bin_padded(out, bytes + 1, n.get()) ||
OPENSSL_memcmp(out + 1, reference, bytes) ||
OPENSSL_memcmp(out, zeros, 1)) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up to 256.
if (!BN_bn2bin_padded(out, sizeof(out), n.get()) ||
OPENSSL_memcmp(out + sizeof(out) - bytes, reference, bytes) ||
OPENSSL_memcmp(out, zeros, sizeof(out) - bytes)) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
}
return true;
}
static int DecimalToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_dec2bn(&raw, in);
out->reset(raw);
return ret;
}
static bool TestDec2BN(BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> bn;
int ret = DecimalToBIGNUM(&bn, "0");
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored");
if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
return true;
}
static bool TestHex2BN(BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> bn;
int ret = HexToBIGNUM(&bn, "0");
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored");
if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
return true;
}
static bssl::UniquePtr<BIGNUM> ASCIIToBIGNUM(const char *in) {
BIGNUM *raw = NULL;
if (!BN_asc2bn(&raw, in)) {
return nullptr;
}
return bssl::UniquePtr<BIGNUM>(raw);
}
static bool TestASC2BN(BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("0");
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("256");
if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-42");
if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("0x1234");
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("0X1234");
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-0xabcd");
if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-0");
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("123trailing garbage is ignored");
if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
return true;
}
struct MPITest {
const char *base10;
const char *mpi;
size_t mpi_len;
};
static const MPITest kMPITests[] = {
{ "0", "\x00\x00\x00\x00", 4 },
{ "1", "\x00\x00\x00\x01\x01", 5 },
{ "-1", "\x00\x00\x00\x01\x81", 5 },
{ "128", "\x00\x00\x00\x02\x00\x80", 6 },
{ "256", "\x00\x00\x00\x02\x01\x00", 6 },
{ "-256", "\x00\x00\x00\x02\x81\x00", 6 },
};
static bool TestMPI() {
uint8_t scratch[8];
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMPITests); i++) {
const MPITest &test = kMPITests[i];
bssl::UniquePtr<BIGNUM> bn(ASCIIToBIGNUM(test.base10));
if (!bn) {
return false;
}
const size_t mpi_len = BN_bn2mpi(bn.get(), NULL);
if (mpi_len > sizeof(scratch)) {
fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n",
(unsigned)i);
return false;
}
const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch);
if (mpi_len != mpi_len2) {
fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i);
return false;
}
if (mpi_len != test.mpi_len ||
OPENSSL_memcmp(test.mpi, scratch, mpi_len) != 0) {
fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i);
hexdump(stderr, "Expected: ", test.mpi, test.mpi_len);
hexdump(stderr, "Got: ", scratch, mpi_len);
return false;
}
bssl::UniquePtr<BIGNUM> bn2(BN_mpi2bn(scratch, mpi_len, NULL));
if (bn2.get() == nullptr) {
fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i);
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i);
return false;
}
}
return true;
}
static bool TestRand() {
bssl::UniquePtr<BIGNUM> bn(BN_new());
if (!bn) {
return false;
}
// Test BN_rand accounts for degenerate cases with |top| and |bottom|
// parameters.
if (!BN_rand(bn.get(), 0, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) ||
!BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 0, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD) ||
!BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ODD) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 2, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) ||
!BN_is_word(bn.get(), 3)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
return true;
}
struct ASN1Test {
const char *value_ascii;
const char *der;
size_t der_len;
};
static const ASN1Test kASN1Tests[] = {
{"0", "\x02\x01\x00", 3},
{"1", "\x02\x01\x01", 3},
{"127", "\x02\x01\x7f", 3},
{"128", "\x02\x02\x00\x80", 4},
{"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7},
{"0x0102030405060708",
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
{"0xffffffffffffffff",
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
};
struct ASN1InvalidTest {
const char *der;
size_t der_len;
};
static const ASN1InvalidTest kASN1InvalidTests[] = {
// Bad tag.
{"\x03\x01\x00", 3},
// Empty contents.
{"\x02\x00", 2},
};
// kASN1BuggyTests contains incorrect encodings and the corresponding, expected
// results of |BN_parse_asn1_unsigned_buggy| given that input.
static const ASN1Test kASN1BuggyTests[] = {
// Negative numbers.
{"128", "\x02\x01\x80", 3},
{"255", "\x02\x01\xff", 3},
// Unnecessary leading zeros.
{"1", "\x02\x02\x00\x01", 4},
};
static bool TestASN1() {
for (const ASN1Test &test : kASN1Tests) {
bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM(test.value_ascii);
if (!bn) {
return false;
}
// Test that the input is correctly parsed.
bssl::UniquePtr<BIGNUM> bn2(BN_new());
if (!bn2) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "Bad parse.\n");
return false;
}
// Test the value serializes correctly.
bssl::ScopedCBB cbb;
uint8_t *der;
size_t der_len;
if (!CBB_init(cbb.get(), 0) ||
!BN_marshal_asn1(cbb.get(), bn.get()) ||
!CBB_finish(cbb.get(), &der, &der_len)) {
return false;
}
bssl::UniquePtr<uint8_t> delete_der(der);
if (der_len != test.der_len ||
OPENSSL_memcmp(der, reinterpret_cast<const uint8_t *>(test.der),
der_len) != 0) {
fprintf(stderr, "Bad serialization.\n");
return false;
}
// |BN_parse_asn1_unsigned_buggy| parses all valid input.
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "Bad parse.\n");
return false;
}
}
for (const ASN1InvalidTest &test : kASN1InvalidTests) {
bssl::UniquePtr<BIGNUM> bn(BN_new());
if (!bn) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_parse_asn1_unsigned(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
// All tests in kASN1InvalidTests are also rejected by
// |BN_parse_asn1_unsigned_buggy|.
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
}
for (const ASN1Test &test : kASN1BuggyTests) {
// These broken encodings are rejected by |BN_parse_asn1_unsigned|.
bssl::UniquePtr<BIGNUM> bn(BN_new());
if (!bn) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_parse_asn1_unsigned(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
// However |BN_parse_asn1_unsigned_buggy| accepts them.
bssl::UniquePtr<BIGNUM> bn2 = ASCIIToBIGNUM(test.value_ascii);
if (!bn2) {
return false;
}
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "\"Bad\" parse.\n");
return false;
}
}
// Serializing negative numbers is not supported.
bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("-1");
if (!bn) {
return false;
}
bssl::ScopedCBB cbb;
if (!CBB_init(cbb.get(), 0) ||
BN_marshal_asn1(cbb.get(), bn.get())) {
fprintf(stderr, "Serialized negative number.\n");
return false;
}
ERR_clear_error();
return true;
}
static bool TestNegativeZero(BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a(BN_new());
bssl::UniquePtr<BIGNUM> b(BN_new());
bssl::UniquePtr<BIGNUM> c(BN_new());
if (!a || !b || !c) {
return false;
}
// Test that BN_mul never gives negative zero.
if (!BN_set_word(a.get(), 1)) {
return false;
}
BN_set_negative(a.get(), 1);
BN_zero(b.get());
if (!BN_mul(c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
fprintf(stderr, "Multiplication test failed.\n");
return false;
}
bssl::UniquePtr<BIGNUM> numerator(BN_new()), denominator(BN_new());
if (!numerator || !denominator) {
return false;
}
// Test that BN_div never gives negative zero in the quotient.
if (!BN_set_word(numerator.get(), 1) ||
!BN_set_word(denominator.get(), 2)) {
return false;
}
BN_set_negative(numerator.get(), 1);
if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) {
return false;
}
if (!BN_is_zero(a.get()) || BN_is_negative(a.get())) {
fprintf(stderr, "Incorrect quotient.\n");
return false;
}
// Test that BN_div never gives negative zero in the remainder.
if (!BN_set_word(denominator.get(), 1)) {
return false;
}
if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get()) || BN_is_negative(b.get())) {
fprintf(stderr, "Incorrect remainder.\n");
return false;
}
// Test that BN_set_negative will not produce a negative zero.
BN_zero(a.get());
BN_set_negative(a.get(), 1);
if (BN_is_negative(a.get())) {
fprintf(stderr, "BN_set_negative produced a negative zero.\n");
return false;
}
// Test that forcibly creating a negative zero does not break |BN_bn2hex| or
// |BN_bn2dec|.
a->neg = 1;
bssl::UniquePtr<char> dec(BN_bn2dec(a.get()));
bssl::UniquePtr<char> hex(BN_bn2hex(a.get()));
if (!dec || !hex ||
strcmp(dec.get(), "-0") != 0 ||
strcmp(hex.get(), "-0") != 0) {
fprintf(stderr, "BN_bn2dec or BN_bn2hex failed with negative zero.\n");
return false;
}
// Test that |BN_rshift| and |BN_rshift1| will not produce a negative zero.
if (!BN_set_word(a.get(), 1)) {
return false;
}
BN_set_negative(a.get(), 1);
if (!BN_rshift(b.get(), a.get(), 1) ||
!BN_rshift1(c.get(), a.get())) {
return false;
}
if (!BN_is_zero(b.get()) || BN_is_negative(b.get())) {
fprintf(stderr, "BN_rshift(-1, 1) produced the wrong result.\n");
return false;
}
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
fprintf(stderr, "BN_rshift1(-1) produced the wrong result.\n");
return false;
}
// Test that |BN_div_word| will not produce a negative zero.
if (BN_div_word(a.get(), 2) == (BN_ULONG)-1) {
return false;
}
if (!BN_is_zero(a.get()) || BN_is_negative(a.get())) {
fprintf(stderr, "BN_div_word(-1, 2) produced the wrong result.\n");
return false;
}
return true;
}
static bool TestBadModulus(BN_CTX *ctx) {
bssl::UniquePtr<BIGNUM> a(BN_new());
bssl::UniquePtr<BIGNUM> b(BN_new());
bssl::UniquePtr<BIGNUM> zero(BN_new());
bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new());
if (!a || !b || !zero || !mont) {
return false;
}
BN_zero(zero.get());
if (BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx)) {
fprintf(stderr, "Division by zero unexpectedly succeeded.\n");
return false;
}
ERR_clear_error();
if (BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) {
fprintf(stderr, "BN_mod_mul with zero modulus unexpectedly succeeded.\n");
return false;
}
ERR_clear_error();
if (BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) {
fprintf(stderr, "BN_mod_exp with zero modulus unexpectedly succeeded.\n");
return 0;
}
ERR_clear_error();
if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx,
NULL)) {
fprintf(stderr,
"BN_mod_exp_mont with zero modulus unexpectedly succeeded.\n");
return 0;
}
ERR_clear_error();
if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(),
zero.get(), ctx, nullptr)) {
fprintf(stderr,
"BN_mod_exp_mont_consttime with zero modulus unexpectedly "
"succeeded.\n");
return 0;
}
ERR_clear_error();
if (BN_MONT_CTX_set(mont.get(), zero.get(), ctx)) {
fprintf(stderr,
"BN_MONT_CTX_set unexpectedly succeeded for zero modulus.\n");
return false;
}
ERR_clear_error();
// Some operations also may not be used with an even modulus.
if (!BN_set_word(b.get(), 16)) {
return false;
}
if (BN_MONT_CTX_set(mont.get(), b.get(), ctx)) {
fprintf(stderr,
"BN_MONT_CTX_set unexpectedly succeeded for even modulus.\n");
return false;
}
ERR_clear_error();
if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx,
NULL)) {
fprintf(stderr,
"BN_mod_exp_mont with even modulus unexpectedly succeeded.\n");
return 0;
}
ERR_clear_error();
if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(),
b.get(), ctx, nullptr)) {
fprintf(stderr,
"BN_mod_exp_mont_consttime with even modulus unexpectedly "
"succeeded.\n");
return 0;
}
ERR_clear_error();
return true;
}
// TestExpModZero tests that 1**0 mod 1 == 0.
static bool TestExpModZero() {
bssl::UniquePtr<BIGNUM> zero(BN_new()), a(BN_new()), r(BN_new());
if (!zero || !a || !r ||
!BN_rand(a.get(), 1024, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) {
return false;
}
BN_zero(zero.get());
if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) ||
!BN_is_zero(r.get()) ||
!BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr,
nullptr) ||
!BN_is_zero(r.get()) ||
!BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(),
nullptr, nullptr) ||
!BN_is_zero(r.get()) ||
!BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr,
nullptr) ||
!BN_is_zero(r.get())) {
return false;
}
return true;
}
static bool TestSmallPrime(BN_CTX *ctx) {
static const unsigned kBits = 10;
bssl::UniquePtr<BIGNUM> r(BN_new());
if (!r || !BN_generate_prime_ex(r.get(), static_cast<int>(kBits), 0, NULL,
NULL, NULL)) {
return false;
}
if (BN_num_bits(r.get()) != kBits) {
fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits,
BN_num_bits(r.get()));
return false;
}
return true;
}
static bool TestCmpWord() {
static const BN_ULONG kMaxWord = (BN_ULONG)-1;
bssl::UniquePtr<BIGNUM> r(BN_new());
if (!r ||
!BN_set_word(r.get(), 0)) {
return false;
}
if (BN_cmp_word(r.get(), 0) != 0 ||
BN_cmp_word(r.get(), 1) >= 0 ||
BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr, "BN_cmp_word compared against 0 incorrectly.\n");
return false;
}
if (!BN_set_word(r.get(), 100)) {
return false;
}
if (BN_cmp_word(r.get(), 0) <= 0 ||
BN_cmp_word(r.get(), 99) <= 0 ||
BN_cmp_word(r.get(), 100) != 0 ||
BN_cmp_word(r.get(), 101) >= 0 ||
BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr, "BN_cmp_word compared against 100 incorrectly.\n");
return false;
}
BN_set_negative(r.get(), 1);
if (BN_cmp_word(r.get(), 0) >= 0 ||
BN_cmp_word(r.get(), 100) >= 0 ||
BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr, "BN_cmp_word compared against -100 incorrectly.\n");
return false;
}
if (!BN_set_word(r.get(), kMaxWord)) {
return false;
}
if (BN_cmp_word(r.get(), 0) <= 0 ||
BN_cmp_word(r.get(), kMaxWord - 1) <= 0 ||
BN_cmp_word(r.get(), kMaxWord) != 0) {
fprintf(stderr, "BN_cmp_word compared against kMaxWord incorrectly.\n");
return false;
}
if (!BN_add(r.get(), r.get(), BN_value_one())) {
return false;
}
if (BN_cmp_word(r.get(), 0) <= 0 ||
BN_cmp_word(r.get(), kMaxWord) <= 0) {
fprintf(stderr, "BN_cmp_word compared against kMaxWord + 1 incorrectly.\n");
return false;
}
BN_set_negative(r.get(), 1);
if (BN_cmp_word(r.get(), 0) >= 0 ||
BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr,
"BN_cmp_word compared against -kMaxWord - 1 incorrectly.\n");
return false;
}
return true;
}
static bool TestBN2Dec() {
static const char *kBN2DecTests[] = {
"0",
"1",
"-1",
"100",
"-100",
"123456789012345678901234567890",
"-123456789012345678901234567890",
"123456789012345678901234567890123456789012345678901234567890",
"-123456789012345678901234567890123456789012345678901234567890",
};
for (const char *test : kBN2DecTests) {
bssl::UniquePtr<BIGNUM> bn;
int ret = DecimalToBIGNUM(&bn, test);
if (ret == 0) {
return false;
}
bssl::UniquePtr<char> dec(BN_bn2dec(bn.get()));
if (!dec) {
fprintf(stderr, "BN_bn2dec failed on %s.\n", test);
return false;
}
if (strcmp(dec.get(), test) != 0) {
fprintf(stderr, "BN_bn2dec gave %s, wanted %s.\n", dec.get(), test);
return false;
}
}
return true;
}
static bool TestBNSetGetU64() {
static const struct {
const char *hex;
uint64_t value;
} kU64Tests[] = {
{"0", UINT64_C(0x0)},
{"1", UINT64_C(0x1)},
{"ffffffff", UINT64_C(0xffffffff)},
{"100000000", UINT64_C(0x100000000)},
{"ffffffffffffffff", UINT64_C(0xffffffffffffffff)},
};
for (const auto& test : kU64Tests) {
bssl::UniquePtr<BIGNUM> bn(BN_new()), expected;
if (!bn ||
!BN_set_u64(bn.get(), test.value) ||
!HexToBIGNUM(&expected, test.hex) ||
BN_cmp(bn.get(), expected.get()) != 0) {
fprintf(stderr, "BN_set_u64 test failed for 0x%s.\n", test.hex);
ERR_print_errors_fp(stderr);
return false;
}
uint64_t tmp;
if (!BN_get_u64(bn.get(), &tmp) || tmp != test.value) {
fprintf(stderr, "BN_get_u64 test failed for 0x%s.\n", test.hex);
return false;
}
BN_set_negative(bn.get(), 1);
if (!BN_get_u64(bn.get(), &tmp) || tmp != test.value) {
fprintf(stderr, "BN_get_u64 test failed for -0x%s.\n", test.hex);
return false;
}
}
// Test that BN_get_u64 fails on large numbers.
bssl::UniquePtr<BIGNUM> bn(BN_new());
if (!BN_lshift(bn.get(), BN_value_one(), 64)) {
return false;
}
uint64_t tmp;
if (BN_get_u64(bn.get(), &tmp)) {
fprintf(stderr, "BN_get_u64 of 2^64 unexpectedly succeeded.\n");
return false;
}
BN_set_negative(bn.get(), 1);
if (BN_get_u64(bn.get(), &tmp)) {
fprintf(stderr, "BN_get_u64 of -2^64 unexpectedly succeeded.\n");
return false;
}
return true;
}
int main(int argc, char *argv[]) {
CRYPTO_library_init();
if (argc != 2) {
fprintf(stderr, "%s TEST_FILE\n", argv[0]);
return 1;
}
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
if (!ctx) {
return 1;
}
if (!TestBN2BinPadded(ctx.get()) ||
!TestDec2BN(ctx.get()) ||
!TestHex2BN(ctx.get()) ||
!TestASC2BN(ctx.get()) ||
!TestMPI() ||
!TestRand() ||
!TestASN1() ||
!TestNegativeZero(ctx.get()) ||
!TestBadModulus(ctx.get()) ||
!TestExpModZero() ||
!TestSmallPrime(ctx.get()) ||
!TestCmpWord() ||
!TestBN2Dec() ||
!TestBNSetGetU64()) {
return 1;
}
return FileTestMain(RunTest, ctx.get(), argv[1]);
}