e098ec2460
Maintain a handshake buffer in prf.go to implement TLS 1.2 client auth. Also use it for SSL 3. This isn't strictly necessary as we know the hash functions, but Go's hash.Hash interface lacks a Copy method. Also fix the server-side tests which failed to test every TLS version. Change-Id: I98492c334fbb9f2f0f89ee9c5c8345cafc025600 Reviewed-on: https://boringssl-review.googlesource.com/1664 Reviewed-by: Adam Langley <agl@google.com>
366 lines
11 KiB
Go
366 lines
11 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package main
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/hmac"
|
|
"crypto/md5"
|
|
"crypto/sha1"
|
|
"crypto/sha256"
|
|
"crypto/sha512"
|
|
"errors"
|
|
"hash"
|
|
)
|
|
|
|
// Split a premaster secret in two as specified in RFC 4346, section 5.
|
|
func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
|
|
s1 = secret[0 : (len(secret)+1)/2]
|
|
s2 = secret[len(secret)/2:]
|
|
return
|
|
}
|
|
|
|
// pHash implements the P_hash function, as defined in RFC 4346, section 5.
|
|
func pHash(result, secret, seed []byte, hash func() hash.Hash) {
|
|
h := hmac.New(hash, secret)
|
|
h.Write(seed)
|
|
a := h.Sum(nil)
|
|
|
|
j := 0
|
|
for j < len(result) {
|
|
h.Reset()
|
|
h.Write(a)
|
|
h.Write(seed)
|
|
b := h.Sum(nil)
|
|
todo := len(b)
|
|
if j+todo > len(result) {
|
|
todo = len(result) - j
|
|
}
|
|
copy(result[j:j+todo], b)
|
|
j += todo
|
|
|
|
h.Reset()
|
|
h.Write(a)
|
|
a = h.Sum(nil)
|
|
}
|
|
}
|
|
|
|
// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5.
|
|
func prf10(result, secret, label, seed []byte) {
|
|
hashSHA1 := sha1.New
|
|
hashMD5 := md5.New
|
|
|
|
labelAndSeed := make([]byte, len(label)+len(seed))
|
|
copy(labelAndSeed, label)
|
|
copy(labelAndSeed[len(label):], seed)
|
|
|
|
s1, s2 := splitPreMasterSecret(secret)
|
|
pHash(result, s1, labelAndSeed, hashMD5)
|
|
result2 := make([]byte, len(result))
|
|
pHash(result2, s2, labelAndSeed, hashSHA1)
|
|
|
|
for i, b := range result2 {
|
|
result[i] ^= b
|
|
}
|
|
}
|
|
|
|
// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5.
|
|
func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) {
|
|
return func(result, secret, label, seed []byte) {
|
|
labelAndSeed := make([]byte, len(label)+len(seed))
|
|
copy(labelAndSeed, label)
|
|
copy(labelAndSeed[len(label):], seed)
|
|
|
|
pHash(result, secret, labelAndSeed, hashFunc)
|
|
}
|
|
}
|
|
|
|
// prf30 implements the SSL 3.0 pseudo-random function, as defined in
|
|
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6.
|
|
func prf30(result, secret, label, seed []byte) {
|
|
hashSHA1 := sha1.New()
|
|
hashMD5 := md5.New()
|
|
|
|
done := 0
|
|
i := 0
|
|
// RFC5246 section 6.3 says that the largest PRF output needed is 128
|
|
// bytes. Since no more ciphersuites will be added to SSLv3, this will
|
|
// remain true. Each iteration gives us 16 bytes so 10 iterations will
|
|
// be sufficient.
|
|
var b [11]byte
|
|
for done < len(result) {
|
|
for j := 0; j <= i; j++ {
|
|
b[j] = 'A' + byte(i)
|
|
}
|
|
|
|
hashSHA1.Reset()
|
|
hashSHA1.Write(b[:i+1])
|
|
hashSHA1.Write(secret)
|
|
hashSHA1.Write(seed)
|
|
digest := hashSHA1.Sum(nil)
|
|
|
|
hashMD5.Reset()
|
|
hashMD5.Write(secret)
|
|
hashMD5.Write(digest)
|
|
|
|
done += copy(result[done:], hashMD5.Sum(nil))
|
|
i++
|
|
}
|
|
}
|
|
|
|
const (
|
|
tlsRandomLength = 32 // Length of a random nonce in TLS 1.1.
|
|
masterSecretLength = 48 // Length of a master secret in TLS 1.1.
|
|
finishedVerifyLength = 12 // Length of verify_data in a Finished message.
|
|
)
|
|
|
|
var masterSecretLabel = []byte("master secret")
|
|
var keyExpansionLabel = []byte("key expansion")
|
|
var clientFinishedLabel = []byte("client finished")
|
|
var serverFinishedLabel = []byte("server finished")
|
|
var channelIDLabel = []byte("TLS Channel ID signature\x00")
|
|
var channelIDResumeLabel = []byte("Resumption\x00")
|
|
|
|
func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) {
|
|
switch version {
|
|
case VersionSSL30:
|
|
return prf30
|
|
case VersionTLS10, VersionTLS11:
|
|
return prf10
|
|
case VersionTLS12:
|
|
if suite.flags&suiteSHA384 != 0 {
|
|
return prf12(sha512.New384)
|
|
}
|
|
return prf12(sha256.New)
|
|
default:
|
|
panic("unknown version")
|
|
}
|
|
}
|
|
|
|
// masterFromPreMasterSecret generates the master secret from the pre-master
|
|
// secret. See http://tools.ietf.org/html/rfc5246#section-8.1
|
|
func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte {
|
|
var seed [tlsRandomLength * 2]byte
|
|
copy(seed[0:len(clientRandom)], clientRandom)
|
|
copy(seed[len(clientRandom):], serverRandom)
|
|
masterSecret := make([]byte, masterSecretLength)
|
|
prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:])
|
|
return masterSecret
|
|
}
|
|
|
|
// keysFromMasterSecret generates the connection keys from the master
|
|
// secret, given the lengths of the MAC key, cipher key and IV, as defined in
|
|
// RFC 2246, section 6.3.
|
|
func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
|
|
var seed [tlsRandomLength * 2]byte
|
|
copy(seed[0:len(clientRandom)], serverRandom)
|
|
copy(seed[len(serverRandom):], clientRandom)
|
|
|
|
n := 2*macLen + 2*keyLen + 2*ivLen
|
|
keyMaterial := make([]byte, n)
|
|
prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:])
|
|
clientMAC = keyMaterial[:macLen]
|
|
keyMaterial = keyMaterial[macLen:]
|
|
serverMAC = keyMaterial[:macLen]
|
|
keyMaterial = keyMaterial[macLen:]
|
|
clientKey = keyMaterial[:keyLen]
|
|
keyMaterial = keyMaterial[keyLen:]
|
|
serverKey = keyMaterial[:keyLen]
|
|
keyMaterial = keyMaterial[keyLen:]
|
|
clientIV = keyMaterial[:ivLen]
|
|
keyMaterial = keyMaterial[ivLen:]
|
|
serverIV = keyMaterial[:ivLen]
|
|
return
|
|
}
|
|
|
|
func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash {
|
|
if version >= VersionTLS12 {
|
|
newHash := sha256.New
|
|
if cipherSuite.flags&suiteSHA384 != 0 {
|
|
newHash = sha512.New384
|
|
}
|
|
|
|
return finishedHash{newHash(), newHash(), nil, nil, []byte{}, version, prf12(newHash)}
|
|
}
|
|
return finishedHash{sha1.New(), sha1.New(), md5.New(), md5.New(), []byte{}, version, prf10}
|
|
}
|
|
|
|
// A finishedHash calculates the hash of a set of handshake messages suitable
|
|
// for including in a Finished message.
|
|
type finishedHash struct {
|
|
client hash.Hash
|
|
server hash.Hash
|
|
|
|
// Prior to TLS 1.2, an additional MD5 hash is required.
|
|
clientMD5 hash.Hash
|
|
serverMD5 hash.Hash
|
|
|
|
// In TLS 1.2 (and SSL 3 for implementation convenience), a
|
|
// full buffer is required.
|
|
buffer []byte
|
|
|
|
version uint16
|
|
prf func(result, secret, label, seed []byte)
|
|
}
|
|
|
|
func (h *finishedHash) Write(msg []byte) (n int, err error) {
|
|
h.client.Write(msg)
|
|
h.server.Write(msg)
|
|
|
|
if h.version < VersionTLS12 {
|
|
h.clientMD5.Write(msg)
|
|
h.serverMD5.Write(msg)
|
|
}
|
|
|
|
if h.buffer != nil {
|
|
h.buffer = append(h.buffer, msg...)
|
|
}
|
|
|
|
return len(msg), nil
|
|
}
|
|
|
|
// finishedSum30 calculates the contents of the verify_data member of a SSLv3
|
|
// Finished message given the MD5 and SHA1 hashes of a set of handshake
|
|
// messages.
|
|
func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte {
|
|
md5.Write(magic)
|
|
md5.Write(masterSecret)
|
|
md5.Write(ssl30Pad1[:])
|
|
md5Digest := md5.Sum(nil)
|
|
|
|
md5.Reset()
|
|
md5.Write(masterSecret)
|
|
md5.Write(ssl30Pad2[:])
|
|
md5.Write(md5Digest)
|
|
md5Digest = md5.Sum(nil)
|
|
|
|
sha1.Write(magic)
|
|
sha1.Write(masterSecret)
|
|
sha1.Write(ssl30Pad1[:40])
|
|
sha1Digest := sha1.Sum(nil)
|
|
|
|
sha1.Reset()
|
|
sha1.Write(masterSecret)
|
|
sha1.Write(ssl30Pad2[:40])
|
|
sha1.Write(sha1Digest)
|
|
sha1Digest = sha1.Sum(nil)
|
|
|
|
ret := make([]byte, len(md5Digest)+len(sha1Digest))
|
|
copy(ret, md5Digest)
|
|
copy(ret[len(md5Digest):], sha1Digest)
|
|
return ret
|
|
}
|
|
|
|
var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54}
|
|
var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52}
|
|
|
|
// clientSum returns the contents of the verify_data member of a client's
|
|
// Finished message.
|
|
func (h finishedHash) clientSum(masterSecret []byte) []byte {
|
|
if h.version == VersionSSL30 {
|
|
return finishedSum30(h.clientMD5, h.client, masterSecret, ssl3ClientFinishedMagic[:])
|
|
}
|
|
|
|
out := make([]byte, finishedVerifyLength)
|
|
if h.version >= VersionTLS12 {
|
|
seed := h.client.Sum(nil)
|
|
h.prf(out, masterSecret, clientFinishedLabel, seed)
|
|
} else {
|
|
seed := make([]byte, 0, md5.Size+sha1.Size)
|
|
seed = h.clientMD5.Sum(seed)
|
|
seed = h.client.Sum(seed)
|
|
h.prf(out, masterSecret, clientFinishedLabel, seed)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// serverSum returns the contents of the verify_data member of a server's
|
|
// Finished message.
|
|
func (h finishedHash) serverSum(masterSecret []byte) []byte {
|
|
if h.version == VersionSSL30 {
|
|
return finishedSum30(h.serverMD5, h.server, masterSecret, ssl3ServerFinishedMagic[:])
|
|
}
|
|
|
|
out := make([]byte, finishedVerifyLength)
|
|
if h.version >= VersionTLS12 {
|
|
seed := h.server.Sum(nil)
|
|
h.prf(out, masterSecret, serverFinishedLabel, seed)
|
|
} else {
|
|
seed := make([]byte, 0, md5.Size+sha1.Size)
|
|
seed = h.serverMD5.Sum(seed)
|
|
seed = h.server.Sum(seed)
|
|
h.prf(out, masterSecret, serverFinishedLabel, seed)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// selectClientCertSignatureAlgorithm returns a signatureAndHash to sign a
|
|
// client's CertificateVerify with, or an error if none can be found.
|
|
func (h finishedHash) selectClientCertSignatureAlgorithm(serverList []signatureAndHash, sigType uint8) (signatureAndHash, error) {
|
|
if h.version < VersionTLS12 {
|
|
// Nothing to negotiate before TLS 1.2.
|
|
return signatureAndHash{signature: sigType}, nil
|
|
}
|
|
|
|
for _, v := range serverList {
|
|
if v.signature == sigType && v.hash == hashSHA256 {
|
|
return v, nil
|
|
}
|
|
}
|
|
return signatureAndHash{}, errors.New("tls: no supported signature algorithm found for signing client certificate")
|
|
}
|
|
|
|
// hashForClientCertificate returns a digest, hash function, and TLS 1.2 hash
|
|
// id suitable for signing by a TLS client certificate.
|
|
func (h finishedHash) hashForClientCertificate(signatureAndHash signatureAndHash, masterSecret []byte) ([]byte, crypto.Hash, error) {
|
|
if h.version == VersionSSL30 {
|
|
if signatureAndHash.signature != signatureRSA {
|
|
return nil, 0, errors.New("tls: unsupported signature type for client certificate")
|
|
}
|
|
|
|
md5Hash := md5.New()
|
|
md5Hash.Write(h.buffer)
|
|
sha1Hash := sha1.New()
|
|
sha1Hash.Write(h.buffer)
|
|
return finishedSum30(md5Hash, sha1Hash, masterSecret, nil), crypto.MD5SHA1, nil
|
|
}
|
|
if h.version >= VersionTLS12 {
|
|
if signatureAndHash.hash != hashSHA256 {
|
|
return nil, 0, errors.New("tls: unsupported hash function for client certificate")
|
|
}
|
|
digest := sha256.Sum256(h.buffer)
|
|
return digest[:], crypto.SHA256, nil
|
|
}
|
|
if signatureAndHash.signature == signatureECDSA {
|
|
digest := h.server.Sum(nil)
|
|
return digest, crypto.SHA1, nil
|
|
}
|
|
|
|
digest := make([]byte, 0, 36)
|
|
digest = h.serverMD5.Sum(digest)
|
|
digest = h.server.Sum(digest)
|
|
return digest, crypto.MD5SHA1, nil
|
|
}
|
|
|
|
// hashForChannelID returns the hash to be signed for TLS Channel
|
|
// ID. If a resumption, resumeHash has the previous handshake
|
|
// hash. Otherwise, it is nil.
|
|
func (h finishedHash) hashForChannelID(resumeHash []byte) []byte {
|
|
hash := sha256.New()
|
|
hash.Write(channelIDLabel)
|
|
if resumeHash != nil {
|
|
hash.Write(channelIDResumeLabel)
|
|
hash.Write(resumeHash)
|
|
}
|
|
hash.Write(h.server.Sum(nil))
|
|
return hash.Sum(nil)
|
|
}
|
|
|
|
// discardHandshakeBuffer is called when there is no more need to
|
|
// buffer the entirety of the handshake messages.
|
|
func (h *finishedHash) discardHandshakeBuffer() {
|
|
h.buffer = nil
|
|
}
|