30eda1d2b8
Apart from the obvious little issues, this also works around a (seeming) libtool/linker: a.c defines a symbol: int kFoo; b.c uses it: extern int kFoo; int f() { return kFoo; } compile them: $ gcc -c a.c $ gcc -c b.c and create a dummy main in order to run it, main.c: int f(); int main() { return f(); } this works as expected: $ gcc main.c a.o b.o but, if we make an archive: $ ar q lib.a a.o b.o and use that: $ gcc main.c lib.a Undefined symbols for architecture x86_64 "_kFoo", referenced from: _f in lib.a(b.o) (It doesn't matter what order the .o files are put into the .a) Linux and Windows don't seem to have this problem. nm on a.o shows that the symbol is of type "C", which is a "common symbol"[1]. Basically the linker will merge multiple common symbol definitions together. If ones makes a.c read: int kFoo = 0; Then one gets a type "D" symbol - a "data section symbol" and everything works just fine. This might actually be a libtool bug instead of an ld bug: Looking at `xxd lib.a | less`, the __.SYMDEF SORTED index at the beginning of the archive doesn't contain an entry for kFoo unless initialised. Change-Id: I4cdad9ba46e9919221c3cbd79637508959359427
292 lines
8.5 KiB
C++
292 lines
8.5 KiB
C++
/* Copyright (c) 2014, Google Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
#include <string>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <stdint.h>
|
|
#include <time.h>
|
|
|
|
#include <openssl/aead.h>
|
|
#include <openssl/bio.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rsa.h>
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
#include <Windows.h>
|
|
#elif defined(OPENSSL_APPLE)
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
extern "C" {
|
|
// These values are DER encoded, RSA private keys.
|
|
extern const uint8_t kDERRSAPrivate2048[];
|
|
extern size_t kDERRSAPrivate2048Len;
|
|
extern const uint8_t kDERRSAPrivate4096[];
|
|
extern size_t kDERRSAPrivate4096Len;
|
|
}
|
|
|
|
// TimeResults represents the results of benchmarking a function.
|
|
struct TimeResults {
|
|
// num_calls is the number of function calls done in the time period.
|
|
unsigned num_calls;
|
|
// us is the number of microseconds that elapsed in the time period.
|
|
unsigned us;
|
|
|
|
void Print(const std::string &description) {
|
|
printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
|
|
description.c_str(), us,
|
|
(static_cast<double>(num_calls) / us) * 1000000);
|
|
}
|
|
|
|
void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
|
|
printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
|
|
num_calls, description.c_str(), us,
|
|
(static_cast<double>(num_calls) / us) * 1000000,
|
|
static_cast<double>(bytes_per_call * num_calls) / us);
|
|
}
|
|
};
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
static uint64_t time_now() { return GetTickCount64() * 1000; }
|
|
#elif defined(OPENSSL_APPLE)
|
|
static uint64_t time_now() {
|
|
struct timeval tv;
|
|
uint64_t ret;
|
|
|
|
gettimeofday(&tv, NULL);
|
|
ret = tv.tv_sec;
|
|
ret *= 1000000;
|
|
ret += tv.tv_usec;
|
|
return ret;
|
|
}
|
|
#else
|
|
static uint64_t time_now() {
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
|
|
uint64_t ret = ts.tv_sec;
|
|
ret *= 1000000;
|
|
ret += ts.tv_nsec / 1000;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
|
|
// kTotalMS is the total amount of time that we'll aim to measure a function
|
|
// for.
|
|
static const uint64_t kTotalUS = 3000000;
|
|
uint64_t start = time_now(), now, delta;
|
|
unsigned done = 0, iterations_between_time_checks;
|
|
|
|
if (!func()) {
|
|
return false;
|
|
}
|
|
now = time_now();
|
|
delta = now - start;
|
|
if (delta == 0) {
|
|
iterations_between_time_checks = 250;
|
|
} else {
|
|
// Aim for about 100ms between time checks.
|
|
iterations_between_time_checks =
|
|
static_cast<double>(100000) / static_cast<double>(delta);
|
|
if (iterations_between_time_checks > 1000) {
|
|
iterations_between_time_checks = 1000;
|
|
} else if (iterations_between_time_checks < 1) {
|
|
iterations_between_time_checks = 1;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
for (unsigned i = 0; i < iterations_between_time_checks; i++) {
|
|
if (!func()) {
|
|
return false;
|
|
}
|
|
done++;
|
|
}
|
|
|
|
now = time_now();
|
|
if (now - start > kTotalUS) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
results->us = now - start;
|
|
results->num_calls = done;
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedRSA(const std::string& key_name, RSA *key) {
|
|
TimeResults results;
|
|
|
|
std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
|
|
const uint8_t fake_sha256_hash[32] = {0};
|
|
unsigned sig_len;
|
|
|
|
if (!TimeFunction(&results,
|
|
[key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
|
|
return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
|
|
sig.get(), &sig_len, key);
|
|
})) {
|
|
fprintf(stderr, "RSA_sign failed.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
results.Print(key_name + " signing");
|
|
|
|
if (!TimeFunction(&results,
|
|
[key, &fake_sha256_hash, &sig, sig_len]() -> bool {
|
|
return RSA_verify(NID_sha256, fake_sha256_hash,
|
|
sizeof(fake_sha256_hash), sig.get(), sig_len, key);
|
|
})) {
|
|
fprintf(stderr, "RSA_verify failed.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
results.Print(key_name + " verify");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
|
|
size_t chunk_len) {
|
|
EVP_AEAD_CTX ctx;
|
|
const size_t key_len = EVP_AEAD_key_length(aead);
|
|
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
|
|
const size_t overhead_len = EVP_AEAD_max_overhead(aead);
|
|
|
|
std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
|
|
memset(key.get(), 0, key_len);
|
|
std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
|
|
memset(nonce.get(), 0, nonce_len);
|
|
std::unique_ptr<uint8_t[]> in(new uint8_t[chunk_len]);
|
|
memset(in.get(), 0, chunk_len);
|
|
std::unique_ptr<uint8_t[]> out(new uint8_t[chunk_len + overhead_len]);
|
|
memset(out.get(), 0, chunk_len + overhead_len);
|
|
|
|
if (!EVP_AEAD_CTX_init(&ctx, aead, key.get(), key_len,
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) {
|
|
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, &in, &out,
|
|
&ctx, &nonce]() -> bool {
|
|
size_t out_len;
|
|
|
|
return EVP_AEAD_CTX_seal(&ctx, out.get(), &out_len,
|
|
chunk_len + overhead_len, nonce.get(),
|
|
nonce_len, in.get(), chunk_len, NULL, 0);
|
|
})) {
|
|
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
results.PrintWithBytes(name + " seal", chunk_len);
|
|
|
|
EVP_AEAD_CTX_cleanup(&ctx);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name) {
|
|
return SpeedAEADChunk(aead, name + " (16 bytes)", 16) &&
|
|
SpeedAEADChunk(aead, name + " (1350 bytes)", 1350) &&
|
|
SpeedAEADChunk(aead, name + " (8192 bytes)", 8192);
|
|
}
|
|
|
|
static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
|
|
size_t chunk_len) {
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_create();
|
|
uint8_t scratch[8192];
|
|
|
|
if (chunk_len > sizeof(scratch)) {
|
|
return false;
|
|
}
|
|
|
|
TimeResults results;
|
|
if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
|
|
uint8_t digest[EVP_MAX_MD_SIZE];
|
|
unsigned int md_len;
|
|
|
|
return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
|
|
EVP_DigestUpdate(ctx, scratch, chunk_len) &&
|
|
EVP_DigestFinal_ex(ctx, digest, &md_len);
|
|
})) {
|
|
fprintf(stderr, "EVP_DigestInit_ex failed.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
results.PrintWithBytes(name, chunk_len);
|
|
|
|
EVP_MD_CTX_destroy(ctx);
|
|
|
|
return true;
|
|
}
|
|
static bool SpeedHash(const EVP_MD *md, const std::string &name) {
|
|
return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
|
|
SpeedHashChunk(md, name + " (256 bytes)", 256) &&
|
|
SpeedHashChunk(md, name + " (8192 bytes)", 8192);
|
|
}
|
|
|
|
bool Speed(const std::vector<std::string> &args) {
|
|
const uint8_t *inp;
|
|
|
|
RSA *key = NULL;
|
|
inp = kDERRSAPrivate2048;
|
|
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) {
|
|
fprintf(stderr, "Failed to parse RSA key.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
if (!SpeedRSA("RSA 2048", key)) {
|
|
return false;
|
|
}
|
|
|
|
RSA_free(key);
|
|
key = NULL;
|
|
|
|
inp = kDERRSAPrivate4096;
|
|
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) {
|
|
fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
|
|
BIO_print_errors_fp(stderr);
|
|
return 1;
|
|
}
|
|
|
|
if (!SpeedRSA("RSA 4096", key)) {
|
|
return false;
|
|
}
|
|
|
|
RSA_free(key);
|
|
|
|
if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM") ||
|
|
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM") ||
|
|
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305") ||
|
|
!SpeedHash(EVP_sha1(), "SHA-1") ||
|
|
!SpeedHash(EVP_sha256(), "SHA-256") ||
|
|
!SpeedHash(EVP_sha512(), "SHA-512")) {
|
|
return false;
|
|
}
|
|
|
|
return 0;
|
|
}
|