boringssl/ssl/d1_both.c
David Benjamin 31a07798a5 Factor SSL_AEAD_CTX into a dedicated type.
tls1_enc is now SSL_AEAD_CTX_{open,seal}. This starts tidying up a bit
of the record-layer logic. This removes rr->input, as encrypting and
decrypting records no longer refers to various globals. It also removes
wrec altogether. SSL3_RECORD is now only used to maintain state about
the current incoming record. Outgoing records go straight to the write
buffer.

This also removes the outgoing alignment memcpy and simply calls
SSL_AEAD_CTX_seal with the parameters as appropriate. From bssl speed
tests, this seems to be faster on non-ARM and a bit of a wash on ARM.

Later it may be worth recasting these open/seal functions to write into
a CBB (tweaked so it can be malloc-averse), but for now they take an
out/out_len/max_out trio like their EVP_AEAD counterparts.

BUG=468889

Change-Id: Ie9266a818cc053f695d35ef611fd74c5d4def6c3
Reviewed-on: https://boringssl-review.googlesource.com/4792
Reviewed-by: Adam Langley <agl@google.com>
2015-05-21 17:59:15 +00:00

920 lines
31 KiB
C

/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "internal.h"
/* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
* for these values? Notably, why is kMinMTU a function of the transport
* protocol's overhead rather than, say, what's needed to hold a minimally-sized
* handshake fragment plus protocol overhead. */
/* kMinMTU is the minimum acceptable MTU value. */
static const unsigned int kMinMTU = 256 - 28;
/* kDefaultMTU is the default MTU value to use if neither the user nor
* the underlying BIO supplies one. */
static const unsigned int kDefaultMTU = 1500 - 28;
/* kMaxHandshakeBuffer is the maximum number of handshake messages ahead of the
* current one to buffer. */
static const unsigned int kHandshakeBufferSize = 10;
static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
unsigned long frag_len);
static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p);
static hm_fragment *dtls1_hm_fragment_new(unsigned long frag_len,
int reassembly) {
hm_fragment *frag = NULL;
uint8_t *buf = NULL;
uint8_t *bitmask = NULL;
frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
if (frag == NULL) {
OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
return NULL;
}
if (frag_len) {
buf = (uint8_t *)OPENSSL_malloc(frag_len);
if (buf == NULL) {
OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
OPENSSL_free(frag);
return NULL;
}
}
/* zero length fragment gets zero frag->fragment */
frag->fragment = buf;
/* Initialize reassembly bitmask if necessary */
if (reassembly && frag_len > 0) {
if (frag_len + 7 < frag_len) {
OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_OVERFLOW);
return NULL;
}
size_t bitmask_len = (frag_len + 7) / 8;
bitmask = (uint8_t *)OPENSSL_malloc(bitmask_len);
if (bitmask == NULL) {
OPENSSL_PUT_ERROR(SSL, dtls1_hm_fragment_new, ERR_R_MALLOC_FAILURE);
if (buf != NULL) {
OPENSSL_free(buf);
}
OPENSSL_free(frag);
return NULL;
}
memset(bitmask, 0, bitmask_len);
}
frag->reassembly = bitmask;
return frag;
}
void dtls1_hm_fragment_free(hm_fragment *frag) {
if (frag == NULL) {
return;
}
OPENSSL_free(frag->fragment);
OPENSSL_free(frag->reassembly);
OPENSSL_free(frag);
}
#if !defined(inline)
#define inline __inline
#endif
/* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
* exclusive, set. */
static inline uint8_t bit_range(size_t start, size_t end) {
return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
}
/* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
* as received in |frag|. If |frag| becomes complete, it clears
* |frag->reassembly|. The range must be within the bounds of |frag|'s message
* and |frag->reassembly| must not be NULL. */
static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
size_t end) {
size_t i;
size_t msg_len = frag->msg_header.msg_len;
if (frag->reassembly == NULL || start > end || end > msg_len) {
assert(0);
return;
}
/* A zero-length message will never have a pending reassembly. */
assert(msg_len > 0);
if ((start >> 3) == (end >> 3)) {
frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
} else {
frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
for (i = (start >> 3) + 1; i < (end >> 3); i++) {
frag->reassembly[i] = 0xff;
}
if ((end & 7) != 0) {
frag->reassembly[end >> 3] |= bit_range(0, end & 7);
}
}
/* Check if the fragment is complete. */
for (i = 0; i < (msg_len >> 3); i++) {
if (frag->reassembly[i] != 0xff) {
return;
}
}
if ((msg_len & 7) != 0 &&
frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
return;
}
OPENSSL_free(frag->reassembly);
frag->reassembly = NULL;
}
/* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC) */
int dtls1_do_write(SSL *s, int type) {
int ret;
int curr_mtu;
unsigned int len, frag_off;
/* AHA! Figure out the MTU, and stick to the right size */
if (s->d1->mtu < dtls1_min_mtu() &&
!(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
long mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
s->d1->mtu = (unsigned)mtu;
} else {
s->d1->mtu = kDefaultMTU;
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL);
}
}
/* should have something reasonable now */
assert(s->d1->mtu >= dtls1_min_mtu());
if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE) {
assert(s->init_num ==
(int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH);
}
/* Determine the maximum overhead of the current cipher. */
size_t max_overhead = SSL_AEAD_CTX_max_overhead(s->aead_write_ctx);
frag_off = 0;
while (s->init_num) {
/* Account for data in the buffering BIO; multiple records may be packed
* into a single packet during the handshake.
*
* TODO(davidben): This is buggy; if the MTU is larger than the buffer size,
* the large record will be split across two packets. Moreover, in that
* case, the |dtls1_write_bytes| call may not return synchronously. This
* will break on retry as the |s->init_off| and |s->init_num| adjustment
* will run a second time. */
curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) -
DTLS1_RT_HEADER_LENGTH - max_overhead;
if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
/* Flush the buffer and continue with a fresh packet.
*
* TODO(davidben): If |BIO_flush| is not synchronous and requires multiple
* calls to |dtls1_do_write|, |frag_off| will be wrong. */
ret = BIO_flush(SSL_get_wbio(s));
if (ret <= 0) {
return ret;
}
assert(BIO_wpending(SSL_get_wbio(s)) == 0);
curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH - max_overhead;
}
/* XDTLS: this function is too long. split out the CCS part */
if (type == SSL3_RT_HANDSHAKE) {
/* If this isn't the first fragment, reserve space to prepend a new
* fragment header. This will override the body of a previous fragment. */
if (s->init_off != 0) {
assert(s->init_off > DTLS1_HM_HEADER_LENGTH);
s->init_off -= DTLS1_HM_HEADER_LENGTH;
s->init_num += DTLS1_HM_HEADER_LENGTH;
}
if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) {
/* To make forward progress, the MTU must, at minimum, fit the handshake
* header and one byte of handshake body. */
OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
return -1;
}
if (s->init_num > curr_mtu) {
len = curr_mtu;
} else {
len = s->init_num;
}
assert(len >= DTLS1_HM_HEADER_LENGTH);
dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH);
dtls1_write_message_header(
s, (uint8_t *)&s->init_buf->data[s->init_off]);
} else {
assert(type == SSL3_RT_CHANGE_CIPHER_SPEC);
/* ChangeCipherSpec cannot be fragmented. */
if (s->init_num > curr_mtu) {
OPENSSL_PUT_ERROR(SSL, dtls1_do_write, SSL_R_MTU_TOO_SMALL);
return -1;
}
len = s->init_num;
}
ret = dtls1_write_bytes(s, type, &s->init_buf->data[s->init_off], len);
if (ret < 0) {
return -1;
}
/* bad if this assert fails, only part of the handshake message got sent.
* But why would this happen? */
assert(len == (unsigned int)ret);
if (ret == s->init_num) {
if (s->msg_callback) {
s->msg_callback(1, s->version, type, s->init_buf->data,
(size_t)(s->init_off + s->init_num), s,
s->msg_callback_arg);
}
s->init_off = 0; /* done writing this message */
s->init_num = 0;
return 1;
}
s->init_off += ret;
s->init_num -= ret;
frag_off += (ret -= DTLS1_HM_HEADER_LENGTH);
}
return 0;
}
/* dtls1_is_next_message_complete returns one if the next handshake message is
* complete and zero otherwise. */
static int dtls1_is_next_message_complete(SSL *s) {
pitem *item = pqueue_peek(s->d1->buffered_messages);
if (item == NULL) {
return 0;
}
hm_fragment *frag = (hm_fragment *)item->data;
assert(s->d1->handshake_read_seq <= frag->msg_header.seq);
return s->d1->handshake_read_seq == frag->msg_header.seq &&
frag->reassembly == NULL;
}
/* dtls1_discard_fragment_body discards a handshake fragment body of length
* |frag_len|. It returns one on success and zero on error.
*
* TODO(davidben): This function will go away when ssl_read_bytes is gone from
* the DTLS side. */
static int dtls1_discard_fragment_body(SSL *s, size_t frag_len) {
uint8_t discard[256];
while (frag_len > 0) {
size_t chunk = frag_len < sizeof(discard) ? frag_len : sizeof(discard);
int ret = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, discard, chunk,
0);
if (ret != chunk) {
return 0;
}
frag_len -= chunk;
}
return 1;
}
/* dtls1_get_buffered_message returns the buffered message corresponding to
* |msg_hdr|. If none exists, it creates a new one and inserts it in the
* queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
* returns NULL on failure. The caller does not take ownership of the result. */
static hm_fragment *dtls1_get_buffered_message(
SSL *s, const struct hm_header_st *msg_hdr) {
uint8_t seq64be[8];
memset(seq64be, 0, sizeof(seq64be));
seq64be[6] = (uint8_t)(msg_hdr->seq >> 8);
seq64be[7] = (uint8_t)msg_hdr->seq;
pitem *item = pqueue_find(s->d1->buffered_messages, seq64be);
hm_fragment *frag;
if (item == NULL) {
/* This is the first fragment from this message. */
frag = dtls1_hm_fragment_new(msg_hdr->msg_len,
1 /* reassembly buffer needed */);
if (frag == NULL) {
return NULL;
}
memcpy(&frag->msg_header, msg_hdr, sizeof(*msg_hdr));
item = pitem_new(seq64be, frag);
if (item == NULL) {
dtls1_hm_fragment_free(frag);
return NULL;
}
item = pqueue_insert(s->d1->buffered_messages, item);
/* |pqueue_insert| fails iff a duplicate item is inserted, but |item| cannot
* be a duplicate. */
assert(item != NULL);
} else {
frag = item->data;
assert(frag->msg_header.seq == msg_hdr->seq);
if (frag->msg_header.type != msg_hdr->type ||
frag->msg_header.msg_len != msg_hdr->msg_len) {
/* The new fragment must be compatible with the previous fragments from
* this message. */
OPENSSL_PUT_ERROR(SSL, dtls1_get_buffered_message,
SSL_R_FRAGMENT_MISMATCH);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return NULL;
}
}
return frag;
}
/* dtls1_max_handshake_message_len returns the maximum number of bytes
* permitted in a DTLS handshake message for |s|. The minimum is 16KB, but may
* be greater if the maximum certificate list size requires it. */
static size_t dtls1_max_handshake_message_len(const SSL *s) {
size_t max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;
if (max_len < s->max_cert_list) {
return s->max_cert_list;
}
return max_len;
}
/* dtls1_process_fragment reads a handshake fragment and processes it. It
* returns one if a fragment was successfully processed and 0 or -1 on error. */
static int dtls1_process_fragment(SSL *s) {
/* Read handshake message header.
*
* TODO(davidben): ssl_read_bytes allows splitting the fragment header and
* body across two records. Change this interface to consume the fragment in
* one pass. */
uint8_t header[DTLS1_HM_HEADER_LENGTH];
int ret = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, header,
DTLS1_HM_HEADER_LENGTH, 0);
if (ret <= 0) {
return ret;
}
if (ret != DTLS1_HM_HEADER_LENGTH) {
OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return -1;
}
/* Parse the message fragment header. */
struct hm_header_st msg_hdr;
dtls1_get_message_header(header, &msg_hdr);
const size_t frag_off = msg_hdr.frag_off;
const size_t frag_len = msg_hdr.frag_len;
const size_t msg_len = msg_hdr.msg_len;
if (frag_off > msg_len || frag_off + frag_len < frag_off ||
frag_off + frag_len > msg_len ||
msg_len > dtls1_max_handshake_message_len(s)) {
OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment,
SSL_R_EXCESSIVE_MESSAGE_SIZE);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
if (msg_hdr.seq < s->d1->handshake_read_seq ||
msg_hdr.seq > (unsigned)s->d1->handshake_read_seq +
kHandshakeBufferSize) {
/* Ignore fragments from the past, or ones too far in the future. */
if (!dtls1_discard_fragment_body(s, frag_len)) {
return -1;
}
return 1;
}
hm_fragment *frag = dtls1_get_buffered_message(s, &msg_hdr);
if (frag == NULL) {
return -1;
}
assert(frag->msg_header.msg_len == msg_len);
if (frag->reassembly == NULL) {
/* The message is already assembled. */
if (!dtls1_discard_fragment_body(s, frag_len)) {
return -1;
}
return 1;
}
assert(msg_len > 0);
/* Read the body of the fragment. */
ret = s->method->ssl_read_bytes(
s, SSL3_RT_HANDSHAKE, frag->fragment + frag_off, frag_len, 0);
if (ret != frag_len) {
OPENSSL_PUT_ERROR(SSL, dtls1_process_fragment, SSL_R_UNEXPECTED_MESSAGE);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return -1;
}
dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
return 1;
}
/* dtls1_get_message reads a handshake message of message type |msg_type| (any
* if |msg_type| == -1), maximum acceptable body length |max|. Read an entire
* handshake message. Handshake messages arrive in fragments. */
long dtls1_get_message(SSL *s, int st1, int stn, int msg_type, long max,
enum ssl_hash_message_t hash_message, int *ok) {
pitem *item = NULL;
hm_fragment *frag = NULL;
int al;
/* s3->tmp is used to store messages that are unexpected, caused
* by the absence of an optional handshake message */
if (s->s3->tmp.reuse_message) {
/* A ssl_dont_hash_message call cannot be combined with reuse_message; the
* ssl_dont_hash_message would have to have been applied to the previous
* call. */
assert(hash_message == ssl_hash_message);
s->s3->tmp.reuse_message = 0;
if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
al = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
*ok = 1;
s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
s->init_num = (int)s->s3->tmp.message_size;
return s->init_num;
}
/* Process fragments until one is found. */
while (!dtls1_is_next_message_complete(s)) {
int ret = dtls1_process_fragment(s);
if (ret <= 0) {
*ok = 0;
return ret;
}
}
/* Read out the next complete handshake message. */
item = pqueue_pop(s->d1->buffered_messages);
assert(item != NULL);
frag = (hm_fragment *)item->data;
assert(s->d1->handshake_read_seq == frag->msg_header.seq);
assert(frag->reassembly == NULL);
if (frag->msg_header.msg_len > (size_t)max) {
OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_EXCESSIVE_MESSAGE_SIZE);
goto err;
}
CBB cbb;
if (!BUF_MEM_grow(s->init_buf,
(size_t)frag->msg_header.msg_len +
DTLS1_HM_HEADER_LENGTH) ||
!CBB_init_fixed(&cbb, (uint8_t *)s->init_buf->data, s->init_buf->max)) {
OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Reconstruct the assembled message. */
size_t len;
if (!CBB_add_u8(&cbb, frag->msg_header.type) ||
!CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
!CBB_add_u16(&cbb, frag->msg_header.seq) ||
!CBB_add_u24(&cbb, 0 /* frag_off */) ||
!CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
!CBB_add_bytes(&cbb, frag->fragment, frag->msg_header.msg_len) ||
!CBB_finish(&cbb, NULL, &len)) {
CBB_cleanup(&cbb);
OPENSSL_PUT_ERROR(SSL, dtls1_get_message, ERR_R_INTERNAL_ERROR);
goto err;
}
assert(len == (size_t)frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);
s->d1->handshake_read_seq++;
/* TODO(davidben): This function has a lot of implicit outputs. Simplify the
* |ssl_get_message| API. */
s->s3->tmp.message_type = frag->msg_header.type;
s->s3->tmp.message_size = frag->msg_header.msg_len;
s->init_msg = (uint8_t *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
s->init_num = frag->msg_header.msg_len;
if (msg_type >= 0 && s->s3->tmp.message_type != msg_type) {
al = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, dtls1_get_message, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
if (hash_message == ssl_hash_message && !ssl3_hash_current_message(s)) {
goto err;
}
if (s->msg_callback) {
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
s->init_num + DTLS1_HM_HEADER_LENGTH, s,
s->msg_callback_arg);
}
pitem_free(item);
dtls1_hm_fragment_free(frag);
s->state = stn;
*ok = 1;
return s->init_num;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
pitem_free(item);
dtls1_hm_fragment_free(frag);
*ok = 0;
return -1;
}
/* for these 2 messages, we need to
* ssl->enc_read_ctx re-init
* ssl->s3->read_sequence zero
* ssl->s3->read_mac_secret re-init
* ssl->session->read_sym_enc assign
* ssl->session->read_compression assign
* ssl->session->read_hash assign */
int dtls1_send_change_cipher_spec(SSL *s, int a, int b) {
uint8_t *p;
if (s->state == a) {
p = (uint8_t *)s->init_buf->data;
*p++ = SSL3_MT_CCS;
s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
s->init_num = DTLS1_CCS_HEADER_LENGTH;
s->init_off = 0;
dtls1_set_message_header(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0,
0);
/* buffer the message to handle re-xmits */
dtls1_buffer_message(s, 1);
s->state = b;
}
/* SSL3_ST_CW_CHANGE_B */
return dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC);
}
int dtls1_read_failed(SSL *s, int code) {
if (code > 0) {
assert(0);
return 1;
}
if (!dtls1_is_timer_expired(s)) {
/* not a timeout, none of our business, let higher layers handle this. In
* fact, it's probably an error */
return code;
}
if (!SSL_in_init(s)) {
/* done, no need to send a retransmit */
BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ);
return code;
}
return DTLSv1_handle_timeout(s);
}
int dtls1_get_queue_priority(unsigned short seq, int is_ccs) {
/* The index of the retransmission queue actually is the message sequence
* number, since the queue only contains messages of a single handshake.
* However, the ChangeCipherSpec has no message sequence number and so using
* only the sequence will result in the CCS and Finished having the same
* index. To prevent this, the sequence number is multiplied by 2. In case of
* a CCS 1 is subtracted. This does not only differ CSS and Finished, it also
* maintains the order of the index (important for priority queues) and fits
* in the unsigned short variable. */
return seq * 2 - is_ccs;
}
static int dtls1_retransmit_message(SSL *s, hm_fragment *frag) {
int ret;
/* XDTLS: for now assuming that read/writes are blocking */
unsigned long header_length;
uint8_t save_write_sequence[8];
/* assert(s->init_num == 0);
assert(s->init_off == 0); */
if (frag->msg_header.is_ccs) {
header_length = DTLS1_CCS_HEADER_LENGTH;
} else {
header_length = DTLS1_HM_HEADER_LENGTH;
}
memcpy(s->init_buf->data, frag->fragment,
frag->msg_header.msg_len + header_length);
s->init_num = frag->msg_header.msg_len + header_length;
dtls1_set_message_header(s, frag->msg_header.type,
frag->msg_header.msg_len, frag->msg_header.seq,
0, frag->msg_header.frag_len);
/* Save current state. */
SSL_AEAD_CTX *aead_write_ctx = s->aead_write_ctx;
uint16_t epoch = s->d1->w_epoch;
/* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
* (negotiated cipher) exist. */
assert(epoch == 0 || epoch == 1);
assert(frag->msg_header.epoch <= epoch);
const int fragment_from_previous_epoch = (epoch == 1 &&
frag->msg_header.epoch == 0);
if (fragment_from_previous_epoch) {
/* Rewind to the previous epoch.
*
* TODO(davidben): Instead of swapping out connection-global state, this
* logic should pass a "use previous epoch" parameter down to lower-level
* functions. */
s->d1->w_epoch = frag->msg_header.epoch;
s->aead_write_ctx = NULL;
memcpy(save_write_sequence, s->s3->write_sequence,
sizeof(s->s3->write_sequence));
memcpy(s->s3->write_sequence, s->d1->last_write_sequence,
sizeof(s->s3->write_sequence));
} else {
/* Otherwise the messages must be from the same epoch. */
assert(frag->msg_header.epoch == epoch);
}
ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC
: SSL3_RT_HANDSHAKE);
if (fragment_from_previous_epoch) {
/* Restore the current epoch. */
s->aead_write_ctx = aead_write_ctx;
s->d1->w_epoch = epoch;
memcpy(s->d1->last_write_sequence, s->s3->write_sequence,
sizeof(s->s3->write_sequence));
memcpy(s->s3->write_sequence, save_write_sequence,
sizeof(s->s3->write_sequence));
}
(void)BIO_flush(SSL_get_wbio(s));
return ret;
}
int dtls1_retransmit_buffered_messages(SSL *s) {
pqueue sent = s->d1->sent_messages;
piterator iter = pqueue_iterator(sent);
pitem *item;
for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) {
hm_fragment *frag = (hm_fragment *)item->data;
if (dtls1_retransmit_message(s, frag) <= 0) {
return -1;
}
}
return 1;
}
int dtls1_buffer_message(SSL *s, int is_ccs) {
pitem *item;
hm_fragment *frag;
uint8_t seq64be[8];
/* this function is called immediately after a message has
* been serialized */
assert(s->init_off == 0);
frag = dtls1_hm_fragment_new(s->init_num, 0);
if (!frag) {
return 0;
}
memcpy(frag->fragment, s->init_buf->data, s->init_num);
if (is_ccs) {
assert(s->d1->w_msg_hdr.msg_len + DTLS1_CCS_HEADER_LENGTH ==
(unsigned int)s->init_num);
} else {
assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH ==
(unsigned int)s->init_num);
}
frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
frag->msg_header.seq = s->d1->w_msg_hdr.seq;
frag->msg_header.type = s->d1->w_msg_hdr.type;
frag->msg_header.frag_off = 0;
frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
frag->msg_header.is_ccs = is_ccs;
frag->msg_header.epoch = s->d1->w_epoch;
memset(seq64be, 0, sizeof(seq64be));
seq64be[6] = (uint8_t)(
dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs) >>
8);
seq64be[7] = (uint8_t)(
dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs));
item = pitem_new(seq64be, frag);
if (item == NULL) {
dtls1_hm_fragment_free(frag);
return 0;
}
pqueue_insert(s->d1->sent_messages, item);
return 1;
}
/* call this function when the buffered messages are no longer needed */
void dtls1_clear_record_buffer(SSL *s) {
pitem *item;
for (item = pqueue_pop(s->d1->sent_messages); item != NULL;
item = pqueue_pop(s->d1->sent_messages)) {
dtls1_hm_fragment_free((hm_fragment *)item->data);
pitem_free(item);
}
}
/* don't actually do the writing, wait till the MTU has been retrieved */
void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
unsigned short seq_num, unsigned long frag_off,
unsigned long frag_len) {
struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
msg_hdr->type = mt;
msg_hdr->msg_len = len;
msg_hdr->seq = seq_num;
msg_hdr->frag_off = frag_off;
msg_hdr->frag_len = frag_len;
}
static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
unsigned long frag_len) {
struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
msg_hdr->frag_off = frag_off;
msg_hdr->frag_len = frag_len;
}
static uint8_t *dtls1_write_message_header(SSL *s, uint8_t *p) {
struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
*p++ = msg_hdr->type;
l2n3(msg_hdr->msg_len, p);
s2n(msg_hdr->seq, p);
l2n3(msg_hdr->frag_off, p);
l2n3(msg_hdr->frag_len, p);
return p;
}
unsigned int dtls1_min_mtu(void) {
return kMinMTU;
}
void dtls1_get_message_header(uint8_t *data,
struct hm_header_st *msg_hdr) {
memset(msg_hdr, 0x00, sizeof(struct hm_header_st));
msg_hdr->type = *(data++);
n2l3(data, msg_hdr->msg_len);
n2s(data, msg_hdr->seq);
n2l3(data, msg_hdr->frag_off);
n2l3(data, msg_hdr->frag_len);
}
int dtls1_shutdown(SSL *s) {
int ret;
ret = ssl3_shutdown(s);
return ret;
}