31b1d81354
Fix up the generate_master_secret parameter while we're here. Change-Id: I1c80796d1f481be0c3eefcf3222f2d9fc1de4a51 Reviewed-on: https://boringssl-review.googlesource.com/2696 Reviewed-by: Adam Langley <agl@google.com>
1361 lines
42 KiB
C
1361 lines
42 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2005 Nokia. All rights reserved.
|
|
*
|
|
* The portions of the attached software ("Contribution") is developed by
|
|
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
|
|
* license.
|
|
*
|
|
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
|
|
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
|
|
* support (see RFC 4279) to OpenSSL.
|
|
*
|
|
* No patent licenses or other rights except those expressly stated in
|
|
* the OpenSSL open source license shall be deemed granted or received
|
|
* expressly, by implication, estoppel, or otherwise.
|
|
*
|
|
* No assurances are provided by Nokia that the Contribution does not
|
|
* infringe the patent or other intellectual property rights of any third
|
|
* party or that the license provides you with all the necessary rights
|
|
* to make use of the Contribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
|
|
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
|
|
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
|
|
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
|
|
* OTHERWISE. */
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/md5.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "ssl_locl.h"
|
|
|
|
|
|
/* tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246,
|
|
* section 5. It writes |out_len| bytes to |out|, using |md| as the hash and
|
|
* |secret| as the secret. |seed1| through |seed3| are concatenated to form the
|
|
* seed parameter. It returns one on success and zero on failure. */
|
|
static int tls1_P_hash(uint8_t *out, size_t out_len, const EVP_MD *md,
|
|
const uint8_t *secret, size_t secret_len,
|
|
const uint8_t *seed1, size_t seed1_len,
|
|
const uint8_t *seed2, size_t seed2_len,
|
|
const uint8_t *seed3, size_t seed3_len) {
|
|
size_t chunk;
|
|
HMAC_CTX ctx, ctx_tmp, ctx_init;
|
|
uint8_t A1[EVP_MAX_MD_SIZE];
|
|
unsigned A1_len;
|
|
int ret = 0;
|
|
|
|
chunk = EVP_MD_size(md);
|
|
|
|
HMAC_CTX_init(&ctx);
|
|
HMAC_CTX_init(&ctx_tmp);
|
|
HMAC_CTX_init(&ctx_init);
|
|
if (!HMAC_Init_ex(&ctx_init, secret, secret_len, md, NULL) ||
|
|
!HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
|
|
(seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
|
|
(seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
|
|
(seed3_len && !HMAC_Update(&ctx, seed3, seed3_len)) ||
|
|
!HMAC_Final(&ctx, A1, &A1_len)) {
|
|
goto err;
|
|
}
|
|
|
|
for (;;) {
|
|
/* Reinit mac contexts. */
|
|
if (!HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
|
|
!HMAC_Update(&ctx, A1, A1_len) ||
|
|
(out_len > chunk && !HMAC_CTX_copy_ex(&ctx_tmp, &ctx)) ||
|
|
(seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
|
|
(seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
|
|
(seed3_len && !HMAC_Update(&ctx, seed3, seed3_len))) {
|
|
goto err;
|
|
}
|
|
|
|
if (out_len > chunk) {
|
|
unsigned len;
|
|
if (!HMAC_Final(&ctx, out, &len)) {
|
|
goto err;
|
|
}
|
|
assert(len == chunk);
|
|
out += len;
|
|
out_len -= len;
|
|
/* Calculate the next A1 value. */
|
|
if (!HMAC_Final(&ctx_tmp, A1, &A1_len)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
/* Last chunk. */
|
|
if (!HMAC_Final(&ctx, A1, &A1_len)) {
|
|
goto err;
|
|
}
|
|
memcpy(out, A1, out_len);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
HMAC_CTX_cleanup(&ctx);
|
|
HMAC_CTX_cleanup(&ctx_tmp);
|
|
HMAC_CTX_cleanup(&ctx_init);
|
|
OPENSSL_cleanse(A1, sizeof(A1));
|
|
return ret;
|
|
}
|
|
|
|
/* tls1_PRF computes the TLS PRF function as described in RFC 5246, section 5
|
|
* and RFC 2246 section 5. It writes |out_len| bytes to |out|, using
|
|
* |digest_mask| to select the hash functions, |secret| as the secret, and
|
|
* |label| as the label. |seed1| and |seed2| are concatenated to form the seed
|
|
* parameter. It returns one on success and zero on failure. */
|
|
static int tls1_PRF(uint8_t *out, size_t out_len, long digest_mask,
|
|
const uint8_t *secret, size_t secret_len,
|
|
const char *label, size_t label_len,
|
|
const uint8_t *seed1, size_t seed1_len,
|
|
const uint8_t *seed2, size_t seed2_len) {
|
|
size_t idx, len, count, i;
|
|
const uint8_t *S1;
|
|
long m;
|
|
const EVP_MD *md;
|
|
int ret = 0;
|
|
uint8_t *tmp;
|
|
|
|
if (out_len == 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* Allocate a temporary buffer. */
|
|
tmp = OPENSSL_malloc(out_len);
|
|
if (tmp == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_PRF, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
/* Count number of digests and partition |secret| evenly. */
|
|
count = 0;
|
|
for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
|
|
if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) {
|
|
count++;
|
|
}
|
|
}
|
|
/* TODO(davidben): The only case where count isn't 1 is the old MD5/SHA-1
|
|
* combination. The logic around multiple handshake digests can probably be
|
|
* simplified. */
|
|
assert(count == 1 || count == 2);
|
|
len = secret_len / count;
|
|
if (count == 1) {
|
|
secret_len = 0;
|
|
}
|
|
S1 = secret;
|
|
memset(out, 0, out_len);
|
|
for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
|
|
if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) {
|
|
/* If |count| is 2 and |secret_len| is odd, |secret| is partitioned into
|
|
* two halves with an overlapping byte. */
|
|
if (!tls1_P_hash(tmp, out_len, md, S1, len + (secret_len & 1),
|
|
(const uint8_t *)label, label_len, seed1, seed1_len,
|
|
seed2, seed2_len)) {
|
|
goto err;
|
|
}
|
|
S1 += len;
|
|
for (i = 0; i < out_len; i++) {
|
|
out[i] ^= tmp[i];
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_cleanse(tmp, out_len);
|
|
OPENSSL_free(tmp);
|
|
return ret;
|
|
}
|
|
|
|
static int tls1_generate_key_block(SSL *s, uint8_t *out, size_t out_len) {
|
|
return tls1_PRF(out, out_len, ssl_get_algorithm2(s),
|
|
s->session->master_key, s->session->master_key_length,
|
|
TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE,
|
|
s->s3->server_random, SSL3_RANDOM_SIZE, s->s3->client_random,
|
|
SSL3_RANDOM_SIZE);
|
|
}
|
|
|
|
/* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It
|
|
* returns 0 on malloc error. */
|
|
static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) {
|
|
if (*aead_ctx != NULL) {
|
|
EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
|
|
} else {
|
|
*aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
|
|
if (*aead_ctx == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void tls1_cleanup_enc_ctx(EVP_CIPHER_CTX **ctx) {
|
|
if (*ctx != NULL) {
|
|
EVP_CIPHER_CTX_free(*ctx);
|
|
}
|
|
*ctx = NULL;
|
|
}
|
|
|
|
static void tls1_cleanup_hash_ctx(EVP_MD_CTX **ctx) {
|
|
if (*ctx != NULL) {
|
|
EVP_MD_CTX_destroy(*ctx);
|
|
}
|
|
*ctx = NULL;
|
|
}
|
|
|
|
static int tls1_change_cipher_state_aead(SSL *s, char is_read,
|
|
const uint8_t *key, unsigned key_len,
|
|
const uint8_t *iv, unsigned iv_len,
|
|
const uint8_t *mac_secret,
|
|
unsigned mac_secret_len) {
|
|
const EVP_AEAD *aead = s->s3->tmp.new_aead;
|
|
SSL_AEAD_CTX *aead_ctx;
|
|
/* merged_key is used to merge the MAC, cipher, and IV keys for an AEAD which
|
|
* simulates pre-AEAD cipher suites. */
|
|
uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH];
|
|
|
|
if (is_read) {
|
|
tls1_cleanup_enc_ctx(&s->enc_read_ctx);
|
|
tls1_cleanup_hash_ctx(&s->read_hash);
|
|
} else {
|
|
tls1_cleanup_enc_ctx(&s->enc_write_ctx);
|
|
tls1_cleanup_hash_ctx(&s->write_hash);
|
|
}
|
|
|
|
if (mac_secret_len > 0) {
|
|
/* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher
|
|
* suites). */
|
|
if (mac_secret_len + key_len + iv_len > sizeof(merged_key)) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead,
|
|
ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
memcpy(merged_key, mac_secret, mac_secret_len);
|
|
memcpy(merged_key + mac_secret_len, key, key_len);
|
|
memcpy(merged_key + mac_secret_len + key_len, iv, iv_len);
|
|
key = merged_key;
|
|
key_len += mac_secret_len;
|
|
key_len += iv_len;
|
|
}
|
|
|
|
if (is_read) {
|
|
if (!tls1_aead_ctx_init(&s->aead_read_ctx)) {
|
|
return 0;
|
|
}
|
|
aead_ctx = s->aead_read_ctx;
|
|
} else {
|
|
if (!tls1_aead_ctx_init(&s->aead_write_ctx)) {
|
|
return 0;
|
|
}
|
|
aead_ctx = s->aead_write_ctx;
|
|
}
|
|
|
|
if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */)) {
|
|
OPENSSL_free(aead_ctx);
|
|
if (is_read) {
|
|
s->aead_read_ctx = NULL;
|
|
} else {
|
|
s->aead_write_ctx = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (mac_secret_len == 0) {
|
|
/* For a real AEAD, the IV is the fixed part of the nonce. */
|
|
if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(aead_ctx->fixed_nonce, iv, iv_len);
|
|
aead_ctx->fixed_nonce_len = iv_len;
|
|
aead_ctx->variable_nonce_included_in_record =
|
|
(s->s3->tmp.new_cipher->algorithm2 &
|
|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0;
|
|
aead_ctx->random_variable_nonce = 0;
|
|
aead_ctx->omit_length_in_ad = 0;
|
|
} else {
|
|
aead_ctx->fixed_nonce_len = 0;
|
|
aead_ctx->variable_nonce_included_in_record = 1;
|
|
aead_ctx->random_variable_nonce = 1;
|
|
aead_ctx->omit_length_in_ad = 1;
|
|
}
|
|
aead_ctx->variable_nonce_len = s->s3->tmp.new_variable_iv_len;
|
|
|
|
if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
|
|
EVP_AEAD_nonce_length(aead)) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void tls1_cleanup_aead_ctx(SSL_AEAD_CTX **ctx) {
|
|
if (*ctx != NULL) {
|
|
EVP_AEAD_CTX_cleanup(&(*ctx)->ctx);
|
|
OPENSSL_free(*ctx);
|
|
}
|
|
*ctx = NULL;
|
|
}
|
|
|
|
/* tls1_change_cipher_state_cipher performs the work needed to switch cipher
|
|
* states when using EVP_CIPHER. The argument |is_read| is true iff this
|
|
* function is being called due to reading, as opposed to writing, a
|
|
* ChangeCipherSpec message. In order to support export ciphersuites,
|
|
* use_client_keys indicates whether the key material provided is in the
|
|
* "client write" direction. */
|
|
static int tls1_change_cipher_state_cipher(SSL *s, char is_read,
|
|
char use_client_keys,
|
|
const uint8_t *mac_secret,
|
|
unsigned mac_secret_len,
|
|
const uint8_t *key, unsigned key_len,
|
|
const uint8_t *iv, unsigned iv_len) {
|
|
const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
|
|
EVP_CIPHER_CTX *cipher_ctx;
|
|
EVP_MD_CTX *mac_ctx;
|
|
|
|
if (is_read) {
|
|
tls1_cleanup_aead_ctx(&s->aead_read_ctx);
|
|
} else {
|
|
tls1_cleanup_aead_ctx(&s->aead_write_ctx);
|
|
}
|
|
|
|
if (is_read) {
|
|
if (s->enc_read_ctx != NULL && !SSL_IS_DTLS(s)) {
|
|
EVP_CIPHER_CTX_cleanup(s->enc_read_ctx);
|
|
} else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
cipher_ctx = s->enc_read_ctx;
|
|
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
|
|
if (mac_ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len);
|
|
s->s3->read_mac_secret_size = mac_secret_len;
|
|
} else {
|
|
/* When updating the write contexts for DTLS, we do not wish to free the
|
|
* old ones because DTLS stores pointers to them in order to implement
|
|
* retransmission. */
|
|
|
|
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) {
|
|
EVP_CIPHER_CTX_cleanup(s->enc_write_ctx);
|
|
} else {
|
|
s->enc_write_ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
|
|
if (s->enc_write_ctx == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
EVP_CIPHER_CTX_init(s->enc_write_ctx);
|
|
|
|
cipher_ctx = s->enc_write_ctx;
|
|
if (SSL_IS_DTLS(s)) {
|
|
/* This is the same as ssl_replace_hash, but doesn't
|
|
* free the old |s->write_hash|. */
|
|
mac_ctx = EVP_MD_CTX_create();
|
|
if (!mac_ctx) {
|
|
goto err;
|
|
}
|
|
s->write_hash = mac_ctx;
|
|
} else {
|
|
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
|
|
if (mac_ctx == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len);
|
|
s->s3->write_mac_secret_size = mac_secret_len;
|
|
}
|
|
|
|
EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type, NULL,
|
|
mac_secret, mac_secret_len);
|
|
if (!mac_key) {
|
|
return 0;
|
|
}
|
|
|
|
if (!EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key)) {
|
|
EVP_PKEY_free(mac_key);
|
|
goto err;
|
|
}
|
|
EVP_PKEY_free(mac_key);
|
|
|
|
if (!EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv,
|
|
!is_read)) {
|
|
goto err;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_cipher, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
int tls1_change_cipher_state(SSL *s, int which) {
|
|
/* is_read is true if we have just read a ChangeCipherSpec message - i.e. we
|
|
* need to update the read cipherspec. Otherwise we have just written one. */
|
|
const char is_read = (which & SSL3_CC_READ) != 0;
|
|
/* use_client_keys is true if we wish to use the keys for the "client write"
|
|
* direction. This is the case if we're a client sending a ChangeCipherSpec,
|
|
* or a server reading a client's ChangeCipherSpec. */
|
|
const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
|
|
which == SSL3_CHANGE_CIPHER_SERVER_READ;
|
|
const uint8_t *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
|
|
const uint8_t *client_write_key, *server_write_key, *key;
|
|
const uint8_t *client_write_iv, *server_write_iv, *iv;
|
|
const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
|
|
const EVP_AEAD *aead = s->s3->tmp.new_aead;
|
|
size_t key_len, iv_len, mac_secret_len;
|
|
const uint8_t *key_data;
|
|
|
|
/* Reset sequence number to zero. */
|
|
if (!SSL_IS_DTLS(s)) {
|
|
memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
|
|
}
|
|
|
|
mac_secret_len = s->s3->tmp.new_mac_secret_len;
|
|
iv_len = s->s3->tmp.new_fixed_iv_len;
|
|
|
|
if (aead != NULL) {
|
|
key_len = EVP_AEAD_key_length(aead);
|
|
if (mac_secret_len > 0) {
|
|
/* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites)
|
|
* the key length reported by |EVP_AEAD_key_length| will include the MAC
|
|
* and IV key bytes. */
|
|
if (key_len < mac_secret_len + iv_len) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
key_len -= mac_secret_len + iv_len;
|
|
}
|
|
} else {
|
|
key_len = EVP_CIPHER_key_length(cipher);
|
|
}
|
|
|
|
key_data = s->s3->tmp.key_block;
|
|
client_write_mac_secret = key_data;
|
|
key_data += mac_secret_len;
|
|
server_write_mac_secret = key_data;
|
|
key_data += mac_secret_len;
|
|
client_write_key = key_data;
|
|
key_data += key_len;
|
|
server_write_key = key_data;
|
|
key_data += key_len;
|
|
client_write_iv = key_data;
|
|
key_data += iv_len;
|
|
server_write_iv = key_data;
|
|
key_data += iv_len;
|
|
|
|
if (use_client_keys) {
|
|
mac_secret = client_write_mac_secret;
|
|
key = client_write_key;
|
|
iv = client_write_iv;
|
|
} else {
|
|
mac_secret = server_write_mac_secret;
|
|
key = server_write_key;
|
|
iv = server_write_iv;
|
|
}
|
|
|
|
if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (aead != NULL) {
|
|
if (!tls1_change_cipher_state_aead(s, is_read, key, key_len, iv, iv_len,
|
|
mac_secret, mac_secret_len)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys,
|
|
mac_secret, mac_secret_len, key,
|
|
key_len, iv, iv_len)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls1_setup_key_block(SSL *s) {
|
|
uint8_t *p;
|
|
const EVP_CIPHER *c = NULL;
|
|
const EVP_MD *hash = NULL;
|
|
const EVP_AEAD *aead = NULL;
|
|
int mac_type = NID_undef;
|
|
int ret = 0;
|
|
size_t mac_secret_len, fixed_iv_len, variable_iv_len, key_len;
|
|
size_t key_block_len;
|
|
|
|
|
|
if (s->s3->tmp.key_block_length != 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (s->session->cipher == NULL) {
|
|
goto cipher_unavailable_err;
|
|
}
|
|
|
|
/* TODO(davidben): Make DTLS record-layer code EVP_AEAD-aware. */
|
|
if (!SSL_IS_DTLS(s)) {
|
|
if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len,
|
|
s->session->cipher,
|
|
ssl3_version_from_wire(s, s->version))) {
|
|
goto cipher_unavailable_err;
|
|
}
|
|
key_len = EVP_AEAD_key_length(aead);
|
|
variable_iv_len = EVP_AEAD_nonce_length(aead);
|
|
if (mac_secret_len > 0) {
|
|
/* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites)
|
|
* the key length reported by |EVP_AEAD_key_length| will include the MAC
|
|
* key bytes and initial implicit IV. */
|
|
if (key_len < mac_secret_len + fixed_iv_len) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
key_len -= mac_secret_len + fixed_iv_len;
|
|
} else {
|
|
/* The nonce is split into a fixed portion and a variable portion. */
|
|
if (variable_iv_len < fixed_iv_len) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
variable_iv_len -= fixed_iv_len;
|
|
}
|
|
} else {
|
|
if (!ssl_cipher_get_evp(s->session, &c, &hash, &mac_type,
|
|
&mac_secret_len)) {
|
|
goto cipher_unavailable_err;
|
|
}
|
|
key_len = EVP_CIPHER_key_length(c);
|
|
fixed_iv_len = EVP_CIPHER_iv_length(c);
|
|
variable_iv_len = 0;
|
|
}
|
|
|
|
assert(mac_secret_len < 256);
|
|
assert(fixed_iv_len < 256);
|
|
assert(variable_iv_len < 256);
|
|
|
|
s->s3->tmp.new_aead = aead;
|
|
s->s3->tmp.new_sym_enc = c;
|
|
s->s3->tmp.new_hash = hash;
|
|
s->s3->tmp.new_mac_pkey_type = mac_type;
|
|
s->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len;
|
|
s->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len;
|
|
s->s3->tmp.new_variable_iv_len = (uint8_t)variable_iv_len;
|
|
|
|
key_block_len = key_len + mac_secret_len + fixed_iv_len;
|
|
key_block_len *= 2;
|
|
|
|
ssl3_cleanup_key_block(s);
|
|
|
|
p = (uint8_t *)OPENSSL_malloc(key_block_len);
|
|
if (p == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
s->s3->tmp.key_block_length = key_block_len;
|
|
s->s3->tmp.key_block = p;
|
|
|
|
if (!tls1_generate_key_block(s, p, key_block_len)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!SSL_USE_EXPLICIT_IV(s) &&
|
|
(s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) {
|
|
/* enable vulnerability countermeasure for CBC ciphers with known-IV
|
|
* problem (http://www.openssl.org/~bodo/tls-cbc.txt). */
|
|
s->s3->need_record_splitting = 1;
|
|
|
|
if (s->session->cipher != NULL &&
|
|
s->session->cipher->algorithm_enc == SSL_RC4) {
|
|
s->s3->need_record_splitting = 0;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
return ret;
|
|
|
|
cipher_unavailable_err:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block,
|
|
SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
|
|
return 0;
|
|
}
|
|
|
|
/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|,
|
|
* respectively.
|
|
*
|
|
* Returns:
|
|
* 0: (in non-constant time) if the record is publically invalid (i.e. too
|
|
* short etc).
|
|
* 1: if the record's padding is valid / the encryption was successful.
|
|
* -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
|
|
* an internal error occured. */
|
|
int tls1_enc(SSL *s, int send) {
|
|
SSL3_RECORD *rec;
|
|
EVP_CIPHER_CTX *ds;
|
|
unsigned long l;
|
|
int bs, i, j, k, pad = 0, ret, mac_size = 0;
|
|
const EVP_CIPHER *enc;
|
|
const SSL_AEAD_CTX *aead;
|
|
|
|
if (send) {
|
|
rec = &s->s3->wrec;
|
|
aead = s->aead_write_ctx;
|
|
} else {
|
|
rec = &s->s3->rrec;
|
|
aead = s->aead_read_ctx;
|
|
}
|
|
|
|
if (aead) {
|
|
uint8_t ad[13], *seq, *in, *out, nonce[EVP_AEAD_MAX_NONCE_LENGTH];
|
|
unsigned nonce_used;
|
|
size_t n, ad_len;
|
|
|
|
seq = send ? s->s3->write_sequence : s->s3->read_sequence;
|
|
|
|
if (SSL_IS_DTLS(s)) {
|
|
uint8_t dtlsseq[9], *p = dtlsseq;
|
|
|
|
s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
|
|
memcpy(p, &seq[2], 6);
|
|
memcpy(ad, dtlsseq, 8);
|
|
} else {
|
|
memcpy(ad, seq, 8);
|
|
for (i = 7; i >= 0; i--) {
|
|
++seq[i];
|
|
if (seq[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ad[8] = rec->type;
|
|
ad[9] = (uint8_t)(s->version >> 8);
|
|
ad[10] = (uint8_t)(s->version);
|
|
|
|
if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce)) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR);
|
|
return -1; /* internal error - should never happen. */
|
|
}
|
|
|
|
memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
|
|
nonce_used = aead->fixed_nonce_len;
|
|
|
|
if (send) {
|
|
size_t len = rec->length;
|
|
size_t eivlen = 0;
|
|
in = rec->input;
|
|
out = rec->data;
|
|
|
|
uint8_t *variable_nonce = nonce + nonce_used;
|
|
if (aead->random_variable_nonce) {
|
|
assert(aead->variable_nonce_included_in_record);
|
|
if (!RAND_bytes(nonce + nonce_used, aead->variable_nonce_len)) {
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* When sending we use the sequence number as the variable part of the
|
|
* nonce. */
|
|
if (aead->variable_nonce_len != 8) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
memcpy(nonce + nonce_used, ad, aead->variable_nonce_len);
|
|
}
|
|
nonce_used += aead->variable_nonce_len;
|
|
|
|
/* in do_ssl3_write, rec->input is moved forward by variable_nonce_len in
|
|
* order to leave space for the variable nonce. Thus we can copy the
|
|
* sequence number bytes into place without overwriting any of the
|
|
* plaintext. */
|
|
if (aead->variable_nonce_included_in_record) {
|
|
memcpy(out, variable_nonce, aead->variable_nonce_len);
|
|
len -= aead->variable_nonce_len;
|
|
eivlen = aead->variable_nonce_len;
|
|
}
|
|
|
|
if (aead->omit_length_in_ad) {
|
|
ad_len = 11;
|
|
} else {
|
|
ad[11] = len >> 8;
|
|
ad[12] = len & 0xff;
|
|
ad_len = 13;
|
|
}
|
|
|
|
if (!EVP_AEAD_CTX_seal(&aead->ctx, out + eivlen, &n, len + aead->tag_len,
|
|
nonce, nonce_used, in + eivlen, len, ad, ad_len)) {
|
|
return -1;
|
|
}
|
|
|
|
if (aead->variable_nonce_included_in_record) {
|
|
n += aead->variable_nonce_len;
|
|
}
|
|
} else {
|
|
/* receive */
|
|
size_t len = rec->length;
|
|
|
|
if (rec->data != rec->input) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR);
|
|
return -1; /* internal error - should never happen. */
|
|
}
|
|
out = in = rec->input;
|
|
|
|
if (len < aead->variable_nonce_len) {
|
|
return 0;
|
|
}
|
|
memcpy(nonce + nonce_used,
|
|
aead->variable_nonce_included_in_record ? in : ad,
|
|
aead->variable_nonce_len);
|
|
nonce_used += aead->variable_nonce_len;
|
|
|
|
if (aead->variable_nonce_included_in_record) {
|
|
in += aead->variable_nonce_len;
|
|
len -= aead->variable_nonce_len;
|
|
out += aead->variable_nonce_len;
|
|
}
|
|
|
|
if (aead->omit_length_in_ad) {
|
|
ad_len = 11;
|
|
} else {
|
|
if (len < aead->tag_len) {
|
|
return 0;
|
|
}
|
|
size_t plaintext_len = len - aead->tag_len;
|
|
|
|
ad[11] = plaintext_len >> 8;
|
|
ad[12] = plaintext_len & 0xff;
|
|
ad_len = 13;
|
|
}
|
|
|
|
if (!EVP_AEAD_CTX_open(&aead->ctx, out, &n, rec->length, nonce, nonce_used, in,
|
|
len, ad, ad_len)) {
|
|
return -1;
|
|
}
|
|
|
|
rec->data = rec->input = out;
|
|
}
|
|
|
|
rec->length = n;
|
|
return 1;
|
|
}
|
|
|
|
if (send) {
|
|
ds = s->enc_write_ctx;
|
|
rec = &(s->s3->wrec);
|
|
if (s->enc_write_ctx == NULL) {
|
|
enc = NULL;
|
|
} else {
|
|
int ivlen;
|
|
enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
|
|
/* For TLSv1.1 and later explicit IV */
|
|
if (SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) {
|
|
ivlen = EVP_CIPHER_iv_length(enc);
|
|
} else {
|
|
ivlen = 0;
|
|
}
|
|
|
|
if (ivlen > 1) {
|
|
if (rec->data != rec->input) {
|
|
/* we can't write into the input stream:
|
|
* Can this ever happen?? (steve)
|
|
*/
|
|
fprintf(stderr, "%s:%d: rec->data != rec->input\n", __FILE__,
|
|
__LINE__);
|
|
} else if (!RAND_bytes(rec->input, ivlen)) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
ds = s->enc_read_ctx;
|
|
rec = &(s->s3->rrec);
|
|
if (s->enc_read_ctx == NULL) {
|
|
enc = NULL;
|
|
} else {
|
|
enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
|
|
}
|
|
}
|
|
|
|
if (s->session == NULL || ds == NULL || enc == NULL) {
|
|
memmove(rec->data, rec->input, rec->length);
|
|
rec->input = rec->data;
|
|
ret = 1;
|
|
} else {
|
|
l = rec->length;
|
|
bs = EVP_CIPHER_block_size(ds->cipher);
|
|
|
|
if (bs != 1 && send) {
|
|
i = bs - ((int)l % bs);
|
|
|
|
/* Add weird padding of upto 256 bytes */
|
|
/* we need to add 'i' padding bytes of value j */
|
|
j = i - 1;
|
|
for (k = (int)l; k < (int)(l + i); k++) {
|
|
rec->input[k] = j;
|
|
}
|
|
l += i;
|
|
rec->length += i;
|
|
}
|
|
|
|
if (!send && (l == 0 || l % bs != 0)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!EVP_Cipher(ds, rec->data, rec->input, l)) {
|
|
return -1;
|
|
}
|
|
|
|
ret = 1;
|
|
if (EVP_MD_CTX_md(s->read_hash) != NULL) {
|
|
mac_size = EVP_MD_CTX_size(s->read_hash);
|
|
}
|
|
|
|
if (bs != 1 && !send) {
|
|
ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
|
|
}
|
|
if (pad && !send) {
|
|
rec->length -= pad;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *out) {
|
|
unsigned int ret;
|
|
EVP_MD_CTX ctx, *d = NULL;
|
|
int i;
|
|
|
|
if (s->s3->handshake_buffer &&
|
|
!ssl3_digest_cached_records(s, free_handshake_buffer)) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < SSL_MAX_DIGEST; i++) {
|
|
if (s->s3->handshake_dgst[i] &&
|
|
EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
|
|
d = s->s3->handshake_dgst[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!d) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST);
|
|
return 0;
|
|
}
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
EVP_MD_CTX_copy_ex(&ctx, d);
|
|
EVP_DigestFinal_ex(&ctx, out, &ret);
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* tls1_handshake_digest calculates the current handshake hash and writes it to
|
|
* |out|, which has space for |out_len| bytes. It returns the number of bytes
|
|
* written or -1 in the event of an error. This function works on a copy of the
|
|
* underlying digests so can be called multiple times and prior to the final
|
|
* update etc. */
|
|
int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len) {
|
|
const EVP_MD *md;
|
|
EVP_MD_CTX ctx;
|
|
int err = 0, len = 0;
|
|
size_t i;
|
|
long mask;
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
|
|
for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) {
|
|
size_t hash_size;
|
|
unsigned int digest_len;
|
|
EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];
|
|
|
|
if ((mask & ssl_get_algorithm2(s)) == 0) {
|
|
continue;
|
|
}
|
|
|
|
hash_size = EVP_MD_size(md);
|
|
if (!hdgst ||
|
|
hash_size > out_len ||
|
|
!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
|
|
!EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
|
|
digest_len != hash_size /* internal error */) {
|
|
err = 1;
|
|
break;
|
|
}
|
|
|
|
out += digest_len;
|
|
out_len -= digest_len;
|
|
len += digest_len;
|
|
}
|
|
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
if (err != 0) {
|
|
return -1;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *out) {
|
|
uint8_t buf[2 * EVP_MAX_MD_SIZE];
|
|
int err = 0;
|
|
int digests_len;
|
|
|
|
if (s->s3->handshake_buffer &&
|
|
!ssl3_digest_cached_records(s, free_handshake_buffer)) {
|
|
return 0;
|
|
}
|
|
|
|
digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
|
|
if (digests_len < 0) {
|
|
err = 1;
|
|
digests_len = 0;
|
|
}
|
|
|
|
if (!tls1_PRF(out, 12, ssl_get_algorithm2(s), s->session->master_key,
|
|
s->session->master_key_length, str, slen, buf, digests_len,
|
|
NULL, 0)) {
|
|
err = 1;
|
|
}
|
|
|
|
if (err) {
|
|
return 0;
|
|
} else {
|
|
return 12;
|
|
}
|
|
}
|
|
|
|
int tls1_mac(SSL *ssl, uint8_t *md, int send) {
|
|
SSL3_RECORD *rec;
|
|
uint8_t *seq;
|
|
EVP_MD_CTX *hash;
|
|
size_t md_size, orig_len;
|
|
int i, ok;
|
|
EVP_MD_CTX hmac, *mac_ctx;
|
|
uint8_t header[13];
|
|
int t;
|
|
|
|
if (send) {
|
|
rec = &ssl->s3->wrec;
|
|
seq = &ssl->s3->write_sequence[0];
|
|
hash = ssl->write_hash;
|
|
} else {
|
|
rec = &ssl->s3->rrec;
|
|
seq = &ssl->s3->read_sequence[0];
|
|
hash = ssl->read_hash;
|
|
}
|
|
|
|
t = EVP_MD_CTX_size(hash);
|
|
assert(t >= 0);
|
|
md_size = t;
|
|
|
|
mac_ctx = &hmac;
|
|
if (!EVP_MD_CTX_copy(mac_ctx, hash)) {
|
|
return -1;
|
|
}
|
|
|
|
if (SSL_IS_DTLS(ssl)) {
|
|
uint8_t dtlsseq[8], *p = dtlsseq;
|
|
|
|
s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p);
|
|
memcpy(p, &seq[2], 6);
|
|
|
|
memcpy(header, dtlsseq, 8);
|
|
} else {
|
|
memcpy(header, seq, 8);
|
|
}
|
|
|
|
/* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
|
|
orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
|
|
rec->type &= 0xff;
|
|
|
|
header[8] = rec->type;
|
|
header[9] = (uint8_t)(ssl->version >> 8);
|
|
header[10] = (uint8_t)(ssl->version);
|
|
header[11] = (rec->length) >> 8;
|
|
header[12] = (rec->length) & 0xff;
|
|
|
|
if (!send && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
|
|
ssl3_cbc_record_digest_supported(mac_ctx)) {
|
|
/* This is a CBC-encrypted record. We must avoid leaking any timing-side
|
|
* channel information about how many blocks of data we are hashing because
|
|
* that gives an attacker a timing-oracle. */
|
|
ok = ssl3_cbc_digest_record(
|
|
mac_ctx, md, &md_size, header, rec->input, rec->length + md_size,
|
|
orig_len, ssl->s3->read_mac_secret, ssl->s3->read_mac_secret_size,
|
|
0 /* not SSLv3 */);
|
|
} else {
|
|
EVP_DigestSignUpdate(mac_ctx, header, sizeof(header));
|
|
EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length);
|
|
ok = EVP_DigestSignFinal(mac_ctx, md, &md_size);
|
|
}
|
|
|
|
EVP_MD_CTX_cleanup(mac_ctx);
|
|
|
|
if (!ok) {
|
|
return -1;
|
|
}
|
|
|
|
if (!SSL_IS_DTLS(ssl)) {
|
|
for (i = 7; i >= 0; i--) {
|
|
++seq[i];
|
|
if (seq[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return md_size;
|
|
}
|
|
|
|
int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster,
|
|
size_t premaster_len) {
|
|
if (s->s3->tmp.extended_master_secret) {
|
|
uint8_t digests[2 * EVP_MAX_MD_SIZE];
|
|
int digests_len;
|
|
|
|
/* The master secret is based on the handshake hash just after sending the
|
|
* ClientKeyExchange. However, we might have a client certificate to send,
|
|
* in which case we might need different hashes for the verification and
|
|
* thus still need the handshake buffer around. Keeping both a handshake
|
|
* buffer *and* running hashes isn't yet supported so, when it comes to
|
|
* calculating the Finished hash, we'll have to hash the handshake buffer
|
|
* again. */
|
|
if (s->s3->handshake_buffer &&
|
|
!ssl3_digest_cached_records(s, dont_free_handshake_buffer)) {
|
|
return 0;
|
|
}
|
|
|
|
digests_len = tls1_handshake_digest(s, digests, sizeof(digests));
|
|
if (digests_len == -1) {
|
|
return 0;
|
|
}
|
|
|
|
if (!tls1_PRF(out, SSL3_MASTER_SECRET_SIZE, ssl_get_algorithm2(s),
|
|
premaster, premaster_len, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests,
|
|
digests_len, NULL, 0)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!tls1_PRF(out, SSL3_MASTER_SECRET_SIZE, ssl_get_algorithm2(s),
|
|
premaster, premaster_len, TLS_MD_MASTER_SECRET_CONST,
|
|
TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3->client_random,
|
|
SSL3_RANDOM_SIZE, s->s3->server_random,
|
|
SSL3_RANDOM_SIZE)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return SSL3_MASTER_SECRET_SIZE;
|
|
}
|
|
|
|
int tls1_export_keying_material(SSL *s, uint8_t *out, size_t olen,
|
|
const char *label, size_t llen,
|
|
const uint8_t *context, size_t contextlen,
|
|
int use_context) {
|
|
uint8_t *val = NULL;
|
|
size_t vallen, currentvalpos;
|
|
int ret;
|
|
|
|
/* construct PRF arguments we construct the PRF argument ourself rather than
|
|
* passing separate values into the TLS PRF to ensure that the concatenation
|
|
* of values does not create a prohibited label. */
|
|
vallen = llen + SSL3_RANDOM_SIZE * 2;
|
|
if (use_context) {
|
|
vallen += 2 + contextlen;
|
|
}
|
|
|
|
val = OPENSSL_malloc(vallen);
|
|
if (val == NULL) {
|
|
goto err2;
|
|
}
|
|
|
|
currentvalpos = 0;
|
|
memcpy(val + currentvalpos, (uint8_t *)label, llen);
|
|
currentvalpos += llen;
|
|
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
|
|
currentvalpos += SSL3_RANDOM_SIZE;
|
|
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
|
|
currentvalpos += SSL3_RANDOM_SIZE;
|
|
|
|
if (use_context) {
|
|
val[currentvalpos] = (contextlen >> 8) & 0xff;
|
|
currentvalpos++;
|
|
val[currentvalpos] = contextlen & 0xff;
|
|
currentvalpos++;
|
|
if (contextlen > 0 || context != NULL) {
|
|
memcpy(val + currentvalpos, context, contextlen);
|
|
}
|
|
}
|
|
|
|
/* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
|
|
* label len) = 15, so size of val > max(prohibited label len) = 15 and the
|
|
* comparisons won't have buffer overflow. */
|
|
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
|
|
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0 ||
|
|
memcmp(val, TLS_MD_SERVER_FINISH_CONST,
|
|
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0 ||
|
|
memcmp(val, TLS_MD_MASTER_SECRET_CONST,
|
|
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0 ||
|
|
memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
|
|
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) {
|
|
goto err1;
|
|
}
|
|
|
|
ret = tls1_PRF(out, olen, ssl_get_algorithm2(s), s->session->master_key,
|
|
s->session->master_key_length, (const char *)val, vallen, NULL,
|
|
0, NULL, 0);
|
|
goto out;
|
|
|
|
err1:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material,
|
|
SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
|
|
ret = 0;
|
|
goto out;
|
|
|
|
err2:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE);
|
|
ret = 0;
|
|
|
|
out:
|
|
if (val != NULL) {
|
|
OPENSSL_free(val);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int tls1_alert_code(int code) {
|
|
switch (code) {
|
|
case SSL_AD_CLOSE_NOTIFY:
|
|
return SSL3_AD_CLOSE_NOTIFY;
|
|
|
|
case SSL_AD_UNEXPECTED_MESSAGE:
|
|
return SSL3_AD_UNEXPECTED_MESSAGE;
|
|
|
|
case SSL_AD_BAD_RECORD_MAC:
|
|
return SSL3_AD_BAD_RECORD_MAC;
|
|
|
|
case SSL_AD_DECRYPTION_FAILED:
|
|
return TLS1_AD_DECRYPTION_FAILED;
|
|
|
|
case SSL_AD_RECORD_OVERFLOW:
|
|
return TLS1_AD_RECORD_OVERFLOW;
|
|
|
|
case SSL_AD_DECOMPRESSION_FAILURE:
|
|
return SSL3_AD_DECOMPRESSION_FAILURE;
|
|
|
|
case SSL_AD_HANDSHAKE_FAILURE:
|
|
return SSL3_AD_HANDSHAKE_FAILURE;
|
|
|
|
case SSL_AD_NO_CERTIFICATE:
|
|
return -1;
|
|
|
|
case SSL_AD_BAD_CERTIFICATE:
|
|
return SSL3_AD_BAD_CERTIFICATE;
|
|
|
|
case SSL_AD_UNSUPPORTED_CERTIFICATE:
|
|
return SSL3_AD_UNSUPPORTED_CERTIFICATE;
|
|
|
|
case SSL_AD_CERTIFICATE_REVOKED:
|
|
return SSL3_AD_CERTIFICATE_REVOKED;
|
|
|
|
case SSL_AD_CERTIFICATE_EXPIRED:
|
|
return SSL3_AD_CERTIFICATE_EXPIRED;
|
|
|
|
case SSL_AD_CERTIFICATE_UNKNOWN:
|
|
return SSL3_AD_CERTIFICATE_UNKNOWN;
|
|
|
|
case SSL_AD_ILLEGAL_PARAMETER:
|
|
return SSL3_AD_ILLEGAL_PARAMETER;
|
|
|
|
case SSL_AD_UNKNOWN_CA:
|
|
return TLS1_AD_UNKNOWN_CA;
|
|
|
|
case SSL_AD_ACCESS_DENIED:
|
|
return TLS1_AD_ACCESS_DENIED;
|
|
|
|
case SSL_AD_DECODE_ERROR:
|
|
return TLS1_AD_DECODE_ERROR;
|
|
|
|
case SSL_AD_DECRYPT_ERROR:
|
|
return TLS1_AD_DECRYPT_ERROR;
|
|
case SSL_AD_EXPORT_RESTRICTION:
|
|
return TLS1_AD_EXPORT_RESTRICTION;
|
|
|
|
case SSL_AD_PROTOCOL_VERSION:
|
|
return TLS1_AD_PROTOCOL_VERSION;
|
|
|
|
case SSL_AD_INSUFFICIENT_SECURITY:
|
|
return TLS1_AD_INSUFFICIENT_SECURITY;
|
|
|
|
case SSL_AD_INTERNAL_ERROR:
|
|
return TLS1_AD_INTERNAL_ERROR;
|
|
|
|
case SSL_AD_USER_CANCELLED:
|
|
return TLS1_AD_USER_CANCELLED;
|
|
|
|
case SSL_AD_NO_RENEGOTIATION:
|
|
return TLS1_AD_NO_RENEGOTIATION;
|
|
|
|
case SSL_AD_UNSUPPORTED_EXTENSION:
|
|
return TLS1_AD_UNSUPPORTED_EXTENSION;
|
|
|
|
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
|
|
return TLS1_AD_CERTIFICATE_UNOBTAINABLE;
|
|
|
|
case SSL_AD_UNRECOGNIZED_NAME:
|
|
return TLS1_AD_UNRECOGNIZED_NAME;
|
|
|
|
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
|
|
return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
|
|
|
|
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
|
|
return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;
|
|
|
|
case SSL_AD_UNKNOWN_PSK_IDENTITY:
|
|
return TLS1_AD_UNKNOWN_PSK_IDENTITY;
|
|
|
|
case SSL_AD_INAPPROPRIATE_FALLBACK:
|
|
return SSL3_AD_INAPPROPRIATE_FALLBACK;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|