boringssl/ssl/s3_lib.c
David Benjamin 32fbdf2025 Remove anonymous cipher suites.
These are the remaining untested cipher suites. Rather than add support in
runner.go, just remove them altogether. Grepping for this is a little tricky,
but nothing enables aNULL (all occurrences disable it), and all occurrences of
["ALL:] seem to be either unused or explicitly disable anonymous ciphers.

Change-Id: I4fd4b8dc6a273d6c04a26e93839641ddf738343f
Reviewed-on: https://boringssl-review.googlesource.com/4258
Reviewed-by: Adam Langley <agl@google.com>
2015-04-08 23:29:07 +00:00

1402 lines
43 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <assert.h>
#include <stdio.h>
#include <openssl/buf.h>
#include <openssl/dh.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include "ssl_locl.h"
#define SSL3_NUM_CIPHERS (sizeof(ssl3_ciphers) / sizeof(SSL_CIPHER))
/* list of available SSLv3 ciphers (sorted by id) */
const SSL_CIPHER ssl3_ciphers[] = {
/* The RSA ciphers */
/* Cipher 04 */
{
1, SSL3_TXT_RSA_RC4_128_MD5, SSL3_CK_RSA_RC4_128_MD5, SSL_kRSA, SSL_aRSA,
SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 05 */
{
1, SSL3_TXT_RSA_RC4_128_SHA, SSL3_CK_RSA_RC4_128_SHA, SSL_kRSA, SSL_aRSA,
SSL_RC4, SSL_SHA1, SSL_SSLV3, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 0A */
{
1, SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA,
SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168,
},
/* New AES ciphersuites */
/* Cipher 2F */
{
1, TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA,
SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 33 */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 35 */
{
1, TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA,
SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* Cipher 39 */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* TLS v1.2 ciphersuites */
/* Cipher 3C */
{
1, TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256,
SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2,
SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher 3D */
{
1, TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256,
SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_TLSV1_2,
SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
},
/* Cipher 67 */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128,
SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher 6B */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES256,
SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
},
/* Cipher 8A */
{
1, TLS1_TXT_PSK_WITH_RC4_128_SHA, TLS1_CK_PSK_WITH_RC4_128_SHA, SSL_kPSK,
SSL_aPSK, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 8C */
{
1, TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 8D */
{
1, TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* GCM ciphersuites from RFC5288 */
/* Cipher 9C */
{
1, TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher 9D */
{
1, TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher 9E */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher 9F */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aRSA, SSL_AES256GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher C007 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_kECDHE, SSL_aECDSA, SSL_RC4,
SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128,
128,
},
/* Cipher C009 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aECDSA,
SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C00A */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aECDSA,
SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* Cipher C011 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
SSL_kECDHE, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C013 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES128,
SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C014 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES256,
SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* HMAC based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C023 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aECDSA,
SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher C024 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aECDSA,
SSL_AES256, SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256,
},
/* Cipher C027 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128,
SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher C028 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256,
SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256,
},
/* GCM based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C02B */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA,
SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher C02C */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA,
SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher C02F */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA,
SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher C030 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA,
SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* ECDH PSK ciphersuites */
/* Cipher CAFE */
{
1, TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aPSK,
SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
{
1, TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305,
TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305, SSL_kECDHE, SSL_aRSA,
SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
256, 0,
},
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305, SSL_kECDHE, SSL_aECDSA,
SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
256, 0,
},
{
1, TLS1_TXT_DHE_RSA_WITH_CHACHA20_POLY1305,
TLS1_CK_DHE_RSA_CHACHA20_POLY1305, SSL_kDHE, SSL_aRSA,
SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
256, 0,
},
};
const SSL3_ENC_METHOD SSLv3_enc_data = {
tls1_enc,
ssl3_prf,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
ssl3_final_finish_mac,
ssl3_cert_verify_mac,
SSL3_MD_CLIENT_FINISHED_CONST, 4,
SSL3_MD_SERVER_FINISHED_CONST, 4,
ssl3_alert_code,
(int (*)(SSL *, uint8_t *, size_t, const char *, size_t, const uint8_t *,
size_t, int use_context)) ssl_undefined_function,
0,
};
int ssl3_num_ciphers(void) { return SSL3_NUM_CIPHERS; }
const SSL_CIPHER *ssl3_get_cipher(unsigned int u) {
if (u >= SSL3_NUM_CIPHERS) {
return NULL;
}
return &ssl3_ciphers[SSL3_NUM_CIPHERS - 1 - u];
}
int ssl3_pending(const SSL *s) {
if (s->rstate == SSL_ST_READ_BODY) {
return 0;
}
return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length
: 0;
}
int ssl3_set_handshake_header(SSL *s, int htype, unsigned long len) {
uint8_t *p = (uint8_t *)s->init_buf->data;
*(p++) = htype;
l2n3(len, p);
s->init_num = (int)len + SSL3_HM_HEADER_LENGTH;
s->init_off = 0;
/* Add the message to the handshake hash. */
return ssl3_finish_mac(s, (uint8_t *)s->init_buf->data, s->init_num);
}
int ssl3_handshake_write(SSL *s) { return ssl3_do_write(s, SSL3_RT_HANDSHAKE); }
int ssl3_new(SSL *s) {
SSL3_STATE *s3;
s3 = OPENSSL_malloc(sizeof *s3);
if (s3 == NULL) {
goto err;
}
memset(s3, 0, sizeof *s3);
memset(s3->rrec.seq_num, 0, sizeof(s3->rrec.seq_num));
memset(s3->wrec.seq_num, 0, sizeof(s3->wrec.seq_num));
s->s3 = s3;
/* Set the version to the highest supported version for TLS. This controls the
* initial state of |s->enc_method| and what the API reports as the version
* prior to negotiation.
*
* TODO(davidben): This is fragile and confusing. */
s->version = TLS1_2_VERSION;
return 1;
err:
return 0;
}
void ssl3_free(SSL *s) {
if (s == NULL || s->s3 == NULL) {
return;
}
if (s->s3->sniff_buffer != NULL) {
BUF_MEM_free(s->s3->sniff_buffer);
}
ssl3_cleanup_key_block(s);
if (s->s3->rbuf.buf != NULL) {
ssl3_release_read_buffer(s);
}
if (s->s3->wbuf.buf != NULL) {
ssl3_release_write_buffer(s);
}
if (s->s3->tmp.dh != NULL) {
DH_free(s->s3->tmp.dh);
}
if (s->s3->tmp.ecdh != NULL) {
EC_KEY_free(s->s3->tmp.ecdh);
}
if (s->s3->tmp.ca_names != NULL) {
sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free);
}
if (s->s3->tmp.certificate_types != NULL) {
OPENSSL_free(s->s3->tmp.certificate_types);
}
if (s->s3->tmp.peer_ecpointformatlist) {
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
}
if (s->s3->tmp.peer_ellipticcurvelist) {
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
}
if (s->s3->tmp.peer_psk_identity_hint) {
OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
}
if (s->s3->handshake_buffer) {
BIO_free(s->s3->handshake_buffer);
}
if (s->s3->handshake_dgst) {
ssl3_free_digest_list(s);
}
if (s->s3->alpn_selected) {
OPENSSL_free(s->s3->alpn_selected);
}
OPENSSL_cleanse(s->s3, sizeof *s->s3);
OPENSSL_free(s->s3);
s->s3 = NULL;
}
static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len);
long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg) {
int ret = 0;
switch (cmd) {
case SSL_CTRL_GET_SESSION_REUSED:
ret = s->hit;
break;
case SSL_CTRL_GET_CLIENT_CERT_REQUEST:
break;
case SSL_CTRL_GET_NUM_RENEGOTIATIONS:
ret = s->s3->num_renegotiations;
break;
case SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS:
ret = s->s3->num_renegotiations;
s->s3->num_renegotiations = 0;
break;
case SSL_CTRL_GET_TOTAL_RENEGOTIATIONS:
ret = s->s3->total_renegotiations;
break;
case SSL_CTRL_GET_FLAGS:
ret = (int)(s->s3->flags);
break;
case SSL_CTRL_NEED_TMP_RSA:
/* Temporary RSA keys are never used. */
ret = 0;
break;
case SSL_CTRL_SET_TMP_RSA:
/* Temporary RSA keys are never used. */
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
break;
case SSL_CTRL_SET_TMP_RSA_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return ret;
case SSL_CTRL_SET_TMP_DH: {
DH *dh = (DH *)parg;
if (dh == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return ret;
}
dh = DHparams_dup(dh);
if (dh == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB);
return ret;
}
if (!(s->options & SSL_OP_SINGLE_DH_USE) && !DH_generate_key(dh)) {
DH_free(dh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB);
return ret;
}
if (s->cert->dh_tmp != NULL) {
DH_free(s->cert->dh_tmp);
}
s->cert->dh_tmp = dh;
ret = 1;
break;
}
case SSL_CTRL_SET_TMP_DH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return ret;
case SSL_CTRL_SET_TMP_ECDH: {
/* For historical reasons, this API expects an |EC_KEY|, but only the
* group is used. */
EC_KEY *ec_key = (EC_KEY *)parg;
if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return ret;
}
s->cert->ecdh_nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
ret = 1;
break;
}
case SSL_CTRL_SET_TMP_ECDH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return ret;
case SSL_CTRL_SET_TLSEXT_HOSTNAME:
if (larg == TLSEXT_NAMETYPE_host_name) {
if (s->tlsext_hostname != NULL) {
OPENSSL_free(s->tlsext_hostname);
}
s->tlsext_hostname = NULL;
ret = 1;
if (parg == NULL) {
break;
}
if (strlen((char *)parg) > TLSEXT_MAXLEN_host_name) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_SSL3_EXT_INVALID_SERVERNAME);
return 0;
}
s->tlsext_hostname = BUF_strdup((char *) parg);
if (s->tlsext_hostname == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl,
SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE);
return 0;
}
break;
case SSL_CTRL_SET_TLSEXT_DEBUG_ARG:
s->tlsext_debug_arg = parg;
ret = 1;
break;
case SSL_CTRL_CHAIN:
if (larg) {
return ssl_cert_set1_chain(s->cert, (STACK_OF(X509) *)parg);
} else {
return ssl_cert_set0_chain(s->cert, (STACK_OF(X509) *)parg);
}
case SSL_CTRL_CHAIN_CERT:
if (larg) {
return ssl_cert_add1_chain_cert(s->cert, (X509 *)parg);
} else {
return ssl_cert_add0_chain_cert(s->cert, (X509 *)parg);
}
case SSL_CTRL_GET_CHAIN_CERTS:
*(STACK_OF(X509) **)parg = s->cert->key->chain;
break;
case SSL_CTRL_SELECT_CURRENT_CERT:
return ssl_cert_select_current(s->cert, (X509 *)parg);
case SSL_CTRL_GET_CURVES: {
const uint16_t *clist = s->s3->tmp.peer_ellipticcurvelist;
size_t clistlen = s->s3->tmp.peer_ellipticcurvelist_length;
if (parg) {
size_t i;
int *cptr = parg;
int nid;
for (i = 0; i < clistlen; i++) {
nid = tls1_ec_curve_id2nid(clist[i]);
if (nid != NID_undef) {
cptr[i] = nid;
} else {
cptr[i] = TLSEXT_nid_unknown | clist[i];
}
}
}
return (int)clistlen;
}
case SSL_CTRL_SET_CURVES:
return tls1_set_curves(&s->tlsext_ellipticcurvelist,
&s->tlsext_ellipticcurvelist_length, parg, larg);
case SSL_CTRL_SET_ECDH_AUTO:
s->cert->ecdh_tmp_auto = larg;
return 1;
case SSL_CTRL_SET_SIGALGS:
return tls1_set_sigalgs(s->cert, parg, larg, 0);
case SSL_CTRL_SET_CLIENT_SIGALGS:
return tls1_set_sigalgs(s->cert, parg, larg, 1);
case SSL_CTRL_GET_CLIENT_CERT_TYPES: {
const uint8_t **pctype = parg;
if (s->server || !s->s3->tmp.cert_req) {
return 0;
}
if (pctype) {
*pctype = s->s3->tmp.certificate_types;
}
return (int)s->s3->tmp.num_certificate_types;
}
case SSL_CTRL_SET_CLIENT_CERT_TYPES:
if (!s->server) {
return 0;
}
return ssl3_set_req_cert_type(s->cert, parg, larg);
case SSL_CTRL_BUILD_CERT_CHAIN:
return ssl_build_cert_chain(s->cert, s->ctx->cert_store, larg);
case SSL_CTRL_SET_VERIFY_CERT_STORE:
return ssl_cert_set_cert_store(s->cert, parg, 0, larg);
case SSL_CTRL_SET_CHAIN_CERT_STORE:
return ssl_cert_set_cert_store(s->cert, parg, 1, larg);
case SSL_CTRL_GET_SERVER_TMP_KEY:
if (s->server || !s->session || !s->session->sess_cert) {
return 0;
} else {
SESS_CERT *sc;
EVP_PKEY *ptmp;
int rv = 0;
sc = s->session->sess_cert;
if (!sc->peer_dh_tmp && !sc->peer_ecdh_tmp) {
return 0;
}
ptmp = EVP_PKEY_new();
if (!ptmp) {
return 0;
}
if (sc->peer_dh_tmp) {
rv = EVP_PKEY_set1_DH(ptmp, sc->peer_dh_tmp);
} else if (sc->peer_ecdh_tmp) {
rv = EVP_PKEY_set1_EC_KEY(ptmp, sc->peer_ecdh_tmp);
}
if (rv) {
*(EVP_PKEY **)parg = ptmp;
return 1;
}
EVP_PKEY_free(ptmp);
return 0;
}
case SSL_CTRL_GET_EC_POINT_FORMATS: {
const uint8_t **pformat = parg;
if (!s->s3->tmp.peer_ecpointformatlist) {
return 0;
}
*pformat = s->s3->tmp.peer_ecpointformatlist;
return (int)s->s3->tmp.peer_ecpointformatlist_length;
}
case SSL_CTRL_CHANNEL_ID:
s->tlsext_channel_id_enabled = 1;
ret = 1;
break;
case SSL_CTRL_SET_CHANNEL_ID:
s->tlsext_channel_id_enabled = 1;
if (EVP_PKEY_bits(parg) != 256) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_CHANNEL_ID_NOT_P256);
break;
}
if (s->tlsext_channel_id_private) {
EVP_PKEY_free(s->tlsext_channel_id_private);
}
s->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY *)parg);
ret = 1;
break;
case SSL_CTRL_GET_CHANNEL_ID:
if (!s->s3->tlsext_channel_id_valid) {
break;
}
memcpy(parg, s->s3->tlsext_channel_id, larg < 64 ? larg : 64);
return 64;
default:
break;
}
return ret;
}
long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp)(void)) {
int ret = 0;
switch (cmd) {
case SSL_CTRL_SET_TMP_RSA_CB:
/* Ignore the callback; temporary RSA keys are never used. */
break;
case SSL_CTRL_SET_TMP_DH_CB:
s->cert->dh_tmp_cb = (DH * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
s->cert->ecdh_tmp_cb = (EC_KEY * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TLSEXT_DEBUG_CB:
s->tlsext_debug_cb =
(void (*)(SSL *, int, int, uint8_t *, int, void *))fp;
break;
default:
break;
}
return ret;
}
long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) {
CERT *cert;
cert = ctx->cert;
switch (cmd) {
case SSL_CTRL_NEED_TMP_RSA:
/* Temporary RSA keys are never used. */
return 0;
case SSL_CTRL_SET_TMP_RSA:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_RSA_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_DH: {
DH *new = NULL, *dh;
dh = (DH *)parg;
new = DHparams_dup(dh);
if (new == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB);
return 0;
}
if (!(ctx->options & SSL_OP_SINGLE_DH_USE) && !DH_generate_key(new)) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB);
DH_free(new);
return 0;
}
if (cert->dh_tmp != NULL) {
DH_free(cert->dh_tmp);
}
cert->dh_tmp = new;
return 1;
}
case SSL_CTRL_SET_TMP_DH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_ECDH: {
/* For historical reasons, this API expects an |EC_KEY|, but only the
* group is used. */
EC_KEY *ec_key = (EC_KEY *)parg;
if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
ctx->cert->ecdh_nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
return 1;
}
case SSL_CTRL_SET_TMP_ECDH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG:
ctx->tlsext_servername_arg = parg;
break;
case SSL_CTRL_SET_TLSEXT_TICKET_KEYS:
case SSL_CTRL_GET_TLSEXT_TICKET_KEYS: {
uint8_t *keys = parg;
if (!keys) {
return 48;
}
if (larg != 48) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_INVALID_TICKET_KEYS_LENGTH);
return 0;
}
if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS) {
memcpy(ctx->tlsext_tick_key_name, keys, 16);
memcpy(ctx->tlsext_tick_hmac_key, keys + 16, 16);
memcpy(ctx->tlsext_tick_aes_key, keys + 32, 16);
} else {
memcpy(keys, ctx->tlsext_tick_key_name, 16);
memcpy(keys + 16, ctx->tlsext_tick_hmac_key, 16);
memcpy(keys + 32, ctx->tlsext_tick_aes_key, 16);
}
return 1;
}
case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG:
ctx->tlsext_status_arg = parg;
return 1;
break;
case SSL_CTRL_SET_CURVES:
return tls1_set_curves(&ctx->tlsext_ellipticcurvelist,
&ctx->tlsext_ellipticcurvelist_length, parg, larg);
case SSL_CTRL_SET_ECDH_AUTO:
ctx->cert->ecdh_tmp_auto = larg;
return 1;
case SSL_CTRL_SET_SIGALGS:
return tls1_set_sigalgs(ctx->cert, parg, larg, 0);
case SSL_CTRL_SET_CLIENT_SIGALGS:
return tls1_set_sigalgs(ctx->cert, parg, larg, 1);
case SSL_CTRL_SET_CLIENT_CERT_TYPES:
return ssl3_set_req_cert_type(ctx->cert, parg, larg);
case SSL_CTRL_BUILD_CERT_CHAIN:
return ssl_build_cert_chain(ctx->cert, ctx->cert_store, larg);
case SSL_CTRL_SET_VERIFY_CERT_STORE:
return ssl_cert_set_cert_store(ctx->cert, parg, 0, larg);
case SSL_CTRL_SET_CHAIN_CERT_STORE:
return ssl_cert_set_cert_store(ctx->cert, parg, 1, larg);
case SSL_CTRL_EXTRA_CHAIN_CERT:
if (ctx->extra_certs == NULL) {
ctx->extra_certs = sk_X509_new_null();
if (ctx->extra_certs == NULL) {
return 0;
}
}
sk_X509_push(ctx->extra_certs, (X509 *)parg);
break;
case SSL_CTRL_GET_EXTRA_CHAIN_CERTS:
if (ctx->extra_certs == NULL && larg == 0) {
*(STACK_OF(X509) **)parg = ctx->cert->key->chain;
} else {
*(STACK_OF(X509) **)parg = ctx->extra_certs;
}
break;
case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS:
if (ctx->extra_certs) {
sk_X509_pop_free(ctx->extra_certs, X509_free);
ctx->extra_certs = NULL;
}
break;
case SSL_CTRL_CHAIN:
if (larg) {
return ssl_cert_set1_chain(ctx->cert, (STACK_OF(X509) *)parg);
} else {
return ssl_cert_set0_chain(ctx->cert, (STACK_OF(X509) *)parg);
}
case SSL_CTRL_CHAIN_CERT:
if (larg) {
return ssl_cert_add1_chain_cert(ctx->cert, (X509 *)parg);
} else {
return ssl_cert_add0_chain_cert(ctx->cert, (X509 *)parg);
}
case SSL_CTRL_GET_CHAIN_CERTS:
*(STACK_OF(X509) **)parg = ctx->cert->key->chain;
break;
case SSL_CTRL_SELECT_CURRENT_CERT:
return ssl_cert_select_current(ctx->cert, (X509 *)parg);
case SSL_CTRL_CHANNEL_ID:
ctx->tlsext_channel_id_enabled = 1;
return 1;
case SSL_CTRL_SET_CHANNEL_ID:
ctx->tlsext_channel_id_enabled = 1;
if (EVP_PKEY_bits(parg) != 256) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_CHANNEL_ID_NOT_P256);
break;
}
if (ctx->tlsext_channel_id_private) {
EVP_PKEY_free(ctx->tlsext_channel_id_private);
}
ctx->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY *)parg);
break;
default:
return 0;
}
return 1;
}
long ssl3_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void)) {
CERT *cert;
cert = ctx->cert;
switch (cmd) {
case SSL_CTRL_SET_TMP_RSA_CB:
/* Ignore the callback; temporary RSA keys are never used. */
break;
case SSL_CTRL_SET_TMP_DH_CB:
cert->dh_tmp_cb = (DH * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
cert->ecdh_tmp_cb = (EC_KEY * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TLSEXT_SERVERNAME_CB:
ctx->tlsext_servername_callback = (int (*)(SSL *, int *, void *))fp;
break;
case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB:
ctx->tlsext_status_cb = (int (*)(SSL *, void *))fp;
break;
case SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB:
ctx->tlsext_ticket_key_cb = (int (
*)(SSL *, uint8_t *, uint8_t *, EVP_CIPHER_CTX *, HMAC_CTX *, int))fp;
break;
default:
return 0;
}
return 1;
}
/* ssl3_get_cipher_by_value returns the SSL_CIPHER with value |value| or NULL
* if none exists.
*
* This function needs to check if the ciphers required are actually
* available. */
const SSL_CIPHER *ssl3_get_cipher_by_value(uint16_t value) {
SSL_CIPHER c;
c.id = 0x03000000L | value;
return bsearch(&c, ssl3_ciphers, SSL3_NUM_CIPHERS, sizeof(SSL_CIPHER),
ssl_cipher_id_cmp);
}
/* ssl3_get_cipher_by_value returns the cipher value of |c|. */
uint16_t ssl3_get_cipher_value(const SSL_CIPHER *c) {
unsigned long id = c->id;
/* All ciphers are SSLv3 now. */
assert((id & 0xff000000) == 0x03000000);
return id & 0xffff;
}
struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(SSL *s) {
if (s->cipher_list != NULL) {
return s->cipher_list;
}
if (s->version >= TLS1_1_VERSION && s->ctx != NULL &&
s->ctx->cipher_list_tls11 != NULL) {
return s->ctx->cipher_list_tls11;
}
if (s->ctx != NULL && s->ctx->cipher_list != NULL) {
return s->ctx->cipher_list;
}
return NULL;
}
const SSL_CIPHER *ssl3_choose_cipher(
SSL *s, STACK_OF(SSL_CIPHER) * clnt,
struct ssl_cipher_preference_list_st *server_pref) {
const SSL_CIPHER *c, *ret = NULL;
STACK_OF(SSL_CIPHER) *srvr = server_pref->ciphers, *prio, *allow;
size_t i;
int ok;
size_t cipher_index;
unsigned long alg_k, alg_a, mask_k, mask_a;
/* in_group_flags will either be NULL, or will point to an array of bytes
* which indicate equal-preference groups in the |prio| stack. See the
* comment about |in_group_flags| in the |ssl_cipher_preference_list_st|
* struct. */
const uint8_t *in_group_flags;
/* group_min contains the minimal index so far found in a group, or -1 if no
* such value exists yet. */
int group_min = -1;
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
prio = srvr;
in_group_flags = server_pref->in_group_flags;
allow = clnt;
} else {
prio = clnt;
in_group_flags = NULL;
allow = srvr;
}
ssl_get_compatible_server_ciphers(s, &mask_k, &mask_a);
for (i = 0; i < sk_SSL_CIPHER_num(prio); i++) {
c = sk_SSL_CIPHER_value(prio, i);
ok = 1;
/* Skip TLS v1.2 only ciphersuites if not supported */
if ((c->algorithm_ssl & SSL_TLSV1_2) && !SSL_USE_TLS1_2_CIPHERS(s)) {
ok = 0;
}
alg_k = c->algorithm_mkey;
alg_a = c->algorithm_auth;
ok = ok && (alg_k & mask_k) && (alg_a & mask_a);
if (ok && sk_SSL_CIPHER_find(allow, &cipher_index, c)) {
if (in_group_flags != NULL && in_group_flags[i] == 1) {
/* This element of |prio| is in a group. Update the minimum index found
* so far and continue looking. */
if (group_min == -1 || (size_t)group_min > cipher_index) {
group_min = cipher_index;
}
} else {
if (group_min != -1 && (size_t)group_min < cipher_index) {
cipher_index = group_min;
}
ret = sk_SSL_CIPHER_value(allow, cipher_index);
break;
}
}
if (in_group_flags != NULL && in_group_flags[i] == 0 && group_min != -1) {
/* We are about to leave a group, but we found a match in it, so that's
* our answer. */
ret = sk_SSL_CIPHER_value(allow, group_min);
break;
}
}
return ret;
}
int ssl3_get_req_cert_type(SSL *s, uint8_t *p) {
int ret = 0;
const uint8_t *sig;
size_t i, siglen;
int have_rsa_sign = 0;
int have_ecdsa_sign = 0;
/* If we have custom certificate types set, use them */
if (s->cert->client_certificate_types) {
memcpy(p, s->cert->client_certificate_types,
s->cert->num_client_certificate_types);
return s->cert->num_client_certificate_types;
}
/* get configured sigalgs */
siglen = tls12_get_psigalgs(s, &sig);
for (i = 0; i < siglen; i += 2, sig += 2) {
switch (sig[1]) {
case TLSEXT_signature_rsa:
have_rsa_sign = 1;
break;
case TLSEXT_signature_ecdsa:
have_ecdsa_sign = 1;
break;
}
}
if (have_rsa_sign) {
p[ret++] = SSL3_CT_RSA_SIGN;
}
/* ECDSA certs can be used with RSA cipher suites as well so we don't need to
* check for SSL_kECDH or SSL_kECDHE. */
if (s->version >= TLS1_VERSION && have_ecdsa_sign) {
p[ret++] = TLS_CT_ECDSA_SIGN;
}
return ret;
}
static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len) {
if (c->client_certificate_types) {
OPENSSL_free(c->client_certificate_types);
c->client_certificate_types = NULL;
}
c->num_client_certificate_types = 0;
if (!p || !len) {
return 1;
}
if (len > 0xff) {
return 0;
}
c->client_certificate_types = BUF_memdup(p, len);
if (!c->client_certificate_types) {
return 0;
}
c->num_client_certificate_types = len;
return 1;
}
int ssl3_shutdown(SSL *s) {
int ret;
/* Do nothing if configured not to send a close_notify. */
if (s->quiet_shutdown) {
s->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN;
return 1;
}
if (!(s->shutdown & SSL_SENT_SHUTDOWN)) {
s->shutdown |= SSL_SENT_SHUTDOWN;
ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY);
/* our shutdown alert has been sent now, and if it still needs to be
* written, s->s3->alert_dispatch will be true */
if (s->s3->alert_dispatch) {
return -1; /* return WANT_WRITE */
}
} else if (s->s3->alert_dispatch) {
/* resend it if not sent */
ret = s->method->ssl_dispatch_alert(s);
if (ret == -1) {
/* we only get to return -1 here the 2nd/Nth invocation, we must have
* already signalled return 0 upon a previous invoation, return
* WANT_WRITE */
return ret;
}
} else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
/* If we are waiting for a close from our peer, we are closed */
s->method->ssl_read_bytes(s, 0, NULL, 0, 0);
if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
return -1; /* return WANT_READ */
}
}
if (s->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) &&
!s->s3->alert_dispatch) {
return 1;
} else {
return 0;
}
}
int ssl3_write(SSL *s, const void *buf, int len) {
ERR_clear_system_error();
if (s->s3->renegotiate) {
ssl3_renegotiate_check(s);
}
return s->method->ssl_write_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len);
}
static int ssl3_read_internal(SSL *s, void *buf, int len, int peek) {
ERR_clear_system_error();
if (s->s3->renegotiate) {
ssl3_renegotiate_check(s);
}
return s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len, peek);
}
int ssl3_read(SSL *s, void *buf, int len) {
return ssl3_read_internal(s, buf, len, 0);
}
int ssl3_peek(SSL *s, void *buf, int len) {
return ssl3_read_internal(s, buf, len, 1);
}
int ssl3_renegotiate(SSL *s) {
if (s->handshake_func == NULL) {
return 1;
}
s->s3->renegotiate = 1;
return 1;
}
int ssl3_renegotiate_check(SSL *s) {
if (s->s3->renegotiate && s->s3->rbuf.left == 0 && s->s3->wbuf.left == 0 &&
!SSL_in_init(s)) {
/* if we are the server, and we have sent a 'RENEGOTIATE' message, we
* need to go to SSL_ST_ACCEPT. */
s->state = SSL_ST_RENEGOTIATE;
s->s3->renegotiate = 0;
s->s3->num_renegotiations++;
s->s3->total_renegotiations++;
return 1;
}
return 0;
}
/* If we are using default SHA1+MD5 algorithms switch to new SHA256 PRF and
* handshake macs if required. */
long ssl_get_algorithm2(SSL *s) {
static const unsigned long kMask = SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF;
long alg2 = s->s3->tmp.new_cipher->algorithm2;
if (s->enc_method->enc_flags & SSL_ENC_FLAG_SHA256_PRF &&
(alg2 & kMask) == kMask) {
return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256;
}
return alg2;
}