95c29f3cd1
Initial fork from f2d678e6e89b6508147086610e985d4e8416e867 (1.0.2 beta). (This change contains substantial changes from the original and effectively starts a new history.)
752 lines
19 KiB
C
752 lines
19 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2006.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/asn1t.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/x509.h>
|
|
|
|
#include "../rsa/internal.h"
|
|
#include "internal.h"
|
|
|
|
|
|
static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) {
|
|
uint8_t *encoded = NULL;
|
|
int len;
|
|
len = i2d_RSAPublicKey(pkey->pkey.rsa, &encoded);
|
|
|
|
if (len <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (!X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_RSA), V_ASN1_NULL, NULL,
|
|
encoded, len)) {
|
|
OPENSSL_free(encoded);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) {
|
|
const uint8_t *p;
|
|
int pklen;
|
|
RSA *rsa;
|
|
|
|
if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, NULL, pubkey)) {
|
|
return 0;
|
|
}
|
|
rsa = d2i_RSAPublicKey(NULL, &p, pklen);
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_pub_decode, ERR_R_RSA_LIB);
|
|
return 0;
|
|
}
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
return 1;
|
|
}
|
|
|
|
static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) {
|
|
return BN_cmp(b->pkey.rsa->n, a->pkey.rsa->n) == 0 &&
|
|
BN_cmp(b->pkey.rsa->e, a->pkey.rsa->e) == 0;
|
|
}
|
|
|
|
static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) {
|
|
uint8_t *rk = NULL;
|
|
int rklen;
|
|
|
|
rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk);
|
|
|
|
if (rklen <= 0) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
/* TODO(fork): const correctness in next line. */
|
|
if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_rsaEncryption), 0,
|
|
V_ASN1_NULL, NULL, rk, rklen)) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_priv_encode, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) {
|
|
const uint8_t *p;
|
|
int pklen;
|
|
RSA *rsa;
|
|
|
|
if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8)) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
rsa = d2i_RSAPrivateKey(NULL, &p, pklen);
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_priv_decode, ERR_R_RSA_LIB);
|
|
return 0;
|
|
}
|
|
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
return 1;
|
|
}
|
|
|
|
static int int_rsa_size(const EVP_PKEY *pkey) {
|
|
return RSA_size(pkey->pkey.rsa);
|
|
}
|
|
|
|
static int rsa_bits(const EVP_PKEY *pkey) {
|
|
return BN_num_bits(pkey->pkey.rsa->n);
|
|
}
|
|
|
|
static void int_rsa_free(EVP_PKEY *pkey) { RSA_free(pkey->pkey.rsa); }
|
|
|
|
static void update_buflen(const BIGNUM *b, size_t *pbuflen) {
|
|
size_t i;
|
|
|
|
if (!b) {
|
|
return;
|
|
}
|
|
|
|
i = BN_num_bytes(b);
|
|
if (*pbuflen < i) {
|
|
*pbuflen = i;
|
|
}
|
|
}
|
|
|
|
static int do_rsa_print(BIO *out, const RSA *rsa, int off,
|
|
int include_private) {
|
|
char *str;
|
|
const char *s;
|
|
uint8_t *m = NULL;
|
|
int ret = 0, mod_len = 0;
|
|
size_t buf_len = 0;
|
|
|
|
update_buflen(rsa->n, &buf_len);
|
|
update_buflen(rsa->e, &buf_len);
|
|
|
|
if (include_private) {
|
|
update_buflen(rsa->d, &buf_len);
|
|
update_buflen(rsa->p, &buf_len);
|
|
update_buflen(rsa->q, &buf_len);
|
|
update_buflen(rsa->dmp1, &buf_len);
|
|
update_buflen(rsa->dmq1, &buf_len);
|
|
update_buflen(rsa->iqmp, &buf_len);
|
|
}
|
|
|
|
m = (uint8_t *)OPENSSL_malloc(buf_len + 10);
|
|
if (m == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, do_rsa_print, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (rsa->n != NULL) {
|
|
mod_len = BN_num_bits(rsa->n);
|
|
}
|
|
|
|
if (!BIO_indent(out, off, 128)) {
|
|
goto err;
|
|
}
|
|
|
|
if (include_private && rsa->d) {
|
|
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) {
|
|
goto err;
|
|
}
|
|
str = "modulus:";
|
|
s = "publicExponent:";
|
|
} else {
|
|
if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) {
|
|
goto err;
|
|
}
|
|
str = "Modulus:";
|
|
s = "Exponent:";
|
|
}
|
|
if (!ASN1_bn_print(out, str, rsa->n, m, off) ||
|
|
!ASN1_bn_print(out, s, rsa->e, m, off)) {
|
|
goto err;
|
|
}
|
|
|
|
if (include_private) {
|
|
if (!ASN1_bn_print(out, "privateExponent:", rsa->d, m, off) ||
|
|
!ASN1_bn_print(out, "prime1:", rsa->p, m, off) ||
|
|
!ASN1_bn_print(out, "prime2:", rsa->q, m, off) ||
|
|
!ASN1_bn_print(out, "exponent1:", rsa->dmp1, m, off) ||
|
|
!ASN1_bn_print(out, "exponent2:", rsa->dmq1, m, off) ||
|
|
!ASN1_bn_print(out, "coefficient:", rsa->iqmp, m, off)) {
|
|
goto err;
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
if (m != NULL) {
|
|
OPENSSL_free(m);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
|
|
ASN1_PCTX *ctx) {
|
|
return do_rsa_print(bp, pkey->pkey.rsa, indent, 0);
|
|
}
|
|
|
|
|
|
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
|
|
ASN1_PCTX *ctx) {
|
|
return do_rsa_print(bp, pkey->pkey.rsa, indent, 1);
|
|
}
|
|
|
|
/* Given an MGF1 Algorithm ID decode to an Algorithm Identifier */
|
|
static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg) {
|
|
const uint8_t *p;
|
|
int plen;
|
|
|
|
if (alg == NULL ||
|
|
OBJ_obj2nid(alg->algorithm) != NID_mgf1 ||
|
|
alg->parameter->type != V_ASN1_SEQUENCE) {
|
|
return NULL;
|
|
}
|
|
|
|
p = alg->parameter->value.sequence->data;
|
|
plen = alg->parameter->value.sequence->length;
|
|
return d2i_X509_ALGOR(NULL, &p, plen);
|
|
}
|
|
|
|
static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg,
|
|
X509_ALGOR **pmaskHash) {
|
|
const uint8_t *p;
|
|
int plen;
|
|
RSA_PSS_PARAMS *pss;
|
|
|
|
*pmaskHash = NULL;
|
|
|
|
if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE) {
|
|
return NULL;
|
|
}
|
|
p = alg->parameter->value.sequence->data;
|
|
plen = alg->parameter->value.sequence->length;
|
|
pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen);
|
|
|
|
if (!pss) {
|
|
return NULL;
|
|
}
|
|
|
|
*pmaskHash = rsa_mgf1_decode(pss->maskGenAlgorithm);
|
|
|
|
return pss;
|
|
}
|
|
|
|
static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss,
|
|
X509_ALGOR *maskHash, int indent) {
|
|
int rv = 0;
|
|
|
|
if (!pss) {
|
|
if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (BIO_puts(bp, "\n") <= 0 ||
|
|
!BIO_indent(bp, indent, 128) ||
|
|
BIO_puts(bp, "Hash Algorithm: ") <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (pss->hashAlgorithm) {
|
|
if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0) {
|
|
goto err;
|
|
}
|
|
} else if (BIO_puts(bp, "sha1 (default)") <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (BIO_puts(bp, "\n") <= 0 ||
|
|
!BIO_indent(bp, indent, 128) ||
|
|
BIO_puts(bp, "Mask Algorithm: ") <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (pss->maskGenAlgorithm) {
|
|
if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0 ||
|
|
BIO_puts(bp, " with ") <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (maskHash) {
|
|
if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0) {
|
|
goto err;
|
|
}
|
|
} else if (BIO_puts(bp, "INVALID") <= 0) {
|
|
goto err;
|
|
}
|
|
} else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0) {
|
|
goto err;
|
|
}
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!BIO_indent(bp, indent, 128) ||
|
|
BIO_puts(bp, "Salt Length: 0x") <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (pss->saltLength) {
|
|
if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0) {
|
|
goto err;
|
|
}
|
|
} else if (BIO_puts(bp, "0x14 (default)") <= 0) {
|
|
goto err;
|
|
}
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!BIO_indent(bp, indent, 128) ||
|
|
BIO_puts(bp, "Trailer Field: 0x") <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
if (pss->trailerField) {
|
|
if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0) {
|
|
goto err;
|
|
}
|
|
} else if (BIO_puts(bp, "BC (default)") <= 0) {
|
|
goto err;
|
|
}
|
|
BIO_puts(bp, "\n");
|
|
|
|
rv = 1;
|
|
|
|
err:
|
|
return rv;
|
|
}
|
|
|
|
static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
|
|
const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) {
|
|
if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss) {
|
|
int rv;
|
|
RSA_PSS_PARAMS *pss;
|
|
X509_ALGOR *maskHash;
|
|
|
|
pss = rsa_pss_decode(sigalg, &maskHash);
|
|
rv = rsa_pss_param_print(bp, pss, maskHash, indent);
|
|
if (pss) {
|
|
RSA_PSS_PARAMS_free(pss);
|
|
}
|
|
if (maskHash) {
|
|
X509_ALGOR_free(maskHash);
|
|
}
|
|
if (!rv) {
|
|
return 0;
|
|
}
|
|
} else if (!sig && BIO_puts(bp, "\n") <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (sig) {
|
|
return X509_signature_dump(bp, sig, indent);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int rsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2) {
|
|
X509_ALGOR *alg = NULL;
|
|
switch (op) {
|
|
case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
|
|
*(int *)arg2 = NID_sha1;
|
|
return 1;
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
|
|
if (alg) {
|
|
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption), V_ASN1_NULL, 0);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int old_rsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder,
|
|
int derlen) {
|
|
RSA *rsa = d2i_RSAPrivateKey(NULL, pder, derlen);
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, old_rsa_priv_decode, ERR_R_RSA_LIB);
|
|
return 0;
|
|
}
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
return 1;
|
|
}
|
|
|
|
static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder) {
|
|
return i2d_RSAPrivateKey(pkey->pkey.rsa, pder);
|
|
}
|
|
|
|
/* allocate and set algorithm ID from EVP_MD, default SHA1 */
|
|
static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md) {
|
|
if (EVP_MD_type(md) == NID_sha1) {
|
|
return 1;
|
|
}
|
|
*palg = X509_ALGOR_new();
|
|
if (!*palg) {
|
|
return 0;
|
|
}
|
|
X509_ALGOR_set_md(*palg, md);
|
|
return 1;
|
|
}
|
|
|
|
/* Allocate and set MGF1 algorithm ID from EVP_MD */
|
|
static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md) {
|
|
X509_ALGOR *algtmp = NULL;
|
|
ASN1_STRING *stmp = NULL;
|
|
*palg = NULL;
|
|
|
|
if (EVP_MD_type(mgf1md) == NID_sha1) {
|
|
return 1;
|
|
}
|
|
/* need to embed algorithm ID inside another */
|
|
if (!rsa_md_to_algor(&algtmp, mgf1md) ||
|
|
!ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp)) {
|
|
goto err;
|
|
}
|
|
*palg = X509_ALGOR_new();
|
|
if (!*palg) {
|
|
goto err;
|
|
}
|
|
X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp);
|
|
stmp = NULL;
|
|
|
|
err:
|
|
if (stmp)
|
|
ASN1_STRING_free(stmp);
|
|
if (algtmp)
|
|
X509_ALGOR_free(algtmp);
|
|
if (*palg)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* convert algorithm ID to EVP_MD, default SHA1 */
|
|
static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg) {
|
|
const EVP_MD *md;
|
|
if (!alg) {
|
|
return EVP_sha1();
|
|
}
|
|
md = EVP_get_digestbyobj(alg->algorithm);
|
|
if (md == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_algor_to_md, EVP_R_UNKNOWN_DIGEST);
|
|
}
|
|
return md;
|
|
}
|
|
|
|
/* convert MGF1 algorithm ID to EVP_MD, default SHA1 */
|
|
static const EVP_MD *rsa_mgf1_to_md(X509_ALGOR *alg, X509_ALGOR *maskHash) {
|
|
const EVP_MD *md;
|
|
if (!alg) {
|
|
return EVP_sha1();
|
|
}
|
|
/* Check mask and lookup mask hash algorithm */
|
|
if (OBJ_obj2nid(alg->algorithm) != NID_mgf1) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_ALGORITHM);
|
|
return NULL;
|
|
}
|
|
if (!maskHash) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNSUPPORTED_MASK_PARAMETER);
|
|
return NULL;
|
|
}
|
|
md = EVP_get_digestbyobj(maskHash->algorithm);
|
|
if (md == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_mgf1_to_md, EVP_R_UNKNOWN_MASK_DIGEST);
|
|
return NULL;
|
|
}
|
|
return md;
|
|
}
|
|
|
|
/* rsa_ctx_to_pss converts EVP_PKEY_CTX in PSS mode into corresponding
|
|
* algorithm parameter, suitable for setting as an AlgorithmIdentifier. */
|
|
static ASN1_STRING *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx) {
|
|
const EVP_MD *sigmd, *mgf1md;
|
|
RSA_PSS_PARAMS *pss = NULL;
|
|
ASN1_STRING *os = NULL;
|
|
EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx);
|
|
int saltlen, rv = 0;
|
|
|
|
if (EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) <= 0 ||
|
|
EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0 ||
|
|
!EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen)) {
|
|
goto err;
|
|
}
|
|
|
|
if (saltlen == -1) {
|
|
saltlen = EVP_MD_size(sigmd);
|
|
} else if (saltlen == -2) {
|
|
saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2;
|
|
if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0) {
|
|
saltlen--;
|
|
}
|
|
} else {
|
|
goto err;
|
|
}
|
|
|
|
pss = RSA_PSS_PARAMS_new();
|
|
if (!pss) {
|
|
goto err;
|
|
}
|
|
|
|
if (saltlen != 20) {
|
|
pss->saltLength = ASN1_INTEGER_new();
|
|
if (!pss->saltLength ||
|
|
!ASN1_INTEGER_set(pss->saltLength, saltlen)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd) ||
|
|
!rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md)) {
|
|
goto err;
|
|
}
|
|
|
|
/* Finally create string with pss parameter encoding. */
|
|
if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os)) {
|
|
goto err;
|
|
}
|
|
rv = 1;
|
|
|
|
err:
|
|
if (pss)
|
|
RSA_PSS_PARAMS_free(pss);
|
|
if (rv)
|
|
return os;
|
|
if (os)
|
|
ASN1_STRING_free(os);
|
|
return NULL;
|
|
}
|
|
|
|
/* From PSS AlgorithmIdentifier set public key parameters. If pkey
|
|
* isn't NULL then the EVP_MD_CTX is setup and initalised. If it
|
|
* is NULL parameters are passed to pkctx instead. */
|
|
static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pkctx,
|
|
X509_ALGOR *sigalg, EVP_PKEY *pkey) {
|
|
int ret = -1;
|
|
int saltlen;
|
|
const EVP_MD *mgf1md = NULL, *md = NULL;
|
|
RSA_PSS_PARAMS *pss;
|
|
X509_ALGOR *maskHash;
|
|
|
|
/* Sanity check: make sure it is PSS */
|
|
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_UNSUPPORTED_SIGNATURE_TYPE);
|
|
return -1;
|
|
}
|
|
/* Decode PSS parameters */
|
|
pss = rsa_pss_decode(sigalg, &maskHash);
|
|
if (pss == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_PSS_PARAMETERS);
|
|
goto err;
|
|
}
|
|
|
|
mgf1md = rsa_mgf1_to_md(pss->maskGenAlgorithm, maskHash);
|
|
if (!mgf1md) {
|
|
goto err;
|
|
}
|
|
md = rsa_algor_to_md(pss->hashAlgorithm);
|
|
if (!md) {
|
|
goto err;
|
|
}
|
|
|
|
saltlen = 20;
|
|
if (pss->saltLength) {
|
|
saltlen = ASN1_INTEGER_get(pss->saltLength);
|
|
|
|
/* Could perform more salt length sanity checks but the main
|
|
* RSA routines will trap other invalid values anyway. */
|
|
if (saltlen < 0) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_SALT_LENGTH);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* low-level routines support only trailer field 0xbc (value 1)
|
|
* and PKCS#1 says we should reject any other value anyway. */
|
|
if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_INVALID_TRAILER);
|
|
goto err;
|
|
}
|
|
|
|
if (pkey) {
|
|
if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
const EVP_MD *checkmd;
|
|
if (EVP_PKEY_CTX_get_signature_md(pkctx, &checkmd) <= 0) {
|
|
goto err;
|
|
}
|
|
if (EVP_MD_type(md) != EVP_MD_type(checkmd)) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_pss_to_ctx, EVP_R_DIGEST_DOES_NOT_MATCH);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) <= 0 ||
|
|
EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) <= 0 ||
|
|
EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0) {
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
RSA_PSS_PARAMS_free(pss);
|
|
if (maskHash) {
|
|
X509_ALGOR_free(maskHash);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Customised RSA item verification routine. This is called
|
|
* when a signature is encountered requiring special handling. We
|
|
* currently only handle PSS. */
|
|
static int rsa_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
|
|
X509_ALGOR *sigalg, ASN1_BIT_STRING *sig,
|
|
EVP_PKEY *pkey) {
|
|
/* Sanity check: make sure it is PSS */
|
|
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss) {
|
|
OPENSSL_PUT_ERROR(EVP, rsa_item_verify, EVP_R_UNSUPPORTED_SIGNATURE_TYPE);
|
|
return -1;
|
|
}
|
|
if (rsa_pss_to_ctx(ctx, NULL, sigalg, pkey)) {
|
|
/* Carry on */
|
|
return 2;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int rsa_item_sign(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
|
|
X509_ALGOR *alg1, X509_ALGOR *alg2,
|
|
ASN1_BIT_STRING *sig) {
|
|
int pad_mode;
|
|
EVP_PKEY_CTX *pkctx = ctx->pctx;
|
|
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0) {
|
|
return 0;
|
|
}
|
|
if (pad_mode == RSA_PKCS1_PADDING) {
|
|
return 2;
|
|
}
|
|
if (pad_mode == RSA_PKCS1_PSS_PADDING) {
|
|
ASN1_STRING *os1 = rsa_ctx_to_pss(pkctx);
|
|
if (!os1) {
|
|
return 0;
|
|
}
|
|
/* Duplicate parameters if we have to */
|
|
if (alg2) {
|
|
ASN1_STRING *os2 = ASN1_STRING_dup(os1);
|
|
if (!os2) {
|
|
ASN1_STRING_free(os1);
|
|
return 0;
|
|
}
|
|
X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os2);
|
|
}
|
|
X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os1);
|
|
return 3;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
const EVP_PKEY_ASN1_METHOD rsa_asn1_meth = {
|
|
EVP_PKEY_RSA,
|
|
EVP_PKEY_RSA,
|
|
ASN1_PKEY_SIGPARAM_NULL,
|
|
|
|
"RSA",
|
|
"OpenSSL RSA method",
|
|
|
|
rsa_pub_decode,
|
|
rsa_pub_encode,
|
|
rsa_pub_cmp,
|
|
rsa_pub_print,
|
|
|
|
rsa_priv_decode,
|
|
rsa_priv_encode,
|
|
rsa_priv_print,
|
|
|
|
int_rsa_size,
|
|
rsa_bits,
|
|
|
|
0,0,0,0,0,0,
|
|
|
|
rsa_sig_print,
|
|
int_rsa_free,
|
|
rsa_pkey_ctrl,
|
|
|
|
old_rsa_priv_decode,
|
|
old_rsa_priv_encode,
|
|
|
|
rsa_item_verify,
|
|
rsa_item_sign,
|
|
};
|
|
|
|
const EVP_PKEY_ASN1_METHOD rsa_asn1_meth_2 = {
|
|
EVP_PKEY_RSA2,
|
|
EVP_PKEY_RSA,
|
|
ASN1_PKEY_ALIAS,
|
|
};
|