9b16066654
Until we've gotten it fully working, we should not mint any of these SSL_SESSIONs, to avoid constraining future versions of our client code. Notably, if any of our TLS 1.3 clients today serialized sessions, we would need to rev the serialization format. Without opting into 0-RTT, a TLS 1.3 client will create SSL_SESSIONs tagged as 0-RTT-capable but missing important fields (ALPN, etc.). When that serialized session makes its way to a future version of our client code, it would disagree with the server about the ALPN value stored in the ticket and cause interop failures. I believe the only client code enabling TLS 1.3 right now is Chrome, and the window is small, so it should be fine. But fix this now before it becomes a problem. Change-Id: Ie2b109f8d158017a6f3b4cb6169050d38a66b31c Reviewed-on: https://boringssl-review.googlesource.com/13342 CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Steven Valdez <svaldez@google.com> Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> |
||
---|---|---|
.. | ||
runner | ||
async_bio.cc | ||
async_bio.h | ||
bssl_shim.cc | ||
CMakeLists.txt | ||
packeted_bio.cc | ||
packeted_bio.h | ||
PORTING.md | ||
README.md | ||
test_config.cc | ||
test_config.h |
BoringSSL SSL Tests
This directory contains BoringSSL's protocol-level test suite.
Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.
Instead, we use a fork of the Go crypto/tls
package, heavily patched with
configurable bugs. This code, along with a test suite and harness written in Go,
lives in the runner
directory. The harness runs BoringSSL via a C/C++ shim
binary which lives in this directory. All communication with the shim binary
occurs with command-line flags, sockets, and standard I/O.
This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.
To run the tests manually, run go test
from the runner
directory. It takes
command-line flags found at the top of runner/runner.go
. The -help
option
also works after using go test -c
to make a runner.test
binary first.
If adding a new test, these files may be a good starting point:
runner/runner.go
: the test harness and all the individual tests.runner/common.go
: contains theConfig
andProtocolBugs
struct which control the Go TLS implementation's behavior.test_config.h
,test_config.cc
: the command-line flags which control the shim's behavior.bssl_shim.cc
: the shim binary itself.
For porting the test suite to a different implementation see PORTING.md.