boringssl/crypto/fipsmodule/bn/rsaz_exp.c
David Benjamin 3859fc883d Better document RSAZ and tidy up types.
It's an assembly function, so types are a little meaningless, but
everything is passed through as BN_ULONG, so be consistent. Also
annotate all the RSAZ prototypes with sizes.

Change-Id: I32e59e896da39e79c30ce9db52652fd645a033b4
Reviewed-on: https://boringssl-review.googlesource.com/c/34625
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
2019-01-28 20:54:27 +00:00

265 lines
9.5 KiB
C

/*
* Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2012, Intel Corporation. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
*/
#include <openssl/base.h>
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
#include "rsaz_exp.h"
#include <openssl/mem.h>
#include "internal.h"
#include "../../internal.h"
// RSAZ represents 1024-bit integers using unsaturated 29-bit limbs stored in
// 64-bit integers. This requires 36 limbs but padded up to 40.
//
// See crypto/bn/asm/rsaz-avx2.pl for further details.
// rsaz_1024_norm2red_avx2 converts |norm| from |BIGNUM| to RSAZ representation
// and writes the result to |red|.
void rsaz_1024_norm2red_avx2(BN_ULONG red[40], const BN_ULONG norm[16]);
// rsaz_1024_mul_avx2 computes |a| * |b| mod |n| and writes the result to |ret|.
// Inputs and outputs are in Montgomery form, using RSAZ's representation. |k|
// is -|n|^-1 mod 2^64 or |n0| from |BN_MONT_CTX|.
void rsaz_1024_mul_avx2(BN_ULONG ret[40], const BN_ULONG a[40],
const BN_ULONG b[40], const BN_ULONG n[40], BN_ULONG k);
// rsaz_1024_mul_avx2 computes |a|^(2*|count|) mod |n| and writes the result to
// |ret|. Inputs and outputs are in Montgomery form, using RSAZ's
// representation. |k| is -|n|^-1 mod 2^64 or |n0| from |BN_MONT_CTX|.
void rsaz_1024_sqr_avx2(BN_ULONG ret[40], const BN_ULONG a[40],
const BN_ULONG n[40], BN_ULONG k, int count);
// rsaz_1024_scatter5_avx2 stores |val| at index |i| of |tbl|. |i| must be
// positive and at most 31. Note the table only uses 18 |BN_ULONG|s per entry
// instead of 40. It packs two 29-bit limbs into each |BN_ULONG| and only stores
// 36 limbs rather than the padded 40.
void rsaz_1024_scatter5_avx2(BN_ULONG tbl[32 * 18], const BN_ULONG val[40],
int i);
// rsaz_1024_gather5_avx2 loads index |i| of |tbl| and writes it to |val|.
void rsaz_1024_gather5_avx2(BN_ULONG val[40], const BN_ULONG tbl[32 * 18],
int i);
// rsaz_1024_red2norm_avx2 converts |red| from RSAZ to |BIGNUM| representation
// and writes the result to |norm|.
void rsaz_1024_red2norm_avx2(BN_ULONG norm[16], const BN_ULONG red[40]);
// one is 1 in RSAZ's representation.
alignas(64) static const BN_ULONG one[40] = {
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is
// 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22).
alignas(64) static const BN_ULONG two80[40] = {
0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16],
const BN_ULONG base_norm[16],
const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16],
BN_ULONG k0,
BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]) {
OPENSSL_STATIC_ASSERT(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH % 64 == 0,
"MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH is too small");
assert((uintptr_t)storage % 64 == 0);
BN_ULONG *a_inv, *m, *result, *table_s = storage + 40 * 3, *R2 = table_s;
// Note |R2| aliases |table_s|.
if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) {
result = storage;
a_inv = storage + 40;
m = storage + 40 * 2; // should not cross page
} else {
m = storage; // should not cross page
result = storage + 40;
a_inv = storage + 40 * 2;
}
rsaz_1024_norm2red_avx2(m, m_norm);
rsaz_1024_norm2red_avx2(a_inv, base_norm);
rsaz_1024_norm2red_avx2(R2, RR);
// Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix,
// giving R = 2^(36*29) = 2^1044.
rsaz_1024_mul_avx2(R2, R2, R2, m, k0);
// R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052
rsaz_1024_mul_avx2(R2, R2, two80, m, k0);
// R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2
// table[0] = 1
rsaz_1024_mul_avx2(result, R2, one, m, k0);
// table[1] = a_inv^1
rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 0);
rsaz_1024_scatter5_avx2(table_s, a_inv, 1);
// table[2] = a_inv^2
rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 2);
#if 0
// This is almost 2x smaller and less than 1% slower.
for (int index = 3; index < 32; index++) {
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, index);
}
#else
// table[4] = a_inv^4
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 4);
// table[8] = a_inv^8
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 8);
// table[16] = a_inv^16
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 16);
// table[17] = a_inv^17
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 17);
// table[3]
rsaz_1024_gather5_avx2(result, table_s, 2);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 3);
// table[6]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 6);
// table[12]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 12);
// table[24]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 24);
// table[25]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 25);
// table[5]
rsaz_1024_gather5_avx2(result, table_s, 4);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 5);
// table[10]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 10);
// table[20]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 20);
// table[21]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 21);
// table[7]
rsaz_1024_gather5_avx2(result, table_s, 6);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 7);
// table[14]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 14);
// table[28]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 28);
// table[29]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 29);
// table[9]
rsaz_1024_gather5_avx2(result, table_s, 8);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 9);
// table[18]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 18);
// table[19]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 19);
// table[11]
rsaz_1024_gather5_avx2(result, table_s, 10);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 11);
// table[22]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 22);
// table[23]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 23);
// table[13]
rsaz_1024_gather5_avx2(result, table_s, 12);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 13);
// table[26]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 26);
// table[27]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 27);
// table[15]
rsaz_1024_gather5_avx2(result, table_s, 14);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 15);
// table[30]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 30);
// table[31]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 31);
#endif
const uint8_t *p_str = (const uint8_t *)exponent;
// load first window
int wvalue = p_str[127] >> 3;
rsaz_1024_gather5_avx2(result, table_s, wvalue);
int index = 1014;
while (index > -1) { // Loop for the remaining 127 windows.
rsaz_1024_sqr_avx2(result, result, m, k0, 5);
uint16_t wvalue_16;
memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16));
wvalue = wvalue_16;
wvalue = (wvalue >> (index % 8)) & 31;
index -= 5;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|.
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
}
// Square four times.
rsaz_1024_sqr_avx2(result, result, m, k0, 4);
wvalue = p_str[0] & 15;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|.
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
// Convert from Montgomery.
rsaz_1024_mul_avx2(result, result, one, m, k0);
rsaz_1024_red2norm_avx2(result_norm, result);
OPENSSL_cleanse(storage, MOD_EXP_CTIME_STORAGE_LEN * sizeof(BN_ULONG));
}
#endif // OPENSSL_X86_64