0ab86cf6f9
Previously we required that the calls to TLS's AES-GCM use an incrementing nonce. This change relaxes that requirement so that nonces need only be strictly monotonic (i.e. values can now be skipped). This still meets the uniqueness requirements of a nonce. Change-Id: Ib649a58bb93bf4dc0e081de8a5971daefffe9c70 Reviewed-on: https://boringssl-review.googlesource.com/25384 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
1438 lines
41 KiB
C
1438 lines
41 KiB
C
/* ====================================================================
|
|
* Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ==================================================================== */
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/aead.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/cipher.h>
|
|
#include <openssl/cpu.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/nid.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "internal.h"
|
|
#include "../../internal.h"
|
|
#include "../aes/internal.h"
|
|
#include "../modes/internal.h"
|
|
#include "../delocate.h"
|
|
|
|
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
|
#include <openssl/arm_arch.h>
|
|
#endif
|
|
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) // Unreachable code.
|
|
|
|
typedef struct {
|
|
union {
|
|
double align;
|
|
AES_KEY ks;
|
|
} ks;
|
|
block128_f block;
|
|
union {
|
|
cbc128_f cbc;
|
|
ctr128_f ctr;
|
|
} stream;
|
|
} EVP_AES_KEY;
|
|
|
|
typedef struct {
|
|
union {
|
|
double align;
|
|
AES_KEY ks;
|
|
} ks; // AES key schedule to use
|
|
int key_set; // Set if key initialised
|
|
int iv_set; // Set if an iv is set
|
|
GCM128_CONTEXT gcm;
|
|
uint8_t *iv; // Temporary IV store
|
|
int ivlen; // IV length
|
|
int taglen;
|
|
int iv_gen; // It is OK to generate IVs
|
|
ctr128_f ctr;
|
|
} EVP_AES_GCM_CTX;
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && \
|
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
|
#define VPAES
|
|
static char vpaes_capable(void) {
|
|
return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0;
|
|
}
|
|
|
|
#if defined(OPENSSL_X86_64)
|
|
#define BSAES
|
|
static char bsaes_capable(void) {
|
|
return vpaes_capable();
|
|
}
|
|
#endif
|
|
|
|
#elif !defined(OPENSSL_NO_ASM) && \
|
|
(defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
|
|
|
|
#if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7
|
|
#define BSAES
|
|
static char bsaes_capable(void) {
|
|
return CRYPTO_is_NEON_capable();
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
#if defined(BSAES)
|
|
// On platforms where BSAES gets defined (just above), then these functions are
|
|
// provided by asm.
|
|
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
const AES_KEY *key, uint8_t ivec[16], int enc);
|
|
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
|
|
const AES_KEY *key, const uint8_t ivec[16]);
|
|
#else
|
|
static char bsaes_capable(void) {
|
|
return 0;
|
|
}
|
|
|
|
// On other platforms, bsaes_capable() will always return false and so the
|
|
// following will never be called.
|
|
static void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
const AES_KEY *key, uint8_t ivec[16], int enc) {
|
|
abort();
|
|
}
|
|
|
|
static void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
|
|
size_t len, const AES_KEY *key,
|
|
const uint8_t ivec[16]) {
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
#if defined(VPAES)
|
|
// On platforms where VPAES gets defined (just above), then these functions are
|
|
// provided by asm.
|
|
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
|
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
|
|
|
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
|
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
|
|
|
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
const AES_KEY *key, uint8_t *ivec, int enc);
|
|
#else
|
|
static char vpaes_capable(void) {
|
|
return 0;
|
|
}
|
|
|
|
// On other platforms, vpaes_capable() will always return false and so the
|
|
// following will never be called.
|
|
static int vpaes_set_encrypt_key(const uint8_t *userKey, int bits,
|
|
AES_KEY *key) {
|
|
abort();
|
|
}
|
|
static int vpaes_set_decrypt_key(const uint8_t *userKey, int bits,
|
|
AES_KEY *key) {
|
|
abort();
|
|
}
|
|
static void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
|
abort();
|
|
}
|
|
static void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
|
abort();
|
|
}
|
|
static void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
const AES_KEY *key, uint8_t *ivec, int enc) {
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && \
|
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
|
int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
|
int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
|
|
|
void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
|
void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
|
|
|
void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
const AES_KEY *key, int enc);
|
|
void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
const AES_KEY *key, uint8_t *ivec, int enc);
|
|
|
|
#else
|
|
|
|
// On other platforms, aesni_capable() will always return false and so the
|
|
// following will never be called.
|
|
static void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
|
abort();
|
|
}
|
|
static int aesni_set_encrypt_key(const uint8_t *userKey, int bits,
|
|
AES_KEY *key) {
|
|
abort();
|
|
}
|
|
static void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
|
|
size_t blocks, const void *key,
|
|
const uint8_t *ivec) {
|
|
abort();
|
|
}
|
|
|
|
#endif
|
|
|
|
static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
|
const uint8_t *iv, int enc) {
|
|
int ret, mode;
|
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
|
|
|
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
|
|
if (hwaes_capable()) {
|
|
ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)aes_hw_decrypt;
|
|
dat->stream.cbc = NULL;
|
|
if (mode == EVP_CIPH_CBC_MODE) {
|
|
dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt;
|
|
}
|
|
} else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
|
|
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)AES_decrypt;
|
|
dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
|
|
} else if (vpaes_capable()) {
|
|
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)vpaes_decrypt;
|
|
dat->stream.cbc =
|
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
|
|
} else {
|
|
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)AES_decrypt;
|
|
dat->stream.cbc =
|
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
|
|
}
|
|
} else if (hwaes_capable()) {
|
|
ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)aes_hw_encrypt;
|
|
dat->stream.cbc = NULL;
|
|
if (mode == EVP_CIPH_CBC_MODE) {
|
|
dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt;
|
|
} else if (mode == EVP_CIPH_CTR_MODE) {
|
|
dat->stream.ctr = (ctr128_f)aes_hw_ctr32_encrypt_blocks;
|
|
}
|
|
} else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) {
|
|
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)AES_encrypt;
|
|
dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
|
|
} else if (vpaes_capable()) {
|
|
ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)vpaes_encrypt;
|
|
dat->stream.cbc =
|
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
|
|
} else {
|
|
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
|
dat->block = (block128_f)AES_encrypt;
|
|
dat->stream.cbc =
|
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
|
|
|
if (dat->stream.cbc) {
|
|
(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
|
|
} else if (ctx->encrypt) {
|
|
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
|
|
} else {
|
|
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
size_t bl = ctx->cipher->block_size;
|
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
|
|
|
if (len < bl) {
|
|
return 1;
|
|
}
|
|
|
|
len -= bl;
|
|
for (size_t i = 0; i <= len; i += bl) {
|
|
(*dat->block)(in + i, out + i, &dat->ks);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
|
|
|
if (dat->stream.ctr) {
|
|
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf,
|
|
&ctx->num, dat->stream.ctr);
|
|
} else {
|
|
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num,
|
|
dat->block);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
|
|
|
CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block);
|
|
return 1;
|
|
}
|
|
|
|
static char aesni_capable(void);
|
|
|
|
ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
|
|
block128_f *out_block, const uint8_t *key,
|
|
size_t key_bytes) {
|
|
if (aesni_capable()) {
|
|
aesni_set_encrypt_key(key, key_bytes * 8, aes_key);
|
|
if (gcm_ctx != NULL) {
|
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aesni_encrypt, 1);
|
|
}
|
|
if (out_block) {
|
|
*out_block = (block128_f) aesni_encrypt;
|
|
}
|
|
return (ctr128_f)aesni_ctr32_encrypt_blocks;
|
|
}
|
|
|
|
if (hwaes_capable()) {
|
|
aes_hw_set_encrypt_key(key, key_bytes * 8, aes_key);
|
|
if (gcm_ctx != NULL) {
|
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_hw_encrypt, 0);
|
|
}
|
|
if (out_block) {
|
|
*out_block = (block128_f) aes_hw_encrypt;
|
|
}
|
|
return (ctr128_f)aes_hw_ctr32_encrypt_blocks;
|
|
}
|
|
|
|
if (bsaes_capable()) {
|
|
AES_set_encrypt_key(key, key_bytes * 8, aes_key);
|
|
if (gcm_ctx != NULL) {
|
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt, 0);
|
|
}
|
|
if (out_block) {
|
|
*out_block = (block128_f) AES_encrypt;
|
|
}
|
|
return (ctr128_f)bsaes_ctr32_encrypt_blocks;
|
|
}
|
|
|
|
if (vpaes_capable()) {
|
|
vpaes_set_encrypt_key(key, key_bytes * 8, aes_key);
|
|
if (out_block) {
|
|
*out_block = (block128_f) vpaes_encrypt;
|
|
}
|
|
if (gcm_ctx != NULL) {
|
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt, 0);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
AES_set_encrypt_key(key, key_bytes * 8, aes_key);
|
|
if (gcm_ctx != NULL) {
|
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt, 0);
|
|
}
|
|
if (out_block) {
|
|
*out_block = (block128_f) AES_encrypt;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
|
const uint8_t *iv, int enc) {
|
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
|
if (!iv && !key) {
|
|
return 1;
|
|
}
|
|
if (key) {
|
|
gctx->ctr =
|
|
aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len);
|
|
// If we have an iv can set it directly, otherwise use saved IV.
|
|
if (iv == NULL && gctx->iv_set) {
|
|
iv = gctx->iv;
|
|
}
|
|
if (iv) {
|
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
|
gctx->iv_set = 1;
|
|
}
|
|
gctx->key_set = 1;
|
|
} else {
|
|
// If key set use IV, otherwise copy
|
|
if (gctx->key_set) {
|
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
|
} else {
|
|
OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
|
|
}
|
|
gctx->iv_set = 1;
|
|
gctx->iv_gen = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
|
|
EVP_AES_GCM_CTX *gctx = c->cipher_data;
|
|
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
|
|
if (gctx->iv != c->iv) {
|
|
OPENSSL_free(gctx->iv);
|
|
}
|
|
}
|
|
|
|
// increment counter (64-bit int) by 1
|
|
static void ctr64_inc(uint8_t *counter) {
|
|
int n = 8;
|
|
uint8_t c;
|
|
|
|
do {
|
|
--n;
|
|
c = counter[n];
|
|
++c;
|
|
counter[n] = c;
|
|
if (c) {
|
|
return;
|
|
}
|
|
} while (n);
|
|
}
|
|
|
|
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
|
|
EVP_AES_GCM_CTX *gctx = c->cipher_data;
|
|
switch (type) {
|
|
case EVP_CTRL_INIT:
|
|
gctx->key_set = 0;
|
|
gctx->iv_set = 0;
|
|
gctx->ivlen = c->cipher->iv_len;
|
|
gctx->iv = c->iv;
|
|
gctx->taglen = -1;
|
|
gctx->iv_gen = 0;
|
|
return 1;
|
|
|
|
case EVP_CTRL_GCM_SET_IVLEN:
|
|
if (arg <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
// Allocate memory for IV if needed
|
|
if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
|
|
if (gctx->iv != c->iv) {
|
|
OPENSSL_free(gctx->iv);
|
|
}
|
|
gctx->iv = OPENSSL_malloc(arg);
|
|
if (!gctx->iv) {
|
|
return 0;
|
|
}
|
|
}
|
|
gctx->ivlen = arg;
|
|
return 1;
|
|
|
|
case EVP_CTRL_GCM_SET_TAG:
|
|
if (arg <= 0 || arg > 16 || c->encrypt) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memcpy(c->buf, ptr, arg);
|
|
gctx->taglen = arg;
|
|
return 1;
|
|
|
|
case EVP_CTRL_GCM_GET_TAG:
|
|
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memcpy(ptr, c->buf, arg);
|
|
return 1;
|
|
|
|
case EVP_CTRL_GCM_SET_IV_FIXED:
|
|
// Special case: -1 length restores whole IV
|
|
if (arg == -1) {
|
|
OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen);
|
|
gctx->iv_gen = 1;
|
|
return 1;
|
|
}
|
|
// Fixed field must be at least 4 bytes and invocation field
|
|
// at least 8.
|
|
if (arg < 4 || (gctx->ivlen - arg) < 8) {
|
|
return 0;
|
|
}
|
|
if (arg) {
|
|
OPENSSL_memcpy(gctx->iv, ptr, arg);
|
|
}
|
|
if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) {
|
|
return 0;
|
|
}
|
|
gctx->iv_gen = 1;
|
|
return 1;
|
|
|
|
case EVP_CTRL_GCM_IV_GEN:
|
|
if (gctx->iv_gen == 0 || gctx->key_set == 0) {
|
|
return 0;
|
|
}
|
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
|
|
if (arg <= 0 || arg > gctx->ivlen) {
|
|
arg = gctx->ivlen;
|
|
}
|
|
OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
|
// Invocation field will be at least 8 bytes in size and
|
|
// so no need to check wrap around or increment more than
|
|
// last 8 bytes.
|
|
ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
|
gctx->iv_set = 1;
|
|
return 1;
|
|
|
|
case EVP_CTRL_GCM_SET_IV_INV:
|
|
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
|
|
gctx->iv_set = 1;
|
|
return 1;
|
|
|
|
case EVP_CTRL_COPY: {
|
|
EVP_CIPHER_CTX *out = ptr;
|
|
EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
|
|
if (gctx->iv == c->iv) {
|
|
gctx_out->iv = out->iv;
|
|
} else {
|
|
gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
|
|
if (!gctx_out->iv) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
|
|
|
// If not set up, return error
|
|
if (!gctx->key_set) {
|
|
return -1;
|
|
}
|
|
if (!gctx->iv_set) {
|
|
return -1;
|
|
}
|
|
|
|
if (in) {
|
|
if (out == NULL) {
|
|
if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
|
|
return -1;
|
|
}
|
|
} else if (ctx->encrypt) {
|
|
if (gctx->ctr) {
|
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
|
|
gctx->ctr)) {
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
|
|
return -1;
|
|
}
|
|
}
|
|
} else {
|
|
if (gctx->ctr) {
|
|
if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
|
|
gctx->ctr)) {
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
return len;
|
|
} else {
|
|
if (!ctx->encrypt) {
|
|
if (gctx->taglen < 0 ||
|
|
!CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) {
|
|
return -1;
|
|
}
|
|
gctx->iv_set = 0;
|
|
return 0;
|
|
}
|
|
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
|
|
gctx->taglen = 16;
|
|
// Don't reuse the IV
|
|
gctx->iv_set = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_cbc_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_cbc;
|
|
out->block_size = 16;
|
|
out->key_len = 16;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CBC_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_cbc_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ctr_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_ctr;
|
|
out->block_size = 1;
|
|
out->key_len = 16;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CTR_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ctr_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_ecb;
|
|
out->block_size = 16;
|
|
out->key_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_ECB_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ecb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ofb_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_ofb128;
|
|
out->block_size = 1;
|
|
out->key_len = 16;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_OFB_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ofb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_gcm_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_gcm;
|
|
out->block_size = 1;
|
|
out->key_len = 16;
|
|
out->iv_len = 12;
|
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
|
out->init = aes_gcm_init_key;
|
|
out->cipher = aes_gcm_cipher;
|
|
out->cleanup = aes_gcm_cleanup;
|
|
out->ctrl = aes_gcm_ctrl;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_cbc_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_cbc;
|
|
out->block_size = 16;
|
|
out->key_len = 24;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CBC_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_cbc_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ctr_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_ctr;
|
|
out->block_size = 1;
|
|
out->key_len = 24;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CTR_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ctr_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_ecb;
|
|
out->block_size = 16;
|
|
out->key_len = 24;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_ECB_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ecb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_gcm_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_gcm;
|
|
out->block_size = 1;
|
|
out->key_len = 24;
|
|
out->iv_len = 12;
|
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
|
out->init = aes_gcm_init_key;
|
|
out->cipher = aes_gcm_cipher;
|
|
out->cleanup = aes_gcm_cleanup;
|
|
out->ctrl = aes_gcm_ctrl;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_cbc_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_cbc;
|
|
out->block_size = 16;
|
|
out->key_len = 32;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CBC_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_cbc_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ctr_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_ctr;
|
|
out->block_size = 1;
|
|
out->key_len = 32;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CTR_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ctr_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_ecb;
|
|
out->block_size = 16;
|
|
out->key_len = 32;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_ECB_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ecb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ofb_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_ofb128;
|
|
out->block_size = 1;
|
|
out->key_len = 32;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_OFB_MODE;
|
|
out->init = aes_init_key;
|
|
out->cipher = aes_ofb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_gcm_generic) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_gcm;
|
|
out->block_size = 1;
|
|
out->key_len = 32;
|
|
out->iv_len = 12;
|
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
|
out->init = aes_gcm_init_key;
|
|
out->cipher = aes_gcm_cipher;
|
|
out->cleanup = aes_gcm_cleanup;
|
|
out->ctrl = aes_gcm_ctrl;
|
|
}
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && \
|
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
|
|
|
// AES-NI section.
|
|
|
|
static char aesni_capable(void) {
|
|
return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0;
|
|
}
|
|
|
|
static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
|
const uint8_t *iv, int enc) {
|
|
int ret, mode;
|
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
|
|
|
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
|
|
ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
|
|
dat->block = (block128_f)aesni_decrypt;
|
|
dat->stream.cbc =
|
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL;
|
|
} else {
|
|
ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
|
|
dat->block = (block128_f)aesni_encrypt;
|
|
if (mode == EVP_CIPH_CBC_MODE) {
|
|
dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
|
|
} else if (mode == EVP_CIPH_CTR_MODE) {
|
|
dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
|
|
} else {
|
|
dat->stream.cbc = NULL;
|
|
}
|
|
}
|
|
|
|
if (ret < 0) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
const uint8_t *in, size_t len) {
|
|
aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
const uint8_t *in, size_t len) {
|
|
size_t bl = ctx->cipher->block_size;
|
|
|
|
if (len < bl) {
|
|
return 1;
|
|
}
|
|
|
|
aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
|
const uint8_t *iv, int enc) {
|
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
|
if (!iv && !key) {
|
|
return 1;
|
|
}
|
|
if (key) {
|
|
aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
|
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt, 1);
|
|
gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
|
|
// If we have an iv can set it directly, otherwise use
|
|
// saved IV.
|
|
if (iv == NULL && gctx->iv_set) {
|
|
iv = gctx->iv;
|
|
}
|
|
if (iv) {
|
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
|
gctx->iv_set = 1;
|
|
}
|
|
gctx->key_set = 1;
|
|
} else {
|
|
// If key set use IV, otherwise copy
|
|
if (gctx->key_set) {
|
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
|
} else {
|
|
OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
|
|
}
|
|
gctx->iv_set = 1;
|
|
gctx->iv_gen = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_cbc) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_cbc;
|
|
out->block_size = 16;
|
|
out->key_len = 16;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CBC_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aesni_cbc_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_ctr) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_ctr;
|
|
out->block_size = 1;
|
|
out->key_len = 16;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CTR_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aes_ctr_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_ecb) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_ecb;
|
|
out->block_size = 16;
|
|
out->key_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_ECB_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aesni_ecb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_ofb) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_ofb128;
|
|
out->block_size = 1;
|
|
out->key_len = 16;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_OFB_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aes_ofb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_gcm) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_128_gcm;
|
|
out->block_size = 1;
|
|
out->key_len = 16;
|
|
out->iv_len = 12;
|
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
|
out->init = aesni_gcm_init_key;
|
|
out->cipher = aes_gcm_cipher;
|
|
out->cleanup = aes_gcm_cleanup;
|
|
out->ctrl = aes_gcm_ctrl;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_cbc) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_cbc;
|
|
out->block_size = 16;
|
|
out->key_len = 24;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CBC_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aesni_cbc_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_ctr) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_ctr;
|
|
out->block_size = 1;
|
|
out->key_len = 24;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CTR_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aes_ctr_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_ecb) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_ecb;
|
|
out->block_size = 16;
|
|
out->key_len = 24;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_ECB_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aesni_ecb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_gcm) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_192_gcm;
|
|
out->block_size = 1;
|
|
out->key_len = 24;
|
|
out->iv_len = 12;
|
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
|
out->init = aesni_gcm_init_key;
|
|
out->cipher = aes_gcm_cipher;
|
|
out->cleanup = aes_gcm_cleanup;
|
|
out->ctrl = aes_gcm_ctrl;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_cbc) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_cbc;
|
|
out->block_size = 16;
|
|
out->key_len = 32;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CBC_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aesni_cbc_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_ctr) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_ctr;
|
|
out->block_size = 1;
|
|
out->key_len = 32;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_CTR_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aes_ctr_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_ecb) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_ecb;
|
|
out->block_size = 16;
|
|
out->key_len = 32;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_ECB_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aesni_ecb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_ofb) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_ofb128;
|
|
out->block_size = 1;
|
|
out->key_len = 32;
|
|
out->iv_len = 16;
|
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
|
out->flags = EVP_CIPH_OFB_MODE;
|
|
out->init = aesni_init_key;
|
|
out->cipher = aes_ofb_cipher;
|
|
}
|
|
|
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_gcm) {
|
|
memset(out, 0, sizeof(EVP_CIPHER));
|
|
|
|
out->nid = NID_aes_256_gcm;
|
|
out->block_size = 1;
|
|
out->key_len = 32;
|
|
out->iv_len = 12;
|
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY |
|
|
EVP_CIPH_FLAG_AEAD_CIPHER;
|
|
out->init = aesni_gcm_init_key;
|
|
out->cipher = aes_gcm_cipher;
|
|
out->cleanup = aes_gcm_cleanup;
|
|
out->ctrl = aes_gcm_ctrl;
|
|
}
|
|
|
|
#define EVP_CIPHER_FUNCTION(keybits, mode) \
|
|
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
|
|
if (aesni_capable()) { \
|
|
return aesni_##keybits##_##mode(); \
|
|
} else { \
|
|
return aes_##keybits##_##mode##_generic(); \
|
|
} \
|
|
}
|
|
|
|
#else // ^^^ OPENSSL_X86_64 || OPENSSL_X86
|
|
|
|
static char aesni_capable(void) {
|
|
return 0;
|
|
}
|
|
|
|
#define EVP_CIPHER_FUNCTION(keybits, mode) \
|
|
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
|
|
return aes_##keybits##_##mode##_generic(); \
|
|
}
|
|
|
|
#endif
|
|
|
|
EVP_CIPHER_FUNCTION(128, cbc)
|
|
EVP_CIPHER_FUNCTION(128, ctr)
|
|
EVP_CIPHER_FUNCTION(128, ecb)
|
|
EVP_CIPHER_FUNCTION(128, ofb)
|
|
EVP_CIPHER_FUNCTION(128, gcm)
|
|
|
|
EVP_CIPHER_FUNCTION(192, cbc)
|
|
EVP_CIPHER_FUNCTION(192, ctr)
|
|
EVP_CIPHER_FUNCTION(192, ecb)
|
|
EVP_CIPHER_FUNCTION(192, gcm)
|
|
|
|
EVP_CIPHER_FUNCTION(256, cbc)
|
|
EVP_CIPHER_FUNCTION(256, ctr)
|
|
EVP_CIPHER_FUNCTION(256, ecb)
|
|
EVP_CIPHER_FUNCTION(256, ofb)
|
|
EVP_CIPHER_FUNCTION(256, gcm)
|
|
|
|
|
|
#define EVP_AEAD_AES_GCM_TAG_LEN 16
|
|
|
|
struct aead_aes_gcm_ctx {
|
|
union {
|
|
double align;
|
|
AES_KEY ks;
|
|
} ks;
|
|
GCM128_CONTEXT gcm;
|
|
ctr128_f ctr;
|
|
};
|
|
|
|
struct aead_aes_gcm_tls12_ctx {
|
|
struct aead_aes_gcm_ctx gcm_ctx;
|
|
uint64_t min_next_nonce;
|
|
};
|
|
|
|
static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx,
|
|
size_t *out_tag_len, const uint8_t *key,
|
|
size_t key_len, size_t tag_len) {
|
|
const size_t key_bits = key_len * 8;
|
|
|
|
if (key_bits != 128 && key_bits != 256) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
|
return 0; // EVP_AEAD_CTX_init should catch this.
|
|
}
|
|
|
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
|
tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
}
|
|
|
|
if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
|
|
gcm_ctx->ctr =
|
|
aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len);
|
|
*out_tag_len = tag_len;
|
|
return 1;
|
|
}
|
|
|
|
static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
|
size_t key_len, size_t requested_tag_len) {
|
|
struct aead_aes_gcm_ctx *gcm_ctx;
|
|
gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx));
|
|
if (gcm_ctx == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
size_t actual_tag_len;
|
|
if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len,
|
|
requested_tag_len)) {
|
|
OPENSSL_free(gcm_ctx);
|
|
return 0;
|
|
}
|
|
|
|
ctx->aead_state = gcm_ctx;
|
|
ctx->tag_len = actual_tag_len;
|
|
return 1;
|
|
}
|
|
|
|
static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {
|
|
OPENSSL_free(ctx->aead_state);
|
|
}
|
|
|
|
static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
|
uint8_t *out_tag, size_t *out_tag_len,
|
|
size_t max_out_tag_len,
|
|
const uint8_t *nonce, size_t nonce_len,
|
|
const uint8_t *in, size_t in_len,
|
|
const uint8_t *extra_in,
|
|
size_t extra_in_len,
|
|
const uint8_t *ad, size_t ad_len) {
|
|
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
|
GCM128_CONTEXT gcm;
|
|
|
|
if (extra_in_len + ctx->tag_len < ctx->tag_len) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
if (max_out_tag_len < extra_in_len + ctx->tag_len) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
if (nonce_len == 0) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
const AES_KEY *key = &gcm_ctx->ks.ks;
|
|
|
|
OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
|
|
CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
|
|
|
|
if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
|
|
return 0;
|
|
}
|
|
|
|
if (gcm_ctx->ctr) {
|
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len,
|
|
gcm_ctx->ctr)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (extra_in_len) {
|
|
if (gcm_ctx->ctr) {
|
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag,
|
|
extra_in_len, gcm_ctx->ctr)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, ctx->tag_len);
|
|
*out_tag_len = ctx->tag_len + extra_in_len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
|
const uint8_t *nonce, size_t nonce_len,
|
|
const uint8_t *in, size_t in_len,
|
|
const uint8_t *in_tag, size_t in_tag_len,
|
|
const uint8_t *ad, size_t ad_len) {
|
|
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
|
uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
|
|
GCM128_CONTEXT gcm;
|
|
|
|
if (nonce_len == 0) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
if (in_tag_len != ctx->tag_len) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
|
return 0;
|
|
}
|
|
|
|
const AES_KEY *key = &gcm_ctx->ks.ks;
|
|
|
|
OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
|
|
CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
|
|
|
|
if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
|
|
return 0;
|
|
}
|
|
|
|
if (gcm_ctx->ctr) {
|
|
if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len,
|
|
gcm_ctx->ctr)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
CRYPTO_gcm128_tag(&gcm, tag, ctx->tag_len);
|
|
if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) {
|
|
memset(out, 0, sizeof(EVP_AEAD));
|
|
|
|
out->key_len = 16;
|
|
out->nonce_len = 12;
|
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->seal_scatter_supports_extra_in = 1;
|
|
|
|
out->init = aead_aes_gcm_init;
|
|
out->cleanup = aead_aes_gcm_cleanup;
|
|
out->seal_scatter = aead_aes_gcm_seal_scatter;
|
|
out->open_gather = aead_aes_gcm_open_gather;
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) {
|
|
memset(out, 0, sizeof(EVP_AEAD));
|
|
|
|
out->key_len = 32;
|
|
out->nonce_len = 12;
|
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->seal_scatter_supports_extra_in = 1;
|
|
|
|
out->init = aead_aes_gcm_init;
|
|
out->cleanup = aead_aes_gcm_cleanup;
|
|
out->seal_scatter = aead_aes_gcm_seal_scatter;
|
|
out->open_gather = aead_aes_gcm_open_gather;
|
|
}
|
|
|
|
static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
|
size_t key_len, size_t requested_tag_len) {
|
|
struct aead_aes_gcm_tls12_ctx *gcm_ctx;
|
|
gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_tls12_ctx));
|
|
if (gcm_ctx == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
gcm_ctx->min_next_nonce = 0;
|
|
|
|
size_t actual_tag_len;
|
|
if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
|
|
requested_tag_len)) {
|
|
OPENSSL_free(gcm_ctx);
|
|
return 0;
|
|
}
|
|
|
|
ctx->aead_state = gcm_ctx;
|
|
ctx->tag_len = actual_tag_len;
|
|
return 1;
|
|
}
|
|
|
|
static void aead_aes_gcm_tls12_cleanup(EVP_AEAD_CTX *ctx) {
|
|
OPENSSL_free(ctx->aead_state);
|
|
}
|
|
|
|
static int aead_aes_gcm_tls12_seal_scatter(
|
|
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
|
|
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
|
|
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
|
|
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
|
|
struct aead_aes_gcm_tls12_ctx *gcm_ctx = ctx->aead_state;
|
|
if (nonce_len != 12) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
// The given nonces must be strictly monotonically increasing.
|
|
uint64_t given_counter;
|
|
OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter),
|
|
sizeof(given_counter));
|
|
given_counter = CRYPTO_bswap8(given_counter);
|
|
if (given_counter == UINT64_MAX ||
|
|
given_counter < gcm_ctx->min_next_nonce) {
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
|
|
return 0;
|
|
}
|
|
|
|
gcm_ctx->min_next_nonce = given_counter + 1;
|
|
|
|
return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
|
|
max_out_tag_len, nonce, nonce_len, in,
|
|
in_len, extra_in, extra_in_len, ad, ad_len);
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) {
|
|
memset(out, 0, sizeof(EVP_AEAD));
|
|
|
|
out->key_len = 16;
|
|
out->nonce_len = 12;
|
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->seal_scatter_supports_extra_in = 1;
|
|
|
|
out->init = aead_aes_gcm_tls12_init;
|
|
out->cleanup = aead_aes_gcm_tls12_cleanup;
|
|
out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
|
|
out->open_gather = aead_aes_gcm_open_gather;
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) {
|
|
memset(out, 0, sizeof(EVP_AEAD));
|
|
|
|
out->key_len = 32;
|
|
out->nonce_len = 12;
|
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
|
out->seal_scatter_supports_extra_in = 1;
|
|
|
|
out->init = aead_aes_gcm_tls12_init;
|
|
out->cleanup = aead_aes_gcm_tls12_cleanup;
|
|
out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
|
|
out->open_gather = aead_aes_gcm_open_gather;
|
|
}
|
|
|
|
int EVP_has_aes_hardware(void) {
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
|
return aesni_capable() && crypto_gcm_clmul_enabled();
|
|
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
|
return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|