Não pode escolher mais do que 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 
 
 
 
 

606 linhas
20 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/sha.h>
  57. #include <string.h>
  58. #include <openssl/mem.h>
  59. #include "../internal.h"
  60. /* IMPLEMENTATION NOTES.
  61. *
  62. * As you might have noticed 32-bit hash algorithms:
  63. *
  64. * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
  65. * - optimized versions implement two transform functions: one operating
  66. * on [aligned] data in host byte order and one - on data in input
  67. * stream byte order;
  68. * - share common byte-order neutral collector and padding function
  69. * implementations, ../md32_common.h;
  70. *
  71. * Neither of the above applies to this SHA-512 implementations. Reasons
  72. * [in reverse order] are:
  73. *
  74. * - it's the only 64-bit hash algorithm for the moment of this writing,
  75. * there is no need for common collector/padding implementation [yet];
  76. * - by supporting only one transform function [which operates on
  77. * *aligned* data in input stream byte order, big-endian in this case]
  78. * we minimize burden of maintenance in two ways: a) collector/padding
  79. * function is simpler; b) only one transform function to stare at;
  80. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  81. * apply a number of optimizations to mitigate potential performance
  82. * penalties caused by previous design decision; */
  83. #if !defined(OPENSSL_NO_ASM) && \
  84. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  85. defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
  86. #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  87. #define SHA512_ASM
  88. #endif
  89. int SHA384_Init(SHA512_CTX *sha) {
  90. sha->h[0] = OPENSSL_U64(0xcbbb9d5dc1059ed8);
  91. sha->h[1] = OPENSSL_U64(0x629a292a367cd507);
  92. sha->h[2] = OPENSSL_U64(0x9159015a3070dd17);
  93. sha->h[3] = OPENSSL_U64(0x152fecd8f70e5939);
  94. sha->h[4] = OPENSSL_U64(0x67332667ffc00b31);
  95. sha->h[5] = OPENSSL_U64(0x8eb44a8768581511);
  96. sha->h[6] = OPENSSL_U64(0xdb0c2e0d64f98fa7);
  97. sha->h[7] = OPENSSL_U64(0x47b5481dbefa4fa4);
  98. sha->Nl = 0;
  99. sha->Nh = 0;
  100. sha->num = 0;
  101. sha->md_len = SHA384_DIGEST_LENGTH;
  102. return 1;
  103. }
  104. int SHA512_Init(SHA512_CTX *sha) {
  105. sha->h[0] = OPENSSL_U64(0x6a09e667f3bcc908);
  106. sha->h[1] = OPENSSL_U64(0xbb67ae8584caa73b);
  107. sha->h[2] = OPENSSL_U64(0x3c6ef372fe94f82b);
  108. sha->h[3] = OPENSSL_U64(0xa54ff53a5f1d36f1);
  109. sha->h[4] = OPENSSL_U64(0x510e527fade682d1);
  110. sha->h[5] = OPENSSL_U64(0x9b05688c2b3e6c1f);
  111. sha->h[6] = OPENSSL_U64(0x1f83d9abfb41bd6b);
  112. sha->h[7] = OPENSSL_U64(0x5be0cd19137e2179);
  113. sha->Nl = 0;
  114. sha->Nh = 0;
  115. sha->num = 0;
  116. sha->md_len = SHA512_DIGEST_LENGTH;
  117. return 1;
  118. }
  119. uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
  120. SHA512_CTX ctx;
  121. static uint8_t buf[SHA384_DIGEST_LENGTH];
  122. /* TODO(fork): remove this static buffer. */
  123. if (out == NULL) {
  124. out = buf;
  125. }
  126. SHA384_Init(&ctx);
  127. SHA512_Update(&ctx, data, len);
  128. SHA512_Final(out, &ctx);
  129. OPENSSL_cleanse(&ctx, sizeof(ctx));
  130. return out;
  131. }
  132. uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
  133. SHA512_CTX ctx;
  134. static uint8_t buf[SHA512_DIGEST_LENGTH];
  135. /* TODO(fork): remove this static buffer. */
  136. if (out == NULL) {
  137. out = buf;
  138. }
  139. SHA512_Init(&ctx);
  140. SHA512_Update(&ctx, data, len);
  141. SHA512_Final(out, &ctx);
  142. OPENSSL_cleanse(&ctx, sizeof(ctx));
  143. return out;
  144. }
  145. #if !defined(SHA512_ASM)
  146. static
  147. #endif
  148. void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
  149. int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
  150. return SHA512_Final(md, sha);
  151. }
  152. int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
  153. return SHA512_Update(sha, data, len);
  154. }
  155. void SHA512_Transform(SHA512_CTX *c, const uint8_t *data) {
  156. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  157. if ((size_t)data % sizeof(c->u.d[0]) != 0) {
  158. memcpy(c->u.p, data, sizeof(c->u.p));
  159. data = c->u.p;
  160. }
  161. #endif
  162. sha512_block_data_order(c, data, 1);
  163. }
  164. int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
  165. uint64_t l;
  166. uint8_t *p = c->u.p;
  167. const uint8_t *data = (const uint8_t *)in_data;
  168. if (len == 0) {
  169. return 1;
  170. }
  171. l = (c->Nl + (((uint64_t)len) << 3)) & OPENSSL_U64(0xffffffffffffffff);
  172. if (l < c->Nl) {
  173. c->Nh++;
  174. }
  175. if (sizeof(len) >= 8) {
  176. c->Nh += (((uint64_t)len) >> 61);
  177. }
  178. c->Nl = l;
  179. if (c->num != 0) {
  180. size_t n = sizeof(c->u) - c->num;
  181. if (len < n) {
  182. memcpy(p + c->num, data, len);
  183. c->num += (unsigned int)len;
  184. return 1;
  185. } else {
  186. memcpy(p + c->num, data, n), c->num = 0;
  187. len -= n;
  188. data += n;
  189. sha512_block_data_order(c, p, 1);
  190. }
  191. }
  192. if (len >= sizeof(c->u)) {
  193. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  194. if ((size_t)data % sizeof(c->u.d[0]) != 0) {
  195. while (len >= sizeof(c->u)) {
  196. memcpy(p, data, sizeof(c->u));
  197. sha512_block_data_order(c, p, 1);
  198. len -= sizeof(c->u);
  199. data += sizeof(c->u);
  200. }
  201. } else
  202. #endif
  203. {
  204. sha512_block_data_order(c, data, len / sizeof(c->u));
  205. data += len;
  206. len %= sizeof(c->u);
  207. data -= len;
  208. }
  209. }
  210. if (len != 0) {
  211. memcpy(p, data, len);
  212. c->num = (int)len;
  213. }
  214. return 1;
  215. }
  216. int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
  217. uint8_t *p = (uint8_t *)sha->u.p;
  218. size_t n = sha->num;
  219. p[n] = 0x80; /* There always is a room for one */
  220. n++;
  221. if (n > (sizeof(sha->u) - 16)) {
  222. memset(p + n, 0, sizeof(sha->u) - n);
  223. n = 0;
  224. sha512_block_data_order(sha, p, 1);
  225. }
  226. memset(p + n, 0, sizeof(sha->u) - 16 - n);
  227. p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
  228. p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
  229. p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
  230. p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
  231. p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
  232. p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
  233. p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
  234. p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
  235. p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
  236. p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
  237. p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
  238. p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
  239. p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
  240. p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
  241. p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
  242. p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
  243. sha512_block_data_order(sha, p, 1);
  244. if (md == NULL) {
  245. /* TODO(davidben): This NULL check is absent in other low-level hash 'final'
  246. * functions and is one of the few places one can fail. */
  247. return 0;
  248. }
  249. switch (sha->md_len) {
  250. /* Let compiler decide if it's appropriate to unroll... */
  251. case SHA384_DIGEST_LENGTH:
  252. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  253. uint64_t t = sha->h[n];
  254. *(md++) = (uint8_t)(t >> 56);
  255. *(md++) = (uint8_t)(t >> 48);
  256. *(md++) = (uint8_t)(t >> 40);
  257. *(md++) = (uint8_t)(t >> 32);
  258. *(md++) = (uint8_t)(t >> 24);
  259. *(md++) = (uint8_t)(t >> 16);
  260. *(md++) = (uint8_t)(t >> 8);
  261. *(md++) = (uint8_t)(t);
  262. }
  263. break;
  264. case SHA512_DIGEST_LENGTH:
  265. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  266. uint64_t t = sha->h[n];
  267. *(md++) = (uint8_t)(t >> 56);
  268. *(md++) = (uint8_t)(t >> 48);
  269. *(md++) = (uint8_t)(t >> 40);
  270. *(md++) = (uint8_t)(t >> 32);
  271. *(md++) = (uint8_t)(t >> 24);
  272. *(md++) = (uint8_t)(t >> 16);
  273. *(md++) = (uint8_t)(t >> 8);
  274. *(md++) = (uint8_t)(t);
  275. }
  276. break;
  277. /* ... as well as make sure md_len is not abused. */
  278. default:
  279. /* TODO(davidben): This bad |md_len| case is one of the few places a
  280. * low-level hash 'final' function can fail. This should never happen. */
  281. return 0;
  282. }
  283. return 1;
  284. }
  285. #ifndef SHA512_ASM
  286. static const uint64_t K512[80] = {
  287. 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
  288. 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
  289. 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
  290. 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
  291. 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
  292. 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
  293. 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
  294. 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
  295. 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
  296. 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
  297. 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
  298. 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
  299. 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
  300. 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
  301. 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
  302. 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
  303. 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
  304. 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
  305. 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
  306. 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
  307. 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
  308. 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
  309. 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
  310. 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
  311. 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
  312. 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
  313. 0x5fcb6fab3ad6faec, 0x6c44198c4a475817};
  314. #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
  315. #if defined(__x86_64) || defined(__x86_64__)
  316. #define ROTR(a, n) \
  317. ({ \
  318. uint64_t ret; \
  319. asm("rorq %1,%0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
  320. ret; \
  321. })
  322. #define PULL64(x) \
  323. ({ \
  324. uint64_t ret = *((const uint64_t *)(&(x))); \
  325. asm("bswapq %0" : "=r"(ret) : "0"(ret)); \
  326. ret; \
  327. })
  328. #elif(defined(__i386) || defined(__i386__))
  329. #define PULL64(x) \
  330. ({ \
  331. const unsigned int *p = (const unsigned int *)(&(x)); \
  332. unsigned int hi = p[0], lo = p[1]; \
  333. asm("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
  334. ((uint64_t)hi) << 32 | lo; \
  335. })
  336. #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  337. #define ROTR(a, n) \
  338. ({ \
  339. uint64_t ret; \
  340. asm("rotrdi %0,%1,%2" : "=r"(ret) : "r"(a), "K"(n)); \
  341. ret; \
  342. })
  343. #elif defined(__aarch64__)
  344. #define ROTR(a, n) \
  345. ({ \
  346. uint64_t ret; \
  347. asm("ror %0,%1,%2" : "=r"(ret) : "r"(a), "I"(n)); \
  348. ret; \
  349. })
  350. #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
  351. __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  352. #define PULL64(x) \
  353. ({ \
  354. uint64_t ret; \
  355. asm("rev %0,%1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
  356. ret; \
  357. })
  358. #endif
  359. #endif
  360. #elif defined(_MSC_VER)
  361. #if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  362. #pragma intrinsic(_rotr64)
  363. #define ROTR(a, n) _rotr64((a), n)
  364. #endif
  365. #if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
  366. static uint64_t __fastcall __pull64be(const void *x) {
  367. _asm mov edx, [ecx + 0]
  368. _asm mov eax, [ecx + 4]
  369. _asm bswap edx
  370. _asm bswap eax
  371. }
  372. #define PULL64(x) __pull64be(&(x))
  373. #if _MSC_VER <= 1200
  374. #pragma inline_depth(0)
  375. #endif
  376. #endif
  377. #endif
  378. #ifndef PULL64
  379. #define B(x, j) \
  380. (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
  381. #define PULL64(x) \
  382. (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
  383. B(x, 7))
  384. #endif
  385. #ifndef ROTR
  386. #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
  387. #endif
  388. #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
  389. #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
  390. #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
  391. #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
  392. #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  393. #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  394. #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  395. /*
  396. * This code should give better results on 32-bit CPU with less than
  397. * ~24 registers, both size and performance wise...
  398. */
  399. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  400. size_t num) {
  401. const uint64_t *W = in;
  402. uint64_t A, E, T;
  403. uint64_t X[9 + 80], *F;
  404. int i;
  405. while (num--) {
  406. F = X + 80;
  407. A = ctx->h[0];
  408. F[1] = ctx->h[1];
  409. F[2] = ctx->h[2];
  410. F[3] = ctx->h[3];
  411. E = ctx->h[4];
  412. F[5] = ctx->h[5];
  413. F[6] = ctx->h[6];
  414. F[7] = ctx->h[7];
  415. for (i = 0; i < 16; i++, F--) {
  416. T = PULL64(W[i]);
  417. F[0] = A;
  418. F[4] = E;
  419. F[8] = T;
  420. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  421. E = F[3] + T;
  422. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  423. }
  424. for (; i < 80; i++, F--) {
  425. T = sigma0(F[8 + 16 - 1]);
  426. T += sigma1(F[8 + 16 - 14]);
  427. T += F[8 + 16] + F[8 + 16 - 9];
  428. F[0] = A;
  429. F[4] = E;
  430. F[8] = T;
  431. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  432. E = F[3] + T;
  433. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  434. }
  435. ctx->h[0] += A;
  436. ctx->h[1] += F[1];
  437. ctx->h[2] += F[2];
  438. ctx->h[3] += F[3];
  439. ctx->h[4] += E;
  440. ctx->h[5] += F[5];
  441. ctx->h[6] += F[6];
  442. ctx->h[7] += F[7];
  443. W += 16;
  444. }
  445. }
  446. #else
  447. #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
  448. do { \
  449. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
  450. h = Sigma0(a) + Maj(a, b, c); \
  451. d += T1; \
  452. h += T1; \
  453. } while (0)
  454. #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
  455. do { \
  456. s0 = X[(j + 1) & 0x0f]; \
  457. s0 = sigma0(s0); \
  458. s1 = X[(j + 14) & 0x0f]; \
  459. s1 = sigma1(s1); \
  460. T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
  461. ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
  462. } while (0)
  463. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  464. size_t num) {
  465. const uint64_t *W = in;
  466. uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
  467. uint64_t X[16];
  468. int i;
  469. while (num--) {
  470. a = ctx->h[0];
  471. b = ctx->h[1];
  472. c = ctx->h[2];
  473. d = ctx->h[3];
  474. e = ctx->h[4];
  475. f = ctx->h[5];
  476. g = ctx->h[6];
  477. h = ctx->h[7];
  478. T1 = X[0] = PULL64(W[0]);
  479. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  480. T1 = X[1] = PULL64(W[1]);
  481. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  482. T1 = X[2] = PULL64(W[2]);
  483. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  484. T1 = X[3] = PULL64(W[3]);
  485. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  486. T1 = X[4] = PULL64(W[4]);
  487. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  488. T1 = X[5] = PULL64(W[5]);
  489. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  490. T1 = X[6] = PULL64(W[6]);
  491. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  492. T1 = X[7] = PULL64(W[7]);
  493. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  494. T1 = X[8] = PULL64(W[8]);
  495. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  496. T1 = X[9] = PULL64(W[9]);
  497. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  498. T1 = X[10] = PULL64(W[10]);
  499. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  500. T1 = X[11] = PULL64(W[11]);
  501. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  502. T1 = X[12] = PULL64(W[12]);
  503. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  504. T1 = X[13] = PULL64(W[13]);
  505. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  506. T1 = X[14] = PULL64(W[14]);
  507. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  508. T1 = X[15] = PULL64(W[15]);
  509. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  510. for (i = 16; i < 80; i += 16) {
  511. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  512. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  513. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  514. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  515. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  516. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  517. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  518. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  519. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  520. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  521. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  522. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  523. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  524. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  525. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  526. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  527. }
  528. ctx->h[0] += a;
  529. ctx->h[1] += b;
  530. ctx->h[2] += c;
  531. ctx->h[3] += d;
  532. ctx->h[4] += e;
  533. ctx->h[5] += f;
  534. ctx->h[6] += g;
  535. ctx->h[7] += h;
  536. W += 16;
  537. }
  538. }
  539. #endif
  540. #endif /* SHA512_ASM */