Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 
 
 
 
 

3656 linhas
132 KiB

  1. /* Copyright (c) 2014, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. #include <stdio.h>
  15. #include <string.h>
  16. #include <time.h>
  17. #include <algorithm>
  18. #include <string>
  19. #include <utility>
  20. #include <vector>
  21. #include <gtest/gtest.h>
  22. #include <openssl/base64.h>
  23. #include <openssl/bio.h>
  24. #include <openssl/cipher.h>
  25. #include <openssl/crypto.h>
  26. #include <openssl/err.h>
  27. #include <openssl/hmac.h>
  28. #include <openssl/pem.h>
  29. #include <openssl/sha.h>
  30. #include <openssl/ssl.h>
  31. #include <openssl/rand.h>
  32. #include <openssl/x509.h>
  33. #include "internal.h"
  34. #include "../crypto/internal.h"
  35. #include "../crypto/test/test_util.h"
  36. #if defined(OPENSSL_WINDOWS)
  37. /* Windows defines struct timeval in winsock2.h. */
  38. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  39. #include <winsock2.h>
  40. OPENSSL_MSVC_PRAGMA(warning(pop))
  41. #else
  42. #include <sys/time.h>
  43. #endif
  44. struct ExpectedCipher {
  45. unsigned long id;
  46. int in_group_flag;
  47. };
  48. struct CipherTest {
  49. // The rule string to apply.
  50. const char *rule;
  51. // The list of expected ciphers, in order.
  52. std::vector<ExpectedCipher> expected;
  53. // True if this cipher list should fail in strict mode.
  54. bool strict_fail;
  55. };
  56. struct CurveTest {
  57. // The rule string to apply.
  58. const char *rule;
  59. // The list of expected curves, in order.
  60. std::vector<uint16_t> expected;
  61. };
  62. static const CipherTest kCipherTests[] = {
  63. // Selecting individual ciphers should work.
  64. {
  65. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  66. "ECDHE-RSA-CHACHA20-POLY1305:"
  67. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  68. "ECDHE-RSA-AES128-GCM-SHA256",
  69. {
  70. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  71. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  72. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  73. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  74. },
  75. false,
  76. },
  77. // + reorders selected ciphers to the end, keeping their relative order.
  78. {
  79. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  80. "ECDHE-RSA-CHACHA20-POLY1305:"
  81. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  82. "ECDHE-RSA-AES128-GCM-SHA256:"
  83. "+aRSA",
  84. {
  85. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  86. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  87. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  88. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  89. },
  90. false,
  91. },
  92. // ! banishes ciphers from future selections.
  93. {
  94. "!aRSA:"
  95. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  96. "ECDHE-RSA-CHACHA20-POLY1305:"
  97. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  98. "ECDHE-RSA-AES128-GCM-SHA256",
  99. {
  100. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  101. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  102. },
  103. false,
  104. },
  105. // Multiple masks can be ANDed in a single rule.
  106. {
  107. "kRSA+AESGCM+AES128",
  108. {
  109. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  110. },
  111. false,
  112. },
  113. // - removes selected ciphers, but preserves their order for future
  114. // selections. Select AES_128_GCM, but order the key exchanges RSA,
  115. // ECDHE_RSA.
  116. {
  117. "ALL:-kECDHE:"
  118. "-kRSA:-ALL:"
  119. "AESGCM+AES128+aRSA",
  120. {
  121. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  122. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  123. },
  124. false,
  125. },
  126. // Unknown selectors are no-ops, except in strict mode.
  127. {
  128. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  129. "ECDHE-RSA-CHACHA20-POLY1305:"
  130. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  131. "ECDHE-RSA-AES128-GCM-SHA256:"
  132. "BOGUS1",
  133. {
  134. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  135. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  136. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  137. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  138. },
  139. true,
  140. },
  141. // Unknown selectors are no-ops, except in strict mode.
  142. {
  143. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  144. "ECDHE-RSA-CHACHA20-POLY1305:"
  145. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  146. "ECDHE-RSA-AES128-GCM-SHA256:"
  147. "-BOGUS2:+BOGUS3:!BOGUS4",
  148. {
  149. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  150. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  151. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  152. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  153. },
  154. true,
  155. },
  156. // Square brackets specify equi-preference groups.
  157. {
  158. "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:"
  159. "[ECDHE-RSA-CHACHA20-POLY1305]:"
  160. "ECDHE-RSA-AES128-GCM-SHA256",
  161. {
  162. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  163. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  164. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  165. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  166. },
  167. false,
  168. },
  169. // Standard names may be used instead of OpenSSL names.
  170. {
  171. "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|"
  172. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:"
  173. "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:"
  174. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  175. {
  176. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  177. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  178. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  179. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  180. },
  181. false,
  182. },
  183. // @STRENGTH performs a stable strength-sort of the selected ciphers and
  184. // only the selected ciphers.
  185. {
  186. // To simplify things, banish all but {ECDHE_RSA,RSA} x
  187. // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1.
  188. "!AESGCM:!3DES:!SHA256:!SHA384:"
  189. // Order some ciphers backwards by strength.
  190. "ALL:-CHACHA20:-AES256:-AES128:-ALL:"
  191. // Select ECDHE ones and sort them by strength. Ties should resolve
  192. // based on the order above.
  193. "kECDHE:@STRENGTH:-ALL:"
  194. // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted
  195. // by strength. Then RSA, backwards by strength.
  196. "aRSA",
  197. {
  198. {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0},
  199. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  200. {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0},
  201. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  202. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  203. },
  204. false,
  205. },
  206. // Additional masks after @STRENGTH get silently discarded.
  207. //
  208. // TODO(davidben): Make this an error. If not silently discarded, they get
  209. // interpreted as + opcodes which are very different.
  210. {
  211. "ECDHE-RSA-AES128-GCM-SHA256:"
  212. "ECDHE-RSA-AES256-GCM-SHA384:"
  213. "@STRENGTH+AES256",
  214. {
  215. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  216. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  217. },
  218. false,
  219. },
  220. {
  221. "ECDHE-RSA-AES128-GCM-SHA256:"
  222. "ECDHE-RSA-AES256-GCM-SHA384:"
  223. "@STRENGTH+AES256:"
  224. "ECDHE-RSA-CHACHA20-POLY1305",
  225. {
  226. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  227. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  228. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  229. },
  230. false,
  231. },
  232. // Exact ciphers may not be used in multi-part rules; they are treated
  233. // as unknown aliases.
  234. {
  235. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  236. "ECDHE-RSA-AES128-GCM-SHA256:"
  237. "!ECDHE-RSA-AES128-GCM-SHA256+RSA:"
  238. "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256",
  239. {
  240. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  241. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  242. },
  243. true,
  244. },
  245. // SSLv3 matches everything that existed before TLS 1.2.
  246. {
  247. "AES128-SHA:AES128-SHA256:!SSLv3",
  248. {
  249. {TLS1_CK_RSA_WITH_AES_128_SHA256, 0},
  250. },
  251. false,
  252. },
  253. // TLSv1.2 matches everything added in TLS 1.2.
  254. {
  255. "AES128-SHA:AES128-SHA256:!TLSv1.2",
  256. {
  257. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  258. },
  259. false,
  260. },
  261. // The two directives have no intersection. But each component is valid, so
  262. // even in strict mode it is accepted.
  263. {
  264. "AES128-SHA:AES128-SHA256:!TLSv1.2+SSLv3",
  265. {
  266. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  267. {TLS1_CK_RSA_WITH_AES_128_SHA256, 0},
  268. },
  269. false,
  270. },
  271. };
  272. static const char *kBadRules[] = {
  273. // Invalid brackets.
  274. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256",
  275. "RSA]",
  276. "[[RSA]]",
  277. // Operators inside brackets.
  278. "[+RSA]",
  279. // Unknown directive.
  280. "@BOGUS",
  281. // Empty cipher lists error at SSL_CTX_set_cipher_list.
  282. "",
  283. "BOGUS",
  284. // COMPLEMENTOFDEFAULT is empty.
  285. "COMPLEMENTOFDEFAULT",
  286. // Invalid command.
  287. "?BAR",
  288. // Special operators are not allowed if groups are used.
  289. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO",
  290. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO",
  291. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO",
  292. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH",
  293. // Opcode supplied, but missing selector.
  294. "+",
  295. };
  296. static const char *kMustNotIncludeNull[] = {
  297. "ALL",
  298. "DEFAULT",
  299. "HIGH",
  300. "FIPS",
  301. "SHA",
  302. "SHA1",
  303. "RSA",
  304. "SSLv3",
  305. "TLSv1",
  306. "TLSv1.2",
  307. };
  308. static const CurveTest kCurveTests[] = {
  309. {
  310. "P-256",
  311. { SSL_CURVE_SECP256R1 },
  312. },
  313. {
  314. "P-256:P-384:P-521:X25519",
  315. {
  316. SSL_CURVE_SECP256R1,
  317. SSL_CURVE_SECP384R1,
  318. SSL_CURVE_SECP521R1,
  319. SSL_CURVE_X25519,
  320. },
  321. },
  322. };
  323. static const char *kBadCurvesLists[] = {
  324. "",
  325. ":",
  326. "::",
  327. "P-256::X25519",
  328. "RSA:P-256",
  329. "P-256:RSA",
  330. "X25519:P-256:",
  331. ":X25519:P-256",
  332. };
  333. static std::string CipherListToString(ssl_cipher_preference_list_st *list) {
  334. bool in_group = false;
  335. std::string ret;
  336. for (size_t i = 0; i < sk_SSL_CIPHER_num(list->ciphers); i++) {
  337. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(list->ciphers, i);
  338. if (!in_group && list->in_group_flags[i]) {
  339. ret += "\t[\n";
  340. in_group = true;
  341. }
  342. ret += "\t";
  343. if (in_group) {
  344. ret += " ";
  345. }
  346. ret += SSL_CIPHER_get_name(cipher);
  347. ret += "\n";
  348. if (in_group && !list->in_group_flags[i]) {
  349. ret += "\t]\n";
  350. in_group = false;
  351. }
  352. }
  353. return ret;
  354. }
  355. static bool CipherListsEqual(ssl_cipher_preference_list_st *list,
  356. const std::vector<ExpectedCipher> &expected) {
  357. if (sk_SSL_CIPHER_num(list->ciphers) != expected.size()) {
  358. return false;
  359. }
  360. for (size_t i = 0; i < expected.size(); i++) {
  361. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(list->ciphers, i);
  362. if (expected[i].id != SSL_CIPHER_get_id(cipher) ||
  363. expected[i].in_group_flag != list->in_group_flags[i]) {
  364. return false;
  365. }
  366. }
  367. return true;
  368. }
  369. TEST(SSLTest, CipherRules) {
  370. for (const CipherTest &t : kCipherTests) {
  371. SCOPED_TRACE(t.rule);
  372. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  373. ASSERT_TRUE(ctx);
  374. // Test lax mode.
  375. ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule));
  376. EXPECT_TRUE(CipherListsEqual(ctx->cipher_list, t.expected))
  377. << "Cipher rule evaluated to:\n"
  378. << CipherListToString(ctx->cipher_list);
  379. // Test strict mode.
  380. if (t.strict_fail) {
  381. EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  382. } else {
  383. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  384. EXPECT_TRUE(CipherListsEqual(ctx->cipher_list, t.expected))
  385. << "Cipher rule evaluated to:\n"
  386. << CipherListToString(ctx->cipher_list);
  387. }
  388. }
  389. for (const char *rule : kBadRules) {
  390. SCOPED_TRACE(rule);
  391. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  392. ASSERT_TRUE(ctx);
  393. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule));
  394. ERR_clear_error();
  395. }
  396. for (const char *rule : kMustNotIncludeNull) {
  397. SCOPED_TRACE(rule);
  398. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  399. ASSERT_TRUE(ctx);
  400. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule));
  401. for (size_t i = 0; i < sk_SSL_CIPHER_num(ctx->cipher_list->ciphers); i++) {
  402. EXPECT_FALSE(SSL_CIPHER_is_NULL(
  403. sk_SSL_CIPHER_value(ctx->cipher_list->ciphers, i)));
  404. }
  405. }
  406. }
  407. TEST(SSLTest, CurveRules) {
  408. for (const CurveTest &t : kCurveTests) {
  409. SCOPED_TRACE(t.rule);
  410. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  411. ASSERT_TRUE(ctx);
  412. ASSERT_TRUE(SSL_CTX_set1_curves_list(ctx.get(), t.rule));
  413. ASSERT_EQ(t.expected.size(), ctx->supported_group_list_len);
  414. for (size_t i = 0; i < t.expected.size(); i++) {
  415. EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]);
  416. }
  417. }
  418. for (const char *rule : kBadCurvesLists) {
  419. SCOPED_TRACE(rule);
  420. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  421. ASSERT_TRUE(ctx);
  422. EXPECT_FALSE(SSL_CTX_set1_curves_list(ctx.get(), rule));
  423. ERR_clear_error();
  424. }
  425. }
  426. // kOpenSSLSession is a serialized SSL_SESSION.
  427. static const char kOpenSSLSession[] =
  428. "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  429. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  430. "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ"
  431. "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  432. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4"
  433. "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  434. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  435. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  436. "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6"
  437. "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e"
  438. "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu"
  439. "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh"
  440. "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg"
  441. "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd"
  442. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  443. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  444. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  445. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ"
  446. "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  447. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  448. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa"
  449. "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal"
  450. "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf"
  451. "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St"
  452. "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z"
  453. "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm"
  454. "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S"
  455. "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B"
  456. "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE"
  457. "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA"
  458. "i4gv7Y5oliyntgMBAQA=";
  459. // kCustomSession is a custom serialized SSL_SESSION generated by
  460. // filling in missing fields from |kOpenSSLSession|. This includes
  461. // providing |peer_sha256|, so |peer| is not serialized.
  462. static const char kCustomSession[] =
  463. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  464. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  465. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  466. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  467. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  468. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  469. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  470. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  471. // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client.
  472. static const char kBoringSSLSession[] =
  473. "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R"
  474. "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf"
  475. "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ"
  476. "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  477. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy"
  478. "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  479. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  480. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  481. "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo"
  482. "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU"
  483. "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce"
  484. "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/"
  485. "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL"
  486. "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd"
  487. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  488. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  489. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  490. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG"
  491. "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  492. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  493. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb"
  494. "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE"
  495. "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd"
  496. "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+"
  497. "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a"
  498. "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y"
  499. "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH"
  500. "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH"
  501. "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s"
  502. "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE"
  503. "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC"
  504. "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL"
  505. "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds"
  506. "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw"
  507. "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG"
  508. "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE"
  509. "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB"
  510. "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np"
  511. "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If"
  512. "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S"
  513. "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531"
  514. "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn"
  515. "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF"
  516. "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB"
  517. "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB"
  518. "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v"
  519. "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA"
  520. "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK"
  521. "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j"
  522. "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S"
  523. "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+"
  524. "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl"
  525. "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi"
  526. "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95"
  527. "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh"
  528. "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT"
  529. "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i"
  530. "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG"
  531. "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy"
  532. "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB"
  533. "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP"
  534. "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv"
  535. "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE"
  536. "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ"
  537. "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC"
  538. "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7"
  539. "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD"
  540. "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov"
  541. "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig"
  542. "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ"
  543. "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+"
  544. "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI"
  545. "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI"
  546. "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X"
  547. "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm"
  548. "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40"
  549. "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG"
  550. "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg"
  551. "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0"
  552. "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ"
  553. "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP"
  554. "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI"
  555. "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t"
  556. "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN"
  557. "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3"
  558. "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE"
  559. "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW"
  560. "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9"
  561. "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw"
  562. "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j"
  563. "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3"
  564. "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF"
  565. "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV"
  566. "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D"
  567. "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg==";
  568. // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing
  569. // the final (optional) element of |kCustomSession| with tag number 30.
  570. static const char kBadSessionExtraField[] =
  571. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  572. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  573. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  574. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  575. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  576. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  577. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  578. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBL4DBAEF";
  579. // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing
  580. // the version of |kCustomSession| with 2.
  581. static const char kBadSessionVersion[] =
  582. "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  583. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  584. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  585. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  586. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  587. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  588. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  589. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  590. // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data
  591. // appended.
  592. static const char kBadSessionTrailingData[] =
  593. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  594. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  595. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  596. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  597. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  598. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  599. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  600. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA";
  601. static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) {
  602. size_t len;
  603. if (!EVP_DecodedLength(&len, strlen(in))) {
  604. fprintf(stderr, "EVP_DecodedLength failed\n");
  605. return false;
  606. }
  607. out->resize(len);
  608. if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in,
  609. strlen(in))) {
  610. fprintf(stderr, "EVP_DecodeBase64 failed\n");
  611. return false;
  612. }
  613. out->resize(len);
  614. return true;
  615. }
  616. static bool TestSSL_SESSIONEncoding(const char *input_b64) {
  617. const uint8_t *cptr;
  618. uint8_t *ptr;
  619. // Decode the input.
  620. std::vector<uint8_t> input;
  621. if (!DecodeBase64(&input, input_b64)) {
  622. return false;
  623. }
  624. // Verify the SSL_SESSION decodes.
  625. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  626. if (!ssl_ctx) {
  627. return false;
  628. }
  629. bssl::UniquePtr<SSL_SESSION> session(
  630. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  631. if (!session) {
  632. fprintf(stderr, "SSL_SESSION_from_bytes failed\n");
  633. return false;
  634. }
  635. // Verify the SSL_SESSION encoding round-trips.
  636. size_t encoded_len;
  637. bssl::UniquePtr<uint8_t> encoded;
  638. uint8_t *encoded_raw;
  639. if (!SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) {
  640. fprintf(stderr, "SSL_SESSION_to_bytes failed\n");
  641. return false;
  642. }
  643. encoded.reset(encoded_raw);
  644. if (encoded_len != input.size() ||
  645. OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  646. fprintf(stderr, "SSL_SESSION_to_bytes did not round-trip\n");
  647. hexdump(stderr, "Before: ", input.data(), input.size());
  648. hexdump(stderr, "After: ", encoded_raw, encoded_len);
  649. return false;
  650. }
  651. // Verify the SSL_SESSION also decodes with the legacy API.
  652. cptr = input.data();
  653. session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size()));
  654. if (!session || cptr != input.data() + input.size()) {
  655. fprintf(stderr, "d2i_SSL_SESSION failed\n");
  656. return false;
  657. }
  658. // Verify the SSL_SESSION encoding round-trips via the legacy API.
  659. int len = i2d_SSL_SESSION(session.get(), NULL);
  660. if (len < 0 || (size_t)len != input.size()) {
  661. fprintf(stderr, "i2d_SSL_SESSION(NULL) returned invalid length\n");
  662. return false;
  663. }
  664. encoded.reset((uint8_t *)OPENSSL_malloc(input.size()));
  665. if (!encoded) {
  666. fprintf(stderr, "malloc failed\n");
  667. return false;
  668. }
  669. ptr = encoded.get();
  670. len = i2d_SSL_SESSION(session.get(), &ptr);
  671. if (len < 0 || (size_t)len != input.size()) {
  672. fprintf(stderr, "i2d_SSL_SESSION returned invalid length\n");
  673. return false;
  674. }
  675. if (ptr != encoded.get() + input.size()) {
  676. fprintf(stderr, "i2d_SSL_SESSION did not advance ptr correctly\n");
  677. return false;
  678. }
  679. if (OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  680. fprintf(stderr, "i2d_SSL_SESSION did not round-trip\n");
  681. return false;
  682. }
  683. return true;
  684. }
  685. static bool TestBadSSL_SESSIONEncoding(const char *input_b64) {
  686. std::vector<uint8_t> input;
  687. if (!DecodeBase64(&input, input_b64)) {
  688. return false;
  689. }
  690. // Verify that the SSL_SESSION fails to decode.
  691. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  692. if (!ssl_ctx) {
  693. return false;
  694. }
  695. bssl::UniquePtr<SSL_SESSION> session(
  696. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  697. if (session) {
  698. fprintf(stderr, "SSL_SESSION_from_bytes unexpectedly succeeded\n");
  699. return false;
  700. }
  701. ERR_clear_error();
  702. return true;
  703. }
  704. static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version,
  705. const SSL_METHOD *(*method)(void)) {
  706. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method()));
  707. ASSERT_TRUE(ctx);
  708. EXPECT_EQ(min_version, ctx->conf_min_version);
  709. EXPECT_EQ(max_version, ctx->conf_max_version);
  710. }
  711. TEST(SSLTest, DefaultVersion) {
  712. // TODO(svaldez): Update this when TLS 1.3 is enabled by default.
  713. ExpectDefaultVersion(TLS1_VERSION, TLS1_2_VERSION, &TLS_method);
  714. ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method);
  715. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method);
  716. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method);
  717. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_2_VERSION, &DTLS_method);
  718. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &DTLSv1_method);
  719. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &DTLSv1_2_method);
  720. }
  721. TEST(SSLTest, CipherGetStandardName) {
  722. static const struct {
  723. int id;
  724. const char *standard_name;
  725. } kTests[] = {
  726. {SSL3_CK_RSA_DES_192_CBC3_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA"},
  727. {TLS1_CK_RSA_WITH_AES_128_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA"},
  728. {TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
  729. "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256"},
  730. {TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
  731. "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384"},
  732. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  733. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"},
  734. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  735. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256"},
  736. {TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  737. "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384"},
  738. {TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
  739. "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA"},
  740. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
  741. "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"},
  742. {TLS1_CK_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384"},
  743. {TLS1_CK_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256"},
  744. {TLS1_CK_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256"},
  745. };
  746. for (const auto &t : kTests) {
  747. SCOPED_TRACE(t.standard_name);
  748. const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff);
  749. ASSERT_TRUE(cipher);
  750. EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher));
  751. bssl::UniquePtr<char> rfc_name(SSL_CIPHER_get_rfc_name(cipher));
  752. ASSERT_TRUE(rfc_name);
  753. EXPECT_STREQ(t.standard_name, rfc_name.get());
  754. }
  755. }
  756. // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified
  757. // version and ticket length or nullptr on failure.
  758. static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version,
  759. size_t ticket_len) {
  760. std::vector<uint8_t> der;
  761. if (!DecodeBase64(&der, kOpenSSLSession)) {
  762. return nullptr;
  763. }
  764. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  765. if (!ssl_ctx) {
  766. return nullptr;
  767. }
  768. bssl::UniquePtr<SSL_SESSION> session(
  769. SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get()));
  770. if (!session) {
  771. return nullptr;
  772. }
  773. session->ssl_version = version;
  774. // Swap out the ticket for a garbage one.
  775. OPENSSL_free(session->tlsext_tick);
  776. session->tlsext_tick = reinterpret_cast<uint8_t*>(OPENSSL_malloc(ticket_len));
  777. if (session->tlsext_tick == nullptr) {
  778. return nullptr;
  779. }
  780. OPENSSL_memset(session->tlsext_tick, 'a', ticket_len);
  781. session->tlsext_ticklen = ticket_len;
  782. // Fix up the timeout.
  783. #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
  784. session->time = 1234;
  785. #else
  786. session->time = time(NULL);
  787. #endif
  788. return session;
  789. }
  790. static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) {
  791. bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
  792. if (!bio) {
  793. return false;
  794. }
  795. // Do not configure a reading BIO, but record what's written to a memory BIO.
  796. BIO_up_ref(bio.get());
  797. SSL_set_bio(ssl, nullptr /* rbio */, bio.get());
  798. int ret = SSL_connect(ssl);
  799. if (ret > 0) {
  800. // SSL_connect should fail without a BIO to write to.
  801. return false;
  802. }
  803. ERR_clear_error();
  804. const uint8_t *client_hello;
  805. size_t client_hello_len;
  806. if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) {
  807. return false;
  808. }
  809. *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len);
  810. return true;
  811. }
  812. // GetClientHelloLen creates a client SSL connection with the specified version
  813. // and ticket length. It returns the length of the ClientHello, not including
  814. // the record header, on success and zero on error.
  815. static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version,
  816. size_t ticket_len) {
  817. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  818. bssl::UniquePtr<SSL_SESSION> session =
  819. CreateSessionWithTicket(session_version, ticket_len);
  820. if (!ctx || !session) {
  821. return 0;
  822. }
  823. // Set a one-element cipher list so the baseline ClientHello is unpadded.
  824. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  825. if (!ssl || !SSL_set_session(ssl.get(), session.get()) ||
  826. !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") ||
  827. !SSL_set_max_proto_version(ssl.get(), max_version)) {
  828. return 0;
  829. }
  830. std::vector<uint8_t> client_hello;
  831. if (!GetClientHello(ssl.get(), &client_hello) ||
  832. client_hello.size() <= SSL3_RT_HEADER_LENGTH) {
  833. return 0;
  834. }
  835. return client_hello.size() - SSL3_RT_HEADER_LENGTH;
  836. }
  837. struct PaddingTest {
  838. size_t input_len, padded_len;
  839. };
  840. static const PaddingTest kPaddingTests[] = {
  841. // ClientHellos of length below 0x100 do not require padding.
  842. {0xfe, 0xfe},
  843. {0xff, 0xff},
  844. // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200.
  845. {0x100, 0x200},
  846. {0x123, 0x200},
  847. {0x1fb, 0x200},
  848. // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The
  849. // padding extension takes a minimum of four bytes plus one required content
  850. // byte. (To work around yet more server bugs, we avoid empty final
  851. // extensions.)
  852. {0x1fc, 0x201},
  853. {0x1fd, 0x202},
  854. {0x1fe, 0x203},
  855. {0x1ff, 0x204},
  856. // Finally, larger ClientHellos need no padding.
  857. {0x200, 0x200},
  858. {0x201, 0x201},
  859. };
  860. static bool TestPaddingExtension(uint16_t max_version,
  861. uint16_t session_version) {
  862. // Sample a baseline length.
  863. size_t base_len = GetClientHelloLen(max_version, session_version, 1);
  864. if (base_len == 0) {
  865. return false;
  866. }
  867. for (const PaddingTest &test : kPaddingTests) {
  868. if (base_len > test.input_len) {
  869. fprintf(stderr,
  870. "Baseline ClientHello too long (max_version = %04x, "
  871. "session_version = %04x).\n",
  872. max_version, session_version);
  873. return false;
  874. }
  875. size_t padded_len = GetClientHelloLen(max_version, session_version,
  876. 1 + test.input_len - base_len);
  877. if (padded_len != test.padded_len) {
  878. fprintf(stderr,
  879. "%u-byte ClientHello padded to %u bytes, not %u (max_version = "
  880. "%04x, session_version = %04x).\n",
  881. static_cast<unsigned>(test.input_len),
  882. static_cast<unsigned>(padded_len),
  883. static_cast<unsigned>(test.padded_len), max_version,
  884. session_version);
  885. return false;
  886. }
  887. }
  888. return true;
  889. }
  890. // Test that |SSL_get_client_CA_list| echoes back the configured parameter even
  891. // before configuring as a server.
  892. TEST(SSLTest, ClientCAList) {
  893. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  894. ASSERT_TRUE(ctx);
  895. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  896. ASSERT_TRUE(ssl);
  897. bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
  898. ASSERT_TRUE(name);
  899. bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get()));
  900. ASSERT_TRUE(name_dup);
  901. bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null());
  902. ASSERT_TRUE(stack);
  903. ASSERT_TRUE(sk_X509_NAME_push(stack.get(), name_dup.get()));
  904. name_dup.release();
  905. // |SSL_set_client_CA_list| takes ownership.
  906. SSL_set_client_CA_list(ssl.get(), stack.release());
  907. STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get());
  908. ASSERT_TRUE(result);
  909. ASSERT_EQ(1u, sk_X509_NAME_num(result));
  910. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get()));
  911. }
  912. static void AppendSession(SSL_SESSION *session, void *arg) {
  913. std::vector<SSL_SESSION*> *out =
  914. reinterpret_cast<std::vector<SSL_SESSION*>*>(arg);
  915. out->push_back(session);
  916. }
  917. // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in
  918. // order.
  919. static bool CacheEquals(SSL_CTX *ctx,
  920. const std::vector<SSL_SESSION*> &expected) {
  921. // Check the linked list.
  922. SSL_SESSION *ptr = ctx->session_cache_head;
  923. for (SSL_SESSION *session : expected) {
  924. if (ptr != session) {
  925. return false;
  926. }
  927. // TODO(davidben): This is an absurd way to denote the end of the list.
  928. if (ptr->next ==
  929. reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) {
  930. ptr = nullptr;
  931. } else {
  932. ptr = ptr->next;
  933. }
  934. }
  935. if (ptr != nullptr) {
  936. return false;
  937. }
  938. // Check the hash table.
  939. std::vector<SSL_SESSION*> actual, expected_copy;
  940. lh_SSL_SESSION_doall_arg(SSL_CTX_sessions(ctx), AppendSession, &actual);
  941. expected_copy = expected;
  942. std::sort(actual.begin(), actual.end());
  943. std::sort(expected_copy.begin(), expected_copy.end());
  944. return actual == expected_copy;
  945. }
  946. static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) {
  947. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  948. if (!ssl_ctx) {
  949. return nullptr;
  950. }
  951. bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get()));
  952. if (!ret) {
  953. return nullptr;
  954. }
  955. ret->session_id_length = SSL3_SSL_SESSION_ID_LENGTH;
  956. OPENSSL_memset(ret->session_id, 0, ret->session_id_length);
  957. OPENSSL_memcpy(ret->session_id, &number, sizeof(number));
  958. return ret;
  959. }
  960. // Test that the internal session cache behaves as expected.
  961. TEST(SSLTest, InternalSessionCache) {
  962. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  963. ASSERT_TRUE(ctx);
  964. // Prepare 10 test sessions.
  965. std::vector<bssl::UniquePtr<SSL_SESSION>> sessions;
  966. for (int i = 0; i < 10; i++) {
  967. bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i);
  968. ASSERT_TRUE(session);
  969. sessions.push_back(std::move(session));
  970. }
  971. SSL_CTX_sess_set_cache_size(ctx.get(), 5);
  972. // Insert all the test sessions.
  973. for (const auto &session : sessions) {
  974. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get()));
  975. }
  976. // Only the last five should be in the list.
  977. ASSERT_TRUE(CacheEquals(
  978. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  979. sessions[6].get(), sessions[5].get()}));
  980. // Inserting an element already in the cache should fail and leave the cache
  981. // unchanged.
  982. ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get()));
  983. ASSERT_TRUE(CacheEquals(
  984. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  985. sessions[6].get(), sessions[5].get()}));
  986. // Although collisions should be impossible (256-bit session IDs), the cache
  987. // must handle them gracefully.
  988. bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7));
  989. ASSERT_TRUE(collision);
  990. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get()));
  991. ASSERT_TRUE(CacheEquals(
  992. ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(),
  993. sessions[6].get(), sessions[5].get()}));
  994. // Removing sessions behaves correctly.
  995. ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get()));
  996. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  997. sessions[8].get(), sessions[5].get()}));
  998. // Removing sessions requires an exact match.
  999. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get()));
  1000. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get()));
  1001. // The cache remains unchanged.
  1002. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1003. sessions[8].get(), sessions[5].get()}));
  1004. }
  1005. static uint16_t EpochFromSequence(uint64_t seq) {
  1006. return static_cast<uint16_t>(seq >> 48);
  1007. }
  1008. static bssl::UniquePtr<X509> GetTestCertificate() {
  1009. static const char kCertPEM[] =
  1010. "-----BEGIN CERTIFICATE-----\n"
  1011. "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n"
  1012. "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n"
  1013. "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n"
  1014. "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n"
  1015. "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n"
  1016. "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n"
  1017. "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n"
  1018. "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n"
  1019. "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n"
  1020. "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n"
  1021. "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n"
  1022. "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n"
  1023. "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n"
  1024. "-----END CERTIFICATE-----\n";
  1025. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1026. return bssl::UniquePtr<X509>(
  1027. PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1028. }
  1029. static bssl::UniquePtr<EVP_PKEY> GetTestKey() {
  1030. static const char kKeyPEM[] =
  1031. "-----BEGIN RSA PRIVATE KEY-----\n"
  1032. "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n"
  1033. "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n"
  1034. "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n"
  1035. "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n"
  1036. "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n"
  1037. "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n"
  1038. "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n"
  1039. "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n"
  1040. "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n"
  1041. "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n"
  1042. "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n"
  1043. "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n"
  1044. "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n"
  1045. "-----END RSA PRIVATE KEY-----\n";
  1046. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1047. return bssl::UniquePtr<EVP_PKEY>(
  1048. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1049. }
  1050. static bssl::UniquePtr<X509> GetECDSATestCertificate() {
  1051. static const char kCertPEM[] =
  1052. "-----BEGIN CERTIFICATE-----\n"
  1053. "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n"
  1054. "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n"
  1055. "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n"
  1056. "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n"
  1057. "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n"
  1058. "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n"
  1059. "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n"
  1060. "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n"
  1061. "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n"
  1062. "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n"
  1063. "-----END CERTIFICATE-----\n";
  1064. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1065. return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1066. }
  1067. static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() {
  1068. static const char kKeyPEM[] =
  1069. "-----BEGIN PRIVATE KEY-----\n"
  1070. "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n"
  1071. "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n"
  1072. "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n"
  1073. "-----END PRIVATE KEY-----\n";
  1074. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1075. return bssl::UniquePtr<EVP_PKEY>(
  1076. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1077. }
  1078. static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) {
  1079. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
  1080. char *name, *header;
  1081. uint8_t *data;
  1082. long data_len;
  1083. if (!PEM_read_bio(bio.get(), &name, &header, &data,
  1084. &data_len)) {
  1085. return nullptr;
  1086. }
  1087. OPENSSL_free(name);
  1088. OPENSSL_free(header);
  1089. auto ret = bssl::UniquePtr<CRYPTO_BUFFER>(
  1090. CRYPTO_BUFFER_new(data, data_len, nullptr));
  1091. OPENSSL_free(data);
  1092. return ret;
  1093. }
  1094. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() {
  1095. static const char kCertPEM[] =
  1096. "-----BEGIN CERTIFICATE-----\n"
  1097. "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n"
  1098. "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n"
  1099. "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n"
  1100. "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n"
  1101. "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n"
  1102. "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n"
  1103. "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n"
  1104. "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n"
  1105. "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n"
  1106. "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n"
  1107. "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n"
  1108. "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n"
  1109. "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n"
  1110. "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n"
  1111. "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n"
  1112. "1ngWZ7Ih\n"
  1113. "-----END CERTIFICATE-----\n";
  1114. return BufferFromPEM(kCertPEM);
  1115. }
  1116. static bssl::UniquePtr<X509> X509FromBuffer(
  1117. bssl::UniquePtr<CRYPTO_BUFFER> buffer) {
  1118. if (!buffer) {
  1119. return nullptr;
  1120. }
  1121. const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get());
  1122. return bssl::UniquePtr<X509>(
  1123. d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get())));
  1124. }
  1125. static bssl::UniquePtr<X509> GetChainTestCertificate() {
  1126. return X509FromBuffer(GetChainTestCertificateBuffer());
  1127. }
  1128. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() {
  1129. static const char kCertPEM[] =
  1130. "-----BEGIN CERTIFICATE-----\n"
  1131. "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n"
  1132. "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n"
  1133. "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n"
  1134. "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n"
  1135. "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n"
  1136. "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n"
  1137. "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n"
  1138. "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n"
  1139. "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n"
  1140. "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n"
  1141. "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n"
  1142. "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n"
  1143. "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n"
  1144. "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n"
  1145. "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n"
  1146. "-----END CERTIFICATE-----\n";
  1147. return BufferFromPEM(kCertPEM);
  1148. }
  1149. static bssl::UniquePtr<X509> GetChainTestIntermediate() {
  1150. return X509FromBuffer(GetChainTestIntermediateBuffer());
  1151. }
  1152. static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() {
  1153. static const char kKeyPEM[] =
  1154. "-----BEGIN PRIVATE KEY-----\n"
  1155. "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n"
  1156. "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n"
  1157. "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n"
  1158. "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n"
  1159. "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n"
  1160. "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n"
  1161. "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n"
  1162. "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n"
  1163. "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n"
  1164. "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n"
  1165. "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n"
  1166. "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n"
  1167. "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n"
  1168. "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n"
  1169. "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n"
  1170. "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n"
  1171. "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n"
  1172. "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n"
  1173. "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n"
  1174. "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n"
  1175. "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n"
  1176. "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n"
  1177. "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n"
  1178. "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n"
  1179. "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n"
  1180. "SxpiPQ8d/hmSGwn4ksrWUsJD\n"
  1181. "-----END PRIVATE KEY-----\n";
  1182. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1183. return bssl::UniquePtr<EVP_PKEY>(
  1184. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1185. }
  1186. static bool CompleteHandshakes(SSL *client, SSL *server) {
  1187. // Drive both their handshakes to completion.
  1188. for (;;) {
  1189. int client_ret = SSL_do_handshake(client);
  1190. int client_err = SSL_get_error(client, client_ret);
  1191. if (client_err != SSL_ERROR_NONE &&
  1192. client_err != SSL_ERROR_WANT_READ &&
  1193. client_err != SSL_ERROR_WANT_WRITE &&
  1194. client_err != SSL_ERROR_PENDING_TICKET) {
  1195. fprintf(stderr, "Client error: %d\n", client_err);
  1196. return false;
  1197. }
  1198. int server_ret = SSL_do_handshake(server);
  1199. int server_err = SSL_get_error(server, server_ret);
  1200. if (server_err != SSL_ERROR_NONE &&
  1201. server_err != SSL_ERROR_WANT_READ &&
  1202. server_err != SSL_ERROR_WANT_WRITE &&
  1203. server_err != SSL_ERROR_PENDING_TICKET) {
  1204. fprintf(stderr, "Server error: %d\n", server_err);
  1205. return false;
  1206. }
  1207. if (client_ret == 1 && server_ret == 1) {
  1208. break;
  1209. }
  1210. }
  1211. return true;
  1212. }
  1213. static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client,
  1214. bssl::UniquePtr<SSL> *out_server,
  1215. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1216. SSL_SESSION *session) {
  1217. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  1218. if (!client || !server) {
  1219. return false;
  1220. }
  1221. SSL_set_connect_state(client.get());
  1222. SSL_set_accept_state(server.get());
  1223. SSL_set_session(client.get(), session);
  1224. BIO *bio1, *bio2;
  1225. if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) {
  1226. return false;
  1227. }
  1228. // SSL_set_bio takes ownership.
  1229. SSL_set_bio(client.get(), bio1, bio1);
  1230. SSL_set_bio(server.get(), bio2, bio2);
  1231. if (!CompleteHandshakes(client.get(), server.get())) {
  1232. return false;
  1233. }
  1234. *out_client = std::move(client);
  1235. *out_server = std::move(server);
  1236. return true;
  1237. }
  1238. static bool TestSequenceNumber(bool is_dtls, const SSL_METHOD *method,
  1239. uint16_t version) {
  1240. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  1241. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  1242. if (!server_ctx || !client_ctx ||
  1243. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  1244. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  1245. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  1246. !SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
  1247. return false;
  1248. }
  1249. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1250. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1251. if (!cert || !key || !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  1252. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())) {
  1253. return false;
  1254. }
  1255. bssl::UniquePtr<SSL> client, server;
  1256. if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
  1257. server_ctx.get(), nullptr /* no session */)) {
  1258. return false;
  1259. }
  1260. // Drain any post-handshake messages to ensure there are no unread records
  1261. // on either end.
  1262. uint8_t byte = 0;
  1263. if (SSL_read(client.get(), &byte, 1) > 0 ||
  1264. SSL_read(server.get(), &byte, 1) > 0) {
  1265. fprintf(stderr, "Received unexpected data.\n");
  1266. return false;
  1267. }
  1268. uint64_t client_read_seq = SSL_get_read_sequence(client.get());
  1269. uint64_t client_write_seq = SSL_get_write_sequence(client.get());
  1270. uint64_t server_read_seq = SSL_get_read_sequence(server.get());
  1271. uint64_t server_write_seq = SSL_get_write_sequence(server.get());
  1272. if (is_dtls) {
  1273. // Both client and server must be at epoch 1.
  1274. if (EpochFromSequence(client_read_seq) != 1 ||
  1275. EpochFromSequence(client_write_seq) != 1 ||
  1276. EpochFromSequence(server_read_seq) != 1 ||
  1277. EpochFromSequence(server_write_seq) != 1) {
  1278. fprintf(stderr, "Bad epochs.\n");
  1279. return false;
  1280. }
  1281. // The next record to be written should exceed the largest received.
  1282. if (client_write_seq <= server_read_seq ||
  1283. server_write_seq <= client_read_seq) {
  1284. fprintf(stderr, "Inconsistent sequence numbers.\n");
  1285. return false;
  1286. }
  1287. } else {
  1288. // The next record to be written should equal the next to be received.
  1289. if (client_write_seq != server_read_seq ||
  1290. server_write_seq != client_read_seq) {
  1291. fprintf(stderr, "Inconsistent sequence numbers.\n");
  1292. return false;
  1293. }
  1294. }
  1295. // Send a record from client to server.
  1296. if (SSL_write(client.get(), &byte, 1) != 1 ||
  1297. SSL_read(server.get(), &byte, 1) != 1) {
  1298. fprintf(stderr, "Could not send byte.\n");
  1299. return false;
  1300. }
  1301. // The client write and server read sequence numbers should have
  1302. // incremented.
  1303. if (client_write_seq + 1 != SSL_get_write_sequence(client.get()) ||
  1304. server_read_seq + 1 != SSL_get_read_sequence(server.get())) {
  1305. fprintf(stderr, "Sequence numbers did not increment.\n");
  1306. return false;
  1307. }
  1308. return true;
  1309. }
  1310. static bool TestOneSidedShutdown(bool is_dtls, const SSL_METHOD *method,
  1311. uint16_t version) {
  1312. // SSL_shutdown is a no-op in DTLS.
  1313. if (is_dtls) {
  1314. return true;
  1315. }
  1316. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  1317. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  1318. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1319. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1320. if (!client_ctx || !server_ctx || !cert || !key ||
  1321. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  1322. !SSL_CTX_set_max_proto_version(server_ctx.get(), version) ||
  1323. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  1324. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  1325. !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  1326. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())) {
  1327. return false;
  1328. }
  1329. bssl::UniquePtr<SSL> client, server;
  1330. if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
  1331. server_ctx.get(), nullptr /* no session */)) {
  1332. return false;
  1333. }
  1334. // Shut down half the connection. SSL_shutdown will return 0 to signal only
  1335. // one side has shut down.
  1336. if (SSL_shutdown(client.get()) != 0) {
  1337. fprintf(stderr, "Could not shutdown.\n");
  1338. return false;
  1339. }
  1340. // Reading from the server should consume the EOF.
  1341. uint8_t byte;
  1342. if (SSL_read(server.get(), &byte, 1) != 0 ||
  1343. SSL_get_error(server.get(), 0) != SSL_ERROR_ZERO_RETURN) {
  1344. fprintf(stderr, "Connection was not shut down cleanly.\n");
  1345. return false;
  1346. }
  1347. // However, the server may continue to write data and then shut down the
  1348. // connection.
  1349. byte = 42;
  1350. if (SSL_write(server.get(), &byte, 1) != 1 ||
  1351. SSL_read(client.get(), &byte, 1) != 1 ||
  1352. byte != 42) {
  1353. fprintf(stderr, "Could not send byte.\n");
  1354. return false;
  1355. }
  1356. // The server may then shutdown the connection.
  1357. if (SSL_shutdown(server.get()) != 1 ||
  1358. SSL_shutdown(client.get()) != 1) {
  1359. fprintf(stderr, "Could not complete shutdown.\n");
  1360. return false;
  1361. }
  1362. return true;
  1363. }
  1364. TEST(SSLTest, SessionDuplication) {
  1365. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  1366. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  1367. ASSERT_TRUE(client_ctx);
  1368. ASSERT_TRUE(server_ctx);
  1369. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1370. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1371. ASSERT_TRUE(cert);
  1372. ASSERT_TRUE(key);
  1373. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  1374. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  1375. bssl::UniquePtr<SSL> client, server;
  1376. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  1377. server_ctx.get(),
  1378. nullptr /* no session */));
  1379. SSL_SESSION *session0 = SSL_get_session(client.get());
  1380. bssl::UniquePtr<SSL_SESSION> session1(
  1381. SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL));
  1382. ASSERT_TRUE(session1);
  1383. session1->not_resumable = 0;
  1384. uint8_t *s0_bytes, *s1_bytes;
  1385. size_t s0_len, s1_len;
  1386. ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len));
  1387. bssl::UniquePtr<uint8_t> free_s0(s0_bytes);
  1388. ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len));
  1389. bssl::UniquePtr<uint8_t> free_s1(s1_bytes);
  1390. EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len));
  1391. }
  1392. static void ExpectFDs(const SSL *ssl, int rfd, int wfd) {
  1393. EXPECT_EQ(rfd, SSL_get_fd(ssl));
  1394. EXPECT_EQ(rfd, SSL_get_rfd(ssl));
  1395. EXPECT_EQ(wfd, SSL_get_wfd(ssl));
  1396. // The wrapper BIOs are always equal when fds are equal, even if set
  1397. // individually.
  1398. if (rfd == wfd) {
  1399. EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl));
  1400. }
  1401. }
  1402. TEST(SSLTest, SetFD) {
  1403. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1404. ASSERT_TRUE(ctx);
  1405. // Test setting different read and write FDs.
  1406. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1407. ASSERT_TRUE(ssl);
  1408. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1409. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1410. ExpectFDs(ssl.get(), 1, 2);
  1411. // Test setting the same FD.
  1412. ssl.reset(SSL_new(ctx.get()));
  1413. ASSERT_TRUE(ssl);
  1414. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1415. ExpectFDs(ssl.get(), 1, 1);
  1416. // Test setting the same FD one side at a time.
  1417. ssl.reset(SSL_new(ctx.get()));
  1418. ASSERT_TRUE(ssl);
  1419. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1420. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1421. ExpectFDs(ssl.get(), 1, 1);
  1422. // Test setting the same FD in the other order.
  1423. ssl.reset(SSL_new(ctx.get()));
  1424. ASSERT_TRUE(ssl);
  1425. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1426. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1427. ExpectFDs(ssl.get(), 1, 1);
  1428. // Test changing the read FD partway through.
  1429. ssl.reset(SSL_new(ctx.get()));
  1430. ASSERT_TRUE(ssl);
  1431. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1432. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2));
  1433. ExpectFDs(ssl.get(), 2, 1);
  1434. // Test changing the write FD partway through.
  1435. ssl.reset(SSL_new(ctx.get()));
  1436. ASSERT_TRUE(ssl);
  1437. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1438. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1439. ExpectFDs(ssl.get(), 1, 2);
  1440. // Test a no-op change to the read FD partway through.
  1441. ssl.reset(SSL_new(ctx.get()));
  1442. ASSERT_TRUE(ssl);
  1443. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1444. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1445. ExpectFDs(ssl.get(), 1, 1);
  1446. // Test a no-op change to the write FD partway through.
  1447. ssl.reset(SSL_new(ctx.get()));
  1448. ASSERT_TRUE(ssl);
  1449. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1450. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1451. ExpectFDs(ssl.get(), 1, 1);
  1452. // ASan builds will implicitly test that the internal |BIO| reference-counting
  1453. // is correct.
  1454. }
  1455. TEST(SSLTest, SetBIO) {
  1456. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1457. ASSERT_TRUE(ctx);
  1458. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1459. bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())),
  1460. bio3(BIO_new(BIO_s_mem()));
  1461. ASSERT_TRUE(ssl);
  1462. ASSERT_TRUE(bio1);
  1463. ASSERT_TRUE(bio2);
  1464. ASSERT_TRUE(bio3);
  1465. // SSL_set_bio takes one reference when the parameters are the same.
  1466. BIO_up_ref(bio1.get());
  1467. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1468. // Repeating the call does nothing.
  1469. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1470. // It takes one reference each when the parameters are different.
  1471. BIO_up_ref(bio2.get());
  1472. BIO_up_ref(bio3.get());
  1473. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1474. // Repeating the call does nothing.
  1475. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1476. // It takes one reference when changing only wbio.
  1477. BIO_up_ref(bio1.get());
  1478. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1479. // It takes one reference when changing only rbio and the two are different.
  1480. BIO_up_ref(bio3.get());
  1481. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1482. // If setting wbio to rbio, it takes no additional references.
  1483. SSL_set_bio(ssl.get(), bio3.get(), bio3.get());
  1484. // From there, wbio may be switched to something else.
  1485. BIO_up_ref(bio1.get());
  1486. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1487. // If setting rbio to wbio, it takes no additional references.
  1488. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1489. // From there, rbio may be switched to something else, but, for historical
  1490. // reasons, it takes a reference to both parameters.
  1491. BIO_up_ref(bio1.get());
  1492. BIO_up_ref(bio2.get());
  1493. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1494. // ASAN builds will implicitly test that the internal |BIO| reference-counting
  1495. // is correct.
  1496. }
  1497. static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; }
  1498. static bool TestGetPeerCertificate(bool is_dtls, const SSL_METHOD *method,
  1499. uint16_t version) {
  1500. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1501. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1502. if (!cert || !key) {
  1503. return false;
  1504. }
  1505. // Configure both client and server to accept any certificate.
  1506. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  1507. if (!ctx ||
  1508. !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
  1509. !SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
  1510. !SSL_CTX_set_min_proto_version(ctx.get(), version) ||
  1511. !SSL_CTX_set_max_proto_version(ctx.get(), version)) {
  1512. return false;
  1513. }
  1514. SSL_CTX_set_verify(
  1515. ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
  1516. SSL_CTX_set_cert_verify_callback(ctx.get(), VerifySucceed, NULL);
  1517. bssl::UniquePtr<SSL> client, server;
  1518. if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  1519. nullptr /* no session */)) {
  1520. return false;
  1521. }
  1522. // Client and server should both see the leaf certificate.
  1523. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server.get()));
  1524. if (!peer || X509_cmp(cert.get(), peer.get()) != 0) {
  1525. fprintf(stderr, "Server peer certificate did not match.\n");
  1526. return false;
  1527. }
  1528. peer.reset(SSL_get_peer_certificate(client.get()));
  1529. if (!peer || X509_cmp(cert.get(), peer.get()) != 0) {
  1530. fprintf(stderr, "Client peer certificate did not match.\n");
  1531. return false;
  1532. }
  1533. // However, for historical reasons, the chain includes the leaf on the
  1534. // client, but does not on the server.
  1535. if (sk_X509_num(SSL_get_peer_cert_chain(client.get())) != 1) {
  1536. fprintf(stderr, "Client peer chain was incorrect.\n");
  1537. return false;
  1538. }
  1539. if (sk_X509_num(SSL_get_peer_cert_chain(server.get())) != 0) {
  1540. fprintf(stderr, "Server peer chain was incorrect.\n");
  1541. return false;
  1542. }
  1543. return true;
  1544. }
  1545. static bool TestRetainOnlySHA256OfCerts(bool is_dtls, const SSL_METHOD *method,
  1546. uint16_t version) {
  1547. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1548. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1549. if (!cert || !key) {
  1550. return false;
  1551. }
  1552. uint8_t *cert_der = NULL;
  1553. int cert_der_len = i2d_X509(cert.get(), &cert_der);
  1554. if (cert_der_len < 0) {
  1555. return false;
  1556. }
  1557. bssl::UniquePtr<uint8_t> free_cert_der(cert_der);
  1558. uint8_t cert_sha256[SHA256_DIGEST_LENGTH];
  1559. SHA256(cert_der, cert_der_len, cert_sha256);
  1560. // Configure both client and server to accept any certificate, but the
  1561. // server must retain only the SHA-256 of the peer.
  1562. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  1563. if (!ctx ||
  1564. !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
  1565. !SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
  1566. !SSL_CTX_set_min_proto_version(ctx.get(), version) ||
  1567. !SSL_CTX_set_max_proto_version(ctx.get(), version)) {
  1568. return false;
  1569. }
  1570. SSL_CTX_set_verify(
  1571. ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
  1572. SSL_CTX_set_cert_verify_callback(ctx.get(), VerifySucceed, NULL);
  1573. SSL_CTX_set_retain_only_sha256_of_client_certs(ctx.get(), 1);
  1574. bssl::UniquePtr<SSL> client, server;
  1575. if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  1576. nullptr /* no session */)) {
  1577. return false;
  1578. }
  1579. // The peer certificate has been dropped.
  1580. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server.get()));
  1581. if (peer) {
  1582. fprintf(stderr, "Peer certificate was retained.\n");
  1583. return false;
  1584. }
  1585. SSL_SESSION *session = SSL_get_session(server.get());
  1586. if (!session->peer_sha256_valid) {
  1587. fprintf(stderr, "peer_sha256_valid was not set.\n");
  1588. return false;
  1589. }
  1590. if (OPENSSL_memcmp(cert_sha256, session->peer_sha256, SHA256_DIGEST_LENGTH) !=
  1591. 0) {
  1592. fprintf(stderr, "peer_sha256 did not match.\n");
  1593. return false;
  1594. }
  1595. return true;
  1596. }
  1597. static bool ClientHelloMatches(uint16_t version, const uint8_t *expected,
  1598. size_t expected_len) {
  1599. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1600. // Our default cipher list varies by CPU capabilities, so manually place the
  1601. // ChaCha20 ciphers in front.
  1602. const char* cipher_list = "CHACHA20:ALL";
  1603. if (!ctx ||
  1604. // SSLv3 is off by default.
  1605. !SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION) ||
  1606. !SSL_CTX_set_max_proto_version(ctx.get(), version) ||
  1607. !SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list)) {
  1608. return false;
  1609. }
  1610. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1611. if (!ssl) {
  1612. return false;
  1613. }
  1614. std::vector<uint8_t> client_hello;
  1615. if (!GetClientHello(ssl.get(), &client_hello)) {
  1616. return false;
  1617. }
  1618. // Zero the client_random.
  1619. constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header
  1620. 1 + 3 + // handshake message header
  1621. 2; // client_version
  1622. if (client_hello.size() < kRandomOffset + SSL3_RANDOM_SIZE) {
  1623. fprintf(stderr, "ClientHello for version %04x too short.\n", version);
  1624. return false;
  1625. }
  1626. OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE);
  1627. if (client_hello.size() != expected_len ||
  1628. OPENSSL_memcmp(client_hello.data(), expected, expected_len) != 0) {
  1629. fprintf(stderr, "ClientHello for version %04x did not match:\n", version);
  1630. fprintf(stderr, "Got:\n\t");
  1631. for (size_t i = 0; i < client_hello.size(); i++) {
  1632. fprintf(stderr, "0x%02x, ", client_hello[i]);
  1633. }
  1634. fprintf(stderr, "\nWanted:\n\t");
  1635. for (size_t i = 0; i < expected_len; i++) {
  1636. fprintf(stderr, "0x%02x, ", expected[i]);
  1637. }
  1638. fprintf(stderr, "\n");
  1639. return false;
  1640. }
  1641. return true;
  1642. }
  1643. // Tests that our ClientHellos do not change unexpectedly.
  1644. static bool TestClientHello() {
  1645. static const uint8_t kSSL3ClientHello[] = {
  1646. 0x16,
  1647. 0x03, 0x00,
  1648. 0x00, 0x3b,
  1649. 0x01,
  1650. 0x00, 0x00, 0x37,
  1651. 0x03, 0x00,
  1652. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1653. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1654. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1655. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1656. 0x00,
  1657. 0x00, 0x10,
  1658. 0xc0, 0x09,
  1659. 0xc0, 0x13,
  1660. 0xc0, 0x0a,
  1661. 0xc0, 0x14,
  1662. 0x00, 0x2f,
  1663. 0x00, 0x35,
  1664. 0x00, 0x0a,
  1665. 0x00, 0xff, 0x01, 0x00,
  1666. };
  1667. if (!ClientHelloMatches(SSL3_VERSION, kSSL3ClientHello,
  1668. sizeof(kSSL3ClientHello))) {
  1669. return false;
  1670. }
  1671. static const uint8_t kTLS1ClientHello[] = {
  1672. 0x16,
  1673. 0x03, 0x01,
  1674. 0x00, 0x5a,
  1675. 0x01,
  1676. 0x00, 0x00, 0x56,
  1677. 0x03, 0x01,
  1678. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1679. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1680. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1681. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1682. 0x00,
  1683. 0x00, 0x0e,
  1684. 0xc0, 0x09,
  1685. 0xc0, 0x13,
  1686. 0xc0, 0x0a,
  1687. 0xc0, 0x14,
  1688. 0x00, 0x2f,
  1689. 0x00, 0x35,
  1690. 0x00, 0x0a,
  1691. 0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1692. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1693. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18,
  1694. };
  1695. if (!ClientHelloMatches(TLS1_VERSION, kTLS1ClientHello,
  1696. sizeof(kTLS1ClientHello))) {
  1697. return false;
  1698. }
  1699. static const uint8_t kTLS11ClientHello[] = {
  1700. 0x16,
  1701. 0x03, 0x01,
  1702. 0x00, 0x5a,
  1703. 0x01,
  1704. 0x00, 0x00, 0x56,
  1705. 0x03, 0x02,
  1706. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1707. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1708. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1709. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1710. 0x00,
  1711. 0x00, 0x0e,
  1712. 0xc0, 0x09,
  1713. 0xc0, 0x13,
  1714. 0xc0, 0x0a,
  1715. 0xc0, 0x14,
  1716. 0x00, 0x2f,
  1717. 0x00, 0x35,
  1718. 0x00, 0x0a,
  1719. 0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1720. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1721. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18,
  1722. };
  1723. if (!ClientHelloMatches(TLS1_1_VERSION, kTLS11ClientHello,
  1724. sizeof(kTLS11ClientHello))) {
  1725. return false;
  1726. }
  1727. // kTLS12ClientHello assumes RSA-PSS, which is disabled for Android system
  1728. // builds.
  1729. #if defined(BORINGSSL_ANDROID_SYSTEM)
  1730. return true;
  1731. #endif
  1732. static const uint8_t kTLS12ClientHello[] = {
  1733. 0x16,
  1734. 0x03, 0x01,
  1735. 0x00, 0x8e,
  1736. 0x01,
  1737. 0x00, 0x00, 0x8a,
  1738. 0x03, 0x03,
  1739. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1740. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1741. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1742. 0x00, 0x2a,
  1743. 0xcc, 0xa9,
  1744. 0xcc, 0xa8,
  1745. 0xc0, 0x2b,
  1746. 0xc0, 0x2f,
  1747. 0xc0, 0x2c,
  1748. 0xc0, 0x30,
  1749. 0xc0, 0x09,
  1750. 0xc0, 0x23,
  1751. 0xc0, 0x13,
  1752. 0xc0, 0x27,
  1753. 0xc0, 0x0a,
  1754. 0xc0, 0x24,
  1755. 0xc0, 0x14,
  1756. 0xc0, 0x28,
  1757. 0x00, 0x9c,
  1758. 0x00, 0x9d,
  1759. 0x00, 0x2f,
  1760. 0x00, 0x3c,
  1761. 0x00, 0x35,
  1762. 0x00, 0x3d,
  1763. 0x00, 0x0a,
  1764. 0x01, 0x00, 0x00, 0x37, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1765. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04,
  1766. 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08,
  1767. 0x06, 0x06, 0x01, 0x02, 0x01, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1768. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18,
  1769. };
  1770. if (!ClientHelloMatches(TLS1_2_VERSION, kTLS12ClientHello,
  1771. sizeof(kTLS12ClientHello))) {
  1772. return false;
  1773. }
  1774. // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our
  1775. // implementation has settled enough that it won't change.
  1776. return true;
  1777. }
  1778. static bssl::UniquePtr<SSL_SESSION> g_last_session;
  1779. static int SaveLastSession(SSL *ssl, SSL_SESSION *session) {
  1780. // Save the most recent session.
  1781. g_last_session.reset(session);
  1782. return 1;
  1783. }
  1784. static bssl::UniquePtr<SSL_SESSION> CreateClientSession(SSL_CTX *client_ctx,
  1785. SSL_CTX *server_ctx) {
  1786. g_last_session = nullptr;
  1787. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1788. // Connect client and server to get a session.
  1789. bssl::UniquePtr<SSL> client, server;
  1790. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1791. nullptr /* no session */)) {
  1792. fprintf(stderr, "Failed to connect client and server.\n");
  1793. return nullptr;
  1794. }
  1795. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1796. SSL_read(client.get(), nullptr, 0);
  1797. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1798. if (!g_last_session) {
  1799. fprintf(stderr, "Client did not receive a session.\n");
  1800. return nullptr;
  1801. }
  1802. return std::move(g_last_session);
  1803. }
  1804. static bool ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1805. SSL_SESSION *session,
  1806. bool reused) {
  1807. bssl::UniquePtr<SSL> client, server;
  1808. if (!ConnectClientAndServer(&client, &server, client_ctx,
  1809. server_ctx, session)) {
  1810. fprintf(stderr, "Failed to connect client and server.\n");
  1811. return false;
  1812. }
  1813. if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
  1814. fprintf(stderr, "Client and server were inconsistent.\n");
  1815. return false;
  1816. }
  1817. bool was_reused = !!SSL_session_reused(client.get());
  1818. if (was_reused != reused) {
  1819. fprintf(stderr, "Session was%s reused, but we expected the opposite.\n",
  1820. was_reused ? "" : " not");
  1821. return false;
  1822. }
  1823. return true;
  1824. }
  1825. static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx,
  1826. SSL_CTX *server_ctx,
  1827. SSL_SESSION *session) {
  1828. g_last_session = nullptr;
  1829. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1830. bssl::UniquePtr<SSL> client, server;
  1831. if (!ConnectClientAndServer(&client, &server, client_ctx,
  1832. server_ctx, session)) {
  1833. fprintf(stderr, "Failed to connect client and server.\n");
  1834. return nullptr;
  1835. }
  1836. if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
  1837. fprintf(stderr, "Client and server were inconsistent.\n");
  1838. return nullptr;
  1839. }
  1840. if (!SSL_session_reused(client.get())) {
  1841. fprintf(stderr, "Session was not reused.\n");
  1842. return nullptr;
  1843. }
  1844. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1845. SSL_read(client.get(), nullptr, 0);
  1846. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1847. if (!g_last_session) {
  1848. fprintf(stderr, "Client did not receive a renewed session.\n");
  1849. return nullptr;
  1850. }
  1851. return std::move(g_last_session);
  1852. }
  1853. static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) {
  1854. static const uint8_t kContext[] = {3};
  1855. if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) {
  1856. return SSL_TLSEXT_ERR_ALERT_FATAL;
  1857. }
  1858. return SSL_TLSEXT_ERR_OK;
  1859. }
  1860. static bool TestSessionIDContext(bool is_dtls, const SSL_METHOD *method,
  1861. uint16_t version) {
  1862. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1863. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1864. if (!cert || !key) {
  1865. return false;
  1866. }
  1867. static const uint8_t kContext1[] = {1};
  1868. static const uint8_t kContext2[] = {2};
  1869. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  1870. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  1871. if (!server_ctx || !client_ctx ||
  1872. !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  1873. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
  1874. !SSL_CTX_set_session_id_context(server_ctx.get(), kContext1,
  1875. sizeof(kContext1)) ||
  1876. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  1877. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  1878. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  1879. !SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
  1880. return false;
  1881. }
  1882. SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
  1883. SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
  1884. bssl::UniquePtr<SSL_SESSION> session =
  1885. CreateClientSession(client_ctx.get(), server_ctx.get());
  1886. if (!session) {
  1887. fprintf(stderr, "Error getting session.\n");
  1888. return false;
  1889. }
  1890. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  1891. true /* expect session reused */)) {
  1892. fprintf(stderr, "Error resuming session.\n");
  1893. return false;
  1894. }
  1895. // Change the session ID context.
  1896. if (!SSL_CTX_set_session_id_context(server_ctx.get(), kContext2,
  1897. sizeof(kContext2))) {
  1898. return false;
  1899. }
  1900. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  1901. false /* expect session not reused */)) {
  1902. fprintf(stderr, "Error connecting with a different context.\n");
  1903. return false;
  1904. }
  1905. // Change the session ID context back and install an SNI callback to switch
  1906. // it.
  1907. if (!SSL_CTX_set_session_id_context(server_ctx.get(), kContext1,
  1908. sizeof(kContext1))) {
  1909. return false;
  1910. }
  1911. SSL_CTX_set_tlsext_servername_callback(server_ctx.get(),
  1912. SwitchSessionIDContextSNI);
  1913. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  1914. false /* expect session not reused */)) {
  1915. fprintf(stderr, "Error connecting with a context switch on SNI callback.\n");
  1916. return false;
  1917. }
  1918. // Switch the session ID context with the early callback instead.
  1919. SSL_CTX_set_tlsext_servername_callback(server_ctx.get(), nullptr);
  1920. SSL_CTX_set_select_certificate_cb(
  1921. server_ctx.get(),
  1922. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  1923. static const uint8_t kContext[] = {3};
  1924. if (!SSL_set_session_id_context(client_hello->ssl, kContext,
  1925. sizeof(kContext))) {
  1926. return ssl_select_cert_error;
  1927. }
  1928. return ssl_select_cert_success;
  1929. });
  1930. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  1931. false /* expect session not reused */)) {
  1932. fprintf(stderr,
  1933. "Error connecting with a context switch on early callback.\n");
  1934. return false;
  1935. }
  1936. return true;
  1937. }
  1938. static timeval g_current_time;
  1939. static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
  1940. *out_clock = g_current_time;
  1941. }
  1942. static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) {
  1943. out_clock->tv_sec = 1000;
  1944. out_clock->tv_usec = 0;
  1945. }
  1946. static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
  1947. EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
  1948. int encrypt) {
  1949. static const uint8_t kZeros[16] = {0};
  1950. if (encrypt) {
  1951. OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
  1952. RAND_bytes(iv, 16);
  1953. } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
  1954. return 0;
  1955. }
  1956. if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
  1957. !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
  1958. return -1;
  1959. }
  1960. // Returning two from the callback in decrypt mode renews the
  1961. // session in TLS 1.2 and below.
  1962. return encrypt ? 1 : 2;
  1963. }
  1964. static bool GetServerTicketTime(long *out, const SSL_SESSION *session) {
  1965. if (session->tlsext_ticklen < 16 + 16 + SHA256_DIGEST_LENGTH) {
  1966. return false;
  1967. }
  1968. const uint8_t *ciphertext = session->tlsext_tick + 16 + 16;
  1969. size_t len = session->tlsext_ticklen - 16 - 16 - SHA256_DIGEST_LENGTH;
  1970. std::unique_ptr<uint8_t[]> plaintext(new uint8_t[len]);
  1971. #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
  1972. // Fuzzer-mode tickets are unencrypted.
  1973. OPENSSL_memcpy(plaintext.get(), ciphertext, len);
  1974. #else
  1975. static const uint8_t kZeros[16] = {0};
  1976. const uint8_t *iv = session->tlsext_tick + 16;
  1977. bssl::ScopedEVP_CIPHER_CTX ctx;
  1978. int len1, len2;
  1979. if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) ||
  1980. !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) ||
  1981. !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) {
  1982. return false;
  1983. }
  1984. len = static_cast<size_t>(len1 + len2);
  1985. #endif
  1986. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  1987. if (!ssl_ctx) {
  1988. return false;
  1989. }
  1990. bssl::UniquePtr<SSL_SESSION> server_session(
  1991. SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get()));
  1992. if (!server_session) {
  1993. return false;
  1994. }
  1995. *out = server_session->time;
  1996. return true;
  1997. }
  1998. static bool TestSessionTimeout(bool is_dtls, const SSL_METHOD *method,
  1999. uint16_t version) {
  2000. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2001. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2002. if (!cert || !key) {
  2003. return false;
  2004. }
  2005. for (bool server_test : std::vector<bool>{false, true}) {
  2006. static const time_t kStartTime = 1000;
  2007. g_current_time.tv_sec = kStartTime;
  2008. // We are willing to use a longer lifetime for TLS 1.3 sessions as
  2009. // resumptions still perform ECDHE.
  2010. const time_t timeout = version == TLS1_3_VERSION
  2011. ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT
  2012. : SSL_DEFAULT_SESSION_TIMEOUT;
  2013. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  2014. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  2015. if (!server_ctx || !client_ctx ||
  2016. !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  2017. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
  2018. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  2019. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  2020. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  2021. !SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
  2022. return false;
  2023. }
  2024. SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
  2025. SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
  2026. // Both client and server must enforce session timeouts. We configure the
  2027. // other side with a frozen clock so it never expires tickets.
  2028. if (server_test) {
  2029. SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
  2030. SSL_CTX_set_current_time_cb(server_ctx.get(), CurrentTimeCallback);
  2031. } else {
  2032. SSL_CTX_set_current_time_cb(client_ctx.get(), CurrentTimeCallback);
  2033. SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
  2034. }
  2035. // Configure a ticket callback which renews tickets.
  2036. SSL_CTX_set_tlsext_ticket_key_cb(server_ctx.get(), RenewTicketCallback);
  2037. bssl::UniquePtr<SSL_SESSION> session =
  2038. CreateClientSession(client_ctx.get(), server_ctx.get());
  2039. if (!session) {
  2040. fprintf(stderr, "Error getting session.\n");
  2041. return false;
  2042. }
  2043. // Advance the clock just behind the timeout.
  2044. g_current_time.tv_sec += timeout - 1;
  2045. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  2046. true /* expect session reused */)) {
  2047. fprintf(stderr, "Error resuming session.\n");
  2048. return false;
  2049. }
  2050. // Advance the clock one more second.
  2051. g_current_time.tv_sec++;
  2052. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  2053. false /* expect session not reused */)) {
  2054. fprintf(stderr, "Error resuming session.\n");
  2055. return false;
  2056. }
  2057. // Rewind the clock to before the session was minted.
  2058. g_current_time.tv_sec = kStartTime - 1;
  2059. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
  2060. false /* expect session not reused */)) {
  2061. fprintf(stderr, "Error resuming session.\n");
  2062. return false;
  2063. }
  2064. // SSL 3.0 cannot renew sessions.
  2065. if (version == SSL3_VERSION) {
  2066. continue;
  2067. }
  2068. // Renew the session 10 seconds before expiration.
  2069. time_t new_start_time = kStartTime + timeout - 10;
  2070. g_current_time.tv_sec = new_start_time;
  2071. bssl::UniquePtr<SSL_SESSION> new_session =
  2072. ExpectSessionRenewed(client_ctx.get(), server_ctx.get(), session.get());
  2073. if (!new_session) {
  2074. fprintf(stderr, "Error renewing session.\n");
  2075. return false;
  2076. }
  2077. // This new session is not the same object as before.
  2078. if (session.get() == new_session.get()) {
  2079. fprintf(stderr, "New and old sessions alias.\n");
  2080. return false;
  2081. }
  2082. // Check the sessions have timestamps measured from issuance.
  2083. long session_time = 0;
  2084. if (server_test) {
  2085. if (!GetServerTicketTime(&session_time, new_session.get())) {
  2086. fprintf(stderr, "Failed to decode session ticket.\n");
  2087. return false;
  2088. }
  2089. } else {
  2090. session_time = new_session->time;
  2091. }
  2092. if (session_time != g_current_time.tv_sec) {
  2093. fprintf(stderr, "New session is not measured from issuance.\n");
  2094. return false;
  2095. }
  2096. if (version == TLS1_3_VERSION) {
  2097. // Renewal incorporates fresh key material in TLS 1.3, so we extend the
  2098. // lifetime TLS 1.3.
  2099. g_current_time.tv_sec = new_start_time + timeout - 1;
  2100. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
  2101. new_session.get(),
  2102. true /* expect session reused */)) {
  2103. fprintf(stderr, "Error resuming renewed session.\n");
  2104. return false;
  2105. }
  2106. // The new session expires after the new timeout.
  2107. g_current_time.tv_sec = new_start_time + timeout + 1;
  2108. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
  2109. new_session.get(),
  2110. false /* expect session ot reused */)) {
  2111. fprintf(stderr, "Renewed session's lifetime is too long.\n");
  2112. return false;
  2113. }
  2114. // Renew the session until it begins just past the auth timeout.
  2115. time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT;
  2116. while (new_start_time < auth_end_time - 1000) {
  2117. // Get as close as possible to target start time.
  2118. new_start_time =
  2119. std::min(auth_end_time - 1000, new_start_time + timeout - 1);
  2120. g_current_time.tv_sec = new_start_time;
  2121. new_session = ExpectSessionRenewed(client_ctx.get(), server_ctx.get(),
  2122. new_session.get());
  2123. if (!new_session) {
  2124. fprintf(stderr, "Error renewing session.\n");
  2125. return false;
  2126. }
  2127. }
  2128. // Now the session's lifetime is bound by the auth timeout.
  2129. g_current_time.tv_sec = auth_end_time - 1;
  2130. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
  2131. new_session.get(),
  2132. true /* expect session reused */)) {
  2133. fprintf(stderr, "Error resuming renewed session.\n");
  2134. return false;
  2135. }
  2136. g_current_time.tv_sec = auth_end_time + 1;
  2137. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
  2138. new_session.get(),
  2139. false /* expect session ot reused */)) {
  2140. fprintf(stderr, "Renewed session's lifetime is too long.\n");
  2141. return false;
  2142. }
  2143. } else {
  2144. // The new session is usable just before the old expiration.
  2145. g_current_time.tv_sec = kStartTime + timeout - 1;
  2146. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
  2147. new_session.get(),
  2148. true /* expect session reused */)) {
  2149. fprintf(stderr, "Error resuming renewed session.\n");
  2150. return false;
  2151. }
  2152. // Renewal does not extend the lifetime, so it is not usable beyond the
  2153. // old expiration.
  2154. g_current_time.tv_sec = kStartTime + timeout + 1;
  2155. if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
  2156. new_session.get(),
  2157. false /* expect session not reused */)) {
  2158. fprintf(stderr, "Renewed session's lifetime is too long.\n");
  2159. return false;
  2160. }
  2161. }
  2162. }
  2163. return true;
  2164. }
  2165. static int SwitchContext(SSL *ssl, int *out_alert, void *arg) {
  2166. SSL_CTX *ctx = reinterpret_cast<SSL_CTX*>(arg);
  2167. SSL_set_SSL_CTX(ssl, ctx);
  2168. return SSL_TLSEXT_ERR_OK;
  2169. }
  2170. static bool TestSNICallback(bool is_dtls, const SSL_METHOD *method,
  2171. uint16_t version) {
  2172. // SSL 3.0 lacks extensions.
  2173. if (version == SSL3_VERSION) {
  2174. return true;
  2175. }
  2176. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2177. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2178. bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate();
  2179. bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey();
  2180. if (!cert || !key || !cert2 || !key2) {
  2181. return false;
  2182. }
  2183. // Test that switching the |SSL_CTX| at the SNI callback behaves correctly.
  2184. static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256;
  2185. static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8};
  2186. static const uint8_t kOCSPResponse[] = {1, 2, 3, 4};
  2187. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  2188. bssl::UniquePtr<SSL_CTX> server_ctx2(SSL_CTX_new(method));
  2189. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  2190. if (!server_ctx || !server_ctx2 || !client_ctx ||
  2191. !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  2192. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
  2193. !SSL_CTX_use_certificate(server_ctx2.get(), cert2.get()) ||
  2194. !SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get()) ||
  2195. !SSL_CTX_set_signed_cert_timestamp_list(server_ctx2.get(), kSCTList,
  2196. sizeof(kSCTList)) ||
  2197. !SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse,
  2198. sizeof(kOCSPResponse)) ||
  2199. // Historically signing preferences would be lost in some cases with the
  2200. // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure
  2201. // this doesn't happen when |version| is TLS 1.2, configure the private
  2202. // key to only sign SHA-256.
  2203. !SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(), &kECDSAWithSHA256,
  2204. 1) ||
  2205. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  2206. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  2207. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  2208. !SSL_CTX_set_max_proto_version(server_ctx.get(), version) ||
  2209. !SSL_CTX_set_min_proto_version(server_ctx2.get(), version) ||
  2210. !SSL_CTX_set_max_proto_version(server_ctx2.get(), version)) {
  2211. return false;
  2212. }
  2213. SSL_CTX_set_tlsext_servername_callback(server_ctx.get(), SwitchContext);
  2214. SSL_CTX_set_tlsext_servername_arg(server_ctx.get(), server_ctx2.get());
  2215. SSL_CTX_enable_signed_cert_timestamps(client_ctx.get());
  2216. SSL_CTX_enable_ocsp_stapling(client_ctx.get());
  2217. bssl::UniquePtr<SSL> client, server;
  2218. if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
  2219. server_ctx.get(), nullptr)) {
  2220. fprintf(stderr, "Handshake failed.\n");
  2221. return false;
  2222. }
  2223. // The client should have received |cert2|.
  2224. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client.get()));
  2225. if (!peer || X509_cmp(peer.get(), cert2.get()) != 0) {
  2226. fprintf(stderr, "Incorrect certificate received.\n");
  2227. return false;
  2228. }
  2229. // The client should have received |server_ctx2|'s SCT list.
  2230. const uint8_t *data;
  2231. size_t len;
  2232. SSL_get0_signed_cert_timestamp_list(client.get(), &data, &len);
  2233. if (Bytes(kSCTList) != Bytes(data, len)) {
  2234. fprintf(stderr, "Incorrect SCT list received.\n");
  2235. return false;
  2236. }
  2237. // The client should have received |server_ctx2|'s OCSP response.
  2238. SSL_get0_ocsp_response(client.get(), &data, &len);
  2239. if (Bytes(kOCSPResponse) != Bytes(data, len)) {
  2240. fprintf(stderr, "Incorrect OCSP response received.\n");
  2241. return false;
  2242. }
  2243. return true;
  2244. }
  2245. // Test that the early callback can swap the maximum version.
  2246. TEST(SSLTest, EarlyCallbackVersionSwitch) {
  2247. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2248. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2249. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  2250. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  2251. ASSERT_TRUE(cert);
  2252. ASSERT_TRUE(key);
  2253. ASSERT_TRUE(server_ctx);
  2254. ASSERT_TRUE(client_ctx);
  2255. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  2256. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  2257. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  2258. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  2259. SSL_CTX_set_select_certificate_cb(
  2260. server_ctx.get(),
  2261. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  2262. if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) {
  2263. return ssl_select_cert_error;
  2264. }
  2265. return ssl_select_cert_success;
  2266. });
  2267. bssl::UniquePtr<SSL> client, server;
  2268. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2269. server_ctx.get(), nullptr));
  2270. EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get()));
  2271. }
  2272. TEST(SSLTest, SetVersion) {
  2273. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2274. ASSERT_TRUE(ctx);
  2275. // Set valid TLS versions.
  2276. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2277. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  2278. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2279. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION));
  2280. // Invalid TLS versions are rejected.
  2281. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2282. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200));
  2283. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2284. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2285. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200));
  2286. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2287. // Zero is the default version.
  2288. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2289. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2290. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2291. EXPECT_EQ(TLS1_VERSION, ctx->conf_min_version);
  2292. // SSL 3.0 and TLS 1.3 are available, but not by default.
  2293. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION));
  2294. EXPECT_EQ(SSL3_VERSION, ctx->conf_min_version);
  2295. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  2296. EXPECT_EQ(TLS1_3_VERSION, ctx->conf_max_version);
  2297. // TLS1_3_DRAFT_VERSION is not an API-level version.
  2298. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_DRAFT_VERSION));
  2299. ERR_clear_error();
  2300. ctx.reset(SSL_CTX_new(DTLS_method()));
  2301. ASSERT_TRUE(ctx);
  2302. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2303. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION));
  2304. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2305. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION));
  2306. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2307. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2308. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2309. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2310. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2311. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2312. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2313. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2314. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2315. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2316. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2317. EXPECT_EQ(TLS1_1_VERSION, ctx->conf_min_version);
  2318. }
  2319. static const char *GetVersionName(uint16_t version) {
  2320. switch (version) {
  2321. case SSL3_VERSION:
  2322. return "SSLv3";
  2323. case TLS1_VERSION:
  2324. return "TLSv1";
  2325. case TLS1_1_VERSION:
  2326. return "TLSv1.1";
  2327. case TLS1_2_VERSION:
  2328. return "TLSv1.2";
  2329. case TLS1_3_VERSION:
  2330. return "TLSv1.3";
  2331. case DTLS1_VERSION:
  2332. return "DTLSv1";
  2333. case DTLS1_2_VERSION:
  2334. return "DTLSv1.2";
  2335. default:
  2336. return "???";
  2337. }
  2338. }
  2339. static bool TestVersion(bool is_dtls, const SSL_METHOD *method,
  2340. uint16_t version) {
  2341. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2342. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2343. if (!cert || !key) {
  2344. return false;
  2345. }
  2346. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  2347. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  2348. bssl::UniquePtr<SSL> client, server;
  2349. if (!server_ctx || !client_ctx ||
  2350. !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  2351. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
  2352. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  2353. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  2354. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  2355. !SSL_CTX_set_max_proto_version(server_ctx.get(), version) ||
  2356. !ConnectClientAndServer(&client, &server, client_ctx.get(),
  2357. server_ctx.get(), nullptr /* no session */)) {
  2358. fprintf(stderr, "Failed to connect.\n");
  2359. return false;
  2360. }
  2361. if (SSL_version(client.get()) != version ||
  2362. SSL_version(server.get()) != version) {
  2363. fprintf(stderr, "Version mismatch. Got %04x and %04x, wanted %04x.\n",
  2364. SSL_version(client.get()), SSL_version(server.get()), version);
  2365. return false;
  2366. }
  2367. // Test the version name is reported as expected.
  2368. const char *version_name = GetVersionName(version);
  2369. if (strcmp(version_name, SSL_get_version(client.get())) != 0 ||
  2370. strcmp(version_name, SSL_get_version(server.get())) != 0) {
  2371. fprintf(stderr, "Version name mismatch. Got '%s' and '%s', wanted '%s'.\n",
  2372. SSL_get_version(client.get()), SSL_get_version(server.get()),
  2373. version_name);
  2374. return false;
  2375. }
  2376. // Test SSL_SESSION reports the same name.
  2377. const char *client_name =
  2378. SSL_SESSION_get_version(SSL_get_session(client.get()));
  2379. const char *server_name =
  2380. SSL_SESSION_get_version(SSL_get_session(server.get()));
  2381. if (strcmp(version_name, client_name) != 0 ||
  2382. strcmp(version_name, server_name) != 0) {
  2383. fprintf(stderr,
  2384. "Session version name mismatch. Got '%s' and '%s', wanted '%s'.\n",
  2385. client_name, server_name, version_name);
  2386. return false;
  2387. }
  2388. return true;
  2389. }
  2390. // Tests that that |SSL_get_pending_cipher| is available during the ALPN
  2391. // selection callback.
  2392. static bool TestALPNCipherAvailable(bool is_dtls, const SSL_METHOD *method,
  2393. uint16_t version) {
  2394. // SSL 3.0 lacks extensions.
  2395. if (version == SSL3_VERSION) {
  2396. return true;
  2397. }
  2398. static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
  2399. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2400. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2401. if (!cert || !key) {
  2402. return false;
  2403. }
  2404. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  2405. if (!ctx || !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
  2406. !SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
  2407. !SSL_CTX_set_min_proto_version(ctx.get(), version) ||
  2408. !SSL_CTX_set_max_proto_version(ctx.get(), version) ||
  2409. SSL_CTX_set_alpn_protos(ctx.get(), kALPNProtos, sizeof(kALPNProtos)) !=
  2410. 0) {
  2411. return false;
  2412. }
  2413. // The ALPN callback does not fail the handshake on error, so have the
  2414. // callback write a boolean.
  2415. std::pair<uint16_t, bool> callback_state(version, false);
  2416. SSL_CTX_set_alpn_select_cb(
  2417. ctx.get(),
  2418. [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
  2419. unsigned in_len, void *arg) -> int {
  2420. auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg);
  2421. if (SSL_get_pending_cipher(ssl) != nullptr &&
  2422. SSL_version(ssl) == state->first) {
  2423. state->second = true;
  2424. }
  2425. return SSL_TLSEXT_ERR_NOACK;
  2426. },
  2427. &callback_state);
  2428. bssl::UniquePtr<SSL> client, server;
  2429. if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  2430. nullptr /* no session */)) {
  2431. return false;
  2432. }
  2433. if (!callback_state.second) {
  2434. fprintf(stderr, "The pending cipher was not known in the ALPN callback.\n");
  2435. return false;
  2436. }
  2437. return true;
  2438. }
  2439. static bool TestSSLClearSessionResumption(bool is_dtls,
  2440. const SSL_METHOD *method,
  2441. uint16_t version) {
  2442. // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this
  2443. // API pattern.
  2444. if (version == TLS1_3_VERSION) {
  2445. return true;
  2446. }
  2447. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2448. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2449. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
  2450. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
  2451. if (!cert || !key || !server_ctx || !client_ctx ||
  2452. !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
  2453. !SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
  2454. !SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
  2455. !SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
  2456. !SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
  2457. !SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
  2458. return false;
  2459. }
  2460. // Connect a client and a server.
  2461. bssl::UniquePtr<SSL> client, server;
  2462. if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
  2463. server_ctx.get(), nullptr /* no session */)) {
  2464. return false;
  2465. }
  2466. if (SSL_session_reused(client.get()) ||
  2467. SSL_session_reused(server.get())) {
  2468. fprintf(stderr, "Session unexpectedly reused.\n");
  2469. return false;
  2470. }
  2471. // Reset everything.
  2472. if (!SSL_clear(client.get()) ||
  2473. !SSL_clear(server.get())) {
  2474. fprintf(stderr, "SSL_clear failed.\n");
  2475. return false;
  2476. }
  2477. // Attempt to connect a second time.
  2478. if (!CompleteHandshakes(client.get(), server.get())) {
  2479. fprintf(stderr, "Could not reuse SSL objects.\n");
  2480. return false;
  2481. }
  2482. // |SSL_clear| should implicitly offer the previous session to the server.
  2483. if (!SSL_session_reused(client.get()) ||
  2484. !SSL_session_reused(server.get())) {
  2485. fprintf(stderr, "Session was not reused in second try.\n");
  2486. return false;
  2487. }
  2488. return true;
  2489. }
  2490. static bool ChainsEqual(STACK_OF(X509) *chain,
  2491. const std::vector<X509 *> &expected) {
  2492. if (sk_X509_num(chain) != expected.size()) {
  2493. return false;
  2494. }
  2495. for (size_t i = 0; i < expected.size(); i++) {
  2496. if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) {
  2497. return false;
  2498. }
  2499. }
  2500. return true;
  2501. }
  2502. static bool TestAutoChain(bool is_dtls, const SSL_METHOD *method,
  2503. uint16_t version) {
  2504. bssl::UniquePtr<X509> cert = GetChainTestCertificate();
  2505. bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
  2506. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2507. if (!cert || !intermediate || !key) {
  2508. return false;
  2509. }
  2510. // Configure both client and server to accept any certificate. Add
  2511. // |intermediate| to the cert store.
  2512. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  2513. if (!ctx ||
  2514. !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
  2515. !SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
  2516. !SSL_CTX_set_min_proto_version(ctx.get(), version) ||
  2517. !SSL_CTX_set_max_proto_version(ctx.get(), version) ||
  2518. !X509_STORE_add_cert(SSL_CTX_get_cert_store(ctx.get()),
  2519. intermediate.get())) {
  2520. return false;
  2521. }
  2522. SSL_CTX_set_verify(
  2523. ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
  2524. SSL_CTX_set_cert_verify_callback(ctx.get(), VerifySucceed, NULL);
  2525. // By default, the client and server should each only send the leaf.
  2526. bssl::UniquePtr<SSL> client, server;
  2527. if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  2528. nullptr /* no session */)) {
  2529. return false;
  2530. }
  2531. if (!ChainsEqual(SSL_get_peer_full_cert_chain(client.get()), {cert.get()})) {
  2532. fprintf(stderr, "Client-received chain did not match.\n");
  2533. return false;
  2534. }
  2535. if (!ChainsEqual(SSL_get_peer_full_cert_chain(server.get()), {cert.get()})) {
  2536. fprintf(stderr, "Server-received chain did not match.\n");
  2537. return false;
  2538. }
  2539. // If auto-chaining is enabled, then the intermediate is sent.
  2540. SSL_CTX_clear_mode(ctx.get(), SSL_MODE_NO_AUTO_CHAIN);
  2541. if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  2542. nullptr /* no session */)) {
  2543. return false;
  2544. }
  2545. if (!ChainsEqual(SSL_get_peer_full_cert_chain(client.get()),
  2546. {cert.get(), intermediate.get()})) {
  2547. fprintf(stderr, "Client-received chain did not match (auto-chaining).\n");
  2548. return false;
  2549. }
  2550. if (!ChainsEqual(SSL_get_peer_full_cert_chain(server.get()),
  2551. {cert.get(), intermediate.get()})) {
  2552. fprintf(stderr, "Server-received chain did not match (auto-chaining).\n");
  2553. return false;
  2554. }
  2555. // Auto-chaining does not override explicitly-configured intermediates.
  2556. if (!SSL_CTX_add1_chain_cert(ctx.get(), cert.get()) ||
  2557. !ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  2558. nullptr /* no session */)) {
  2559. return false;
  2560. }
  2561. if (!ChainsEqual(SSL_get_peer_full_cert_chain(client.get()),
  2562. {cert.get(), cert.get()})) {
  2563. fprintf(stderr,
  2564. "Client-received chain did not match (auto-chaining, explicit "
  2565. "intermediate).\n");
  2566. return false;
  2567. }
  2568. if (!ChainsEqual(SSL_get_peer_full_cert_chain(server.get()),
  2569. {cert.get(), cert.get()})) {
  2570. fprintf(stderr,
  2571. "Server-received chain did not match (auto-chaining, explicit "
  2572. "intermediate).\n");
  2573. return false;
  2574. }
  2575. return true;
  2576. }
  2577. static bool ExpectBadWriteRetry() {
  2578. int err = ERR_get_error();
  2579. if (ERR_GET_LIB(err) != ERR_LIB_SSL ||
  2580. ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) {
  2581. char buf[ERR_ERROR_STRING_BUF_LEN];
  2582. ERR_error_string_n(err, buf, sizeof(buf));
  2583. fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf);
  2584. return false;
  2585. }
  2586. if (ERR_peek_error() != 0) {
  2587. fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n");
  2588. return false;
  2589. }
  2590. return true;
  2591. }
  2592. static bool TestSSLWriteRetry(bool is_dtls, const SSL_METHOD *method,
  2593. uint16_t version) {
  2594. if (is_dtls) {
  2595. return true;
  2596. }
  2597. for (bool enable_partial_write : std::vector<bool>{false, true}) {
  2598. // Connect a client and server.
  2599. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2600. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2601. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  2602. bssl::UniquePtr<SSL> client, server;
  2603. if (!cert || !key || !ctx ||
  2604. !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
  2605. !SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
  2606. !SSL_CTX_set_min_proto_version(ctx.get(), version) ||
  2607. !SSL_CTX_set_max_proto_version(ctx.get(), version) ||
  2608. !ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  2609. nullptr /* no session */)) {
  2610. return false;
  2611. }
  2612. if (enable_partial_write) {
  2613. SSL_set_mode(client.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
  2614. }
  2615. // Write without reading until the buffer is full and we have an unfinished
  2616. // write. Keep a count so we may reread it again later. "hello!" will be
  2617. // written in two chunks, "hello" and "!".
  2618. char data[] = "hello!";
  2619. static const int kChunkLen = 5; // The length of "hello".
  2620. unsigned count = 0;
  2621. for (;;) {
  2622. int ret = SSL_write(client.get(), data, kChunkLen);
  2623. if (ret <= 0) {
  2624. int err = SSL_get_error(client.get(), ret);
  2625. if (SSL_get_error(client.get(), ret) == SSL_ERROR_WANT_WRITE) {
  2626. break;
  2627. }
  2628. fprintf(stderr, "SSL_write failed in unexpected way: %d\n", err);
  2629. return false;
  2630. }
  2631. if (ret != 5) {
  2632. fprintf(stderr, "SSL_write wrote %d bytes, expected 5.\n", ret);
  2633. return false;
  2634. }
  2635. count++;
  2636. }
  2637. // Retrying with the same parameters is legal.
  2638. if (SSL_get_error(client.get(), SSL_write(client.get(), data, kChunkLen)) !=
  2639. SSL_ERROR_WANT_WRITE) {
  2640. fprintf(stderr, "SSL_write retry unexpectedly failed.\n");
  2641. return false;
  2642. }
  2643. // Retrying with the same buffer but shorter length is not legal.
  2644. if (SSL_get_error(client.get(),
  2645. SSL_write(client.get(), data, kChunkLen - 1)) !=
  2646. SSL_ERROR_SSL ||
  2647. !ExpectBadWriteRetry()) {
  2648. fprintf(stderr, "SSL_write retry did not fail as expected.\n");
  2649. return false;
  2650. }
  2651. // Retrying with a different buffer pointer is not legal.
  2652. char data2[] = "hello";
  2653. if (SSL_get_error(client.get(), SSL_write(client.get(), data2,
  2654. kChunkLen)) != SSL_ERROR_SSL ||
  2655. !ExpectBadWriteRetry()) {
  2656. fprintf(stderr, "SSL_write retry did not fail as expected.\n");
  2657. return false;
  2658. }
  2659. // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move.
  2660. SSL_set_mode(client.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
  2661. if (SSL_get_error(client.get(),
  2662. SSL_write(client.get(), data2, kChunkLen)) !=
  2663. SSL_ERROR_WANT_WRITE) {
  2664. fprintf(stderr, "SSL_write retry unexpectedly failed.\n");
  2665. return false;
  2666. }
  2667. // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks.
  2668. if (SSL_get_error(client.get(),
  2669. SSL_write(client.get(), data2, kChunkLen - 1)) !=
  2670. SSL_ERROR_SSL ||
  2671. !ExpectBadWriteRetry()) {
  2672. fprintf(stderr, "SSL_write retry did not fail as expected.\n");
  2673. return false;
  2674. }
  2675. // Retrying with a larger buffer is legal.
  2676. if (SSL_get_error(client.get(),
  2677. SSL_write(client.get(), data, kChunkLen + 1)) !=
  2678. SSL_ERROR_WANT_WRITE) {
  2679. fprintf(stderr, "SSL_write retry unexpectedly failed.\n");
  2680. return false;
  2681. }
  2682. // Drain the buffer.
  2683. char buf[20];
  2684. for (unsigned i = 0; i < count; i++) {
  2685. if (SSL_read(server.get(), buf, sizeof(buf)) != kChunkLen ||
  2686. OPENSSL_memcmp(buf, "hello", kChunkLen) != 0) {
  2687. fprintf(stderr, "Failed to read initial records.\n");
  2688. return false;
  2689. }
  2690. }
  2691. // Now that there is space, a retry with a larger buffer should flush the
  2692. // pending record, skip over that many bytes of input (on assumption they
  2693. // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE
  2694. // is set, this will complete in two steps.
  2695. char data3[] = "_____!";
  2696. if (enable_partial_write) {
  2697. if (SSL_write(client.get(), data3, kChunkLen + 1) != kChunkLen ||
  2698. SSL_write(client.get(), data3 + kChunkLen, 1) != 1) {
  2699. fprintf(stderr, "SSL_write retry failed.\n");
  2700. return false;
  2701. }
  2702. } else if (SSL_write(client.get(), data3, kChunkLen + 1) != kChunkLen + 1) {
  2703. fprintf(stderr, "SSL_write retry failed.\n");
  2704. return false;
  2705. }
  2706. // Check the last write was correct. The data will be spread over two
  2707. // records, so SSL_read returns twice.
  2708. if (SSL_read(server.get(), buf, sizeof(buf)) != kChunkLen ||
  2709. OPENSSL_memcmp(buf, "hello", kChunkLen) != 0 ||
  2710. SSL_read(server.get(), buf, sizeof(buf)) != 1 ||
  2711. buf[0] != '!') {
  2712. fprintf(stderr, "Failed to read write retry.\n");
  2713. return false;
  2714. }
  2715. }
  2716. return true;
  2717. }
  2718. static bool TestRecordCallback(bool is_dtls, const SSL_METHOD *method,
  2719. uint16_t version) {
  2720. bssl::UniquePtr<X509> cert = GetChainTestCertificate();
  2721. bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
  2722. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2723. if (!cert || !intermediate || !key) {
  2724. return false;
  2725. }
  2726. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  2727. if (!ctx ||
  2728. !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
  2729. !SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
  2730. !SSL_CTX_set_min_proto_version(ctx.get(), version) ||
  2731. !SSL_CTX_set_max_proto_version(ctx.get(), version)) {
  2732. return false;
  2733. }
  2734. bool read_seen = false;
  2735. bool write_seen = false;
  2736. auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf,
  2737. size_t len, SSL *ssl) {
  2738. if (cb_type != SSL3_RT_HEADER) {
  2739. return;
  2740. }
  2741. // The callback does not report a version for records.
  2742. EXPECT_EQ(0, cb_version);
  2743. if (is_write) {
  2744. write_seen = true;
  2745. } else {
  2746. read_seen = true;
  2747. }
  2748. // Sanity-check that the record header is plausible.
  2749. CBS cbs;
  2750. CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len);
  2751. uint8_t type;
  2752. uint16_t record_version, length;
  2753. ASSERT_TRUE(CBS_get_u8(&cbs, &type));
  2754. ASSERT_TRUE(CBS_get_u16(&cbs, &record_version));
  2755. EXPECT_TRUE(record_version == version ||
  2756. record_version == (is_dtls ? DTLS1_VERSION : TLS1_VERSION))
  2757. << "Invalid record version: " << record_version;
  2758. if (is_dtls) {
  2759. uint16_t epoch;
  2760. ASSERT_TRUE(CBS_get_u16(&cbs, &epoch));
  2761. EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch;
  2762. ASSERT_TRUE(CBS_skip(&cbs, 6));
  2763. }
  2764. ASSERT_TRUE(CBS_get_u16(&cbs, &length));
  2765. EXPECT_EQ(0u, CBS_len(&cbs));
  2766. };
  2767. using CallbackType = decltype(cb);
  2768. SSL_CTX_set_msg_callback(
  2769. ctx.get(), [](int is_write, int cb_version, int cb_type, const void *buf,
  2770. size_t len, SSL *ssl, void *arg) {
  2771. CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg);
  2772. (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl);
  2773. });
  2774. SSL_CTX_set_msg_callback_arg(ctx.get(), &cb);
  2775. bssl::UniquePtr<SSL> client, server;
  2776. if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
  2777. nullptr /* no session */)) {
  2778. return false;
  2779. }
  2780. EXPECT_TRUE(read_seen);
  2781. EXPECT_TRUE(write_seen);
  2782. return true;
  2783. }
  2784. static bool ForEachVersion(bool (*test_func)(bool is_dtls,
  2785. const SSL_METHOD *method,
  2786. uint16_t version)) {
  2787. static uint16_t kTLSVersions[] = {
  2788. SSL3_VERSION,
  2789. TLS1_VERSION,
  2790. TLS1_1_VERSION,
  2791. TLS1_2_VERSION,
  2792. // TLS 1.3 requires RSA-PSS, which is disabled for Android system builds.
  2793. #if !defined(BORINGSSL_ANDROID_SYSTEM)
  2794. TLS1_3_VERSION,
  2795. #endif
  2796. };
  2797. static uint16_t kDTLSVersions[] = {
  2798. DTLS1_VERSION, DTLS1_2_VERSION,
  2799. };
  2800. for (uint16_t version : kTLSVersions) {
  2801. if (!test_func(false, TLS_method(), version)) {
  2802. fprintf(stderr, "Test failed at TLS version %04x.\n", version);
  2803. return false;
  2804. }
  2805. }
  2806. for (uint16_t version : kDTLSVersions) {
  2807. if (!test_func(true, DTLS_method(), version)) {
  2808. fprintf(stderr, "Test failed at DTLS version %04x.\n", version);
  2809. return false;
  2810. }
  2811. }
  2812. return true;
  2813. }
  2814. TEST(SSLTest, AddChainCertHack) {
  2815. // Ensure that we don't accidently break the hack that we have in place to
  2816. // keep curl and serf happy when they use an |X509| even after transfering
  2817. // ownership.
  2818. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2819. ASSERT_TRUE(ctx);
  2820. X509 *cert = GetTestCertificate().release();
  2821. ASSERT_TRUE(cert);
  2822. SSL_CTX_add0_chain_cert(ctx.get(), cert);
  2823. // This should not trigger a use-after-free.
  2824. X509_cmp(cert, cert);
  2825. }
  2826. TEST(SSLTest, GetCertificate) {
  2827. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2828. ASSERT_TRUE(ctx);
  2829. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2830. ASSERT_TRUE(cert);
  2831. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  2832. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  2833. ASSERT_TRUE(ssl);
  2834. X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
  2835. ASSERT_TRUE(cert2);
  2836. X509 *cert3 = SSL_get_certificate(ssl.get());
  2837. ASSERT_TRUE(cert3);
  2838. // The old and new certificates must be identical.
  2839. EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
  2840. EXPECT_EQ(0, X509_cmp(cert.get(), cert3));
  2841. uint8_t *der = nullptr;
  2842. long der_len = i2d_X509(cert.get(), &der);
  2843. ASSERT_LT(0, der_len);
  2844. bssl::UniquePtr<uint8_t> free_der(der);
  2845. uint8_t *der2 = nullptr;
  2846. long der2_len = i2d_X509(cert2, &der2);
  2847. ASSERT_LT(0, der2_len);
  2848. bssl::UniquePtr<uint8_t> free_der2(der2);
  2849. uint8_t *der3 = nullptr;
  2850. long der3_len = i2d_X509(cert3, &der3);
  2851. ASSERT_LT(0, der3_len);
  2852. bssl::UniquePtr<uint8_t> free_der3(der3);
  2853. // They must also encode identically.
  2854. EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len));
  2855. EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len));
  2856. }
  2857. TEST(SSLTest, SetChainAndKeyMismatch) {
  2858. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2859. ASSERT_TRUE(ctx);
  2860. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2861. ASSERT_TRUE(key);
  2862. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2863. ASSERT_TRUE(leaf);
  2864. std::vector<CRYPTO_BUFFER*> chain = {
  2865. leaf.get(),
  2866. };
  2867. // Should fail because |GetTestKey| doesn't match the chain-test certificate.
  2868. ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(),
  2869. key.get(), nullptr));
  2870. ERR_clear_error();
  2871. }
  2872. TEST(SSLTest, SetChainAndKey) {
  2873. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2874. ASSERT_TRUE(client_ctx);
  2875. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2876. ASSERT_TRUE(server_ctx);
  2877. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2878. ASSERT_TRUE(key);
  2879. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2880. ASSERT_TRUE(leaf);
  2881. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2882. GetChainTestIntermediateBuffer();
  2883. ASSERT_TRUE(intermediate);
  2884. std::vector<CRYPTO_BUFFER*> chain = {
  2885. leaf.get(), intermediate.get(),
  2886. };
  2887. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2888. chain.size(), key.get(), nullptr));
  2889. SSL_CTX_set_custom_verify(
  2890. client_ctx.get(), SSL_VERIFY_PEER,
  2891. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2892. return ssl_verify_ok;
  2893. });
  2894. bssl::UniquePtr<SSL> client, server;
  2895. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2896. server_ctx.get(),
  2897. nullptr /* no session */));
  2898. }
  2899. // Configuring the empty cipher list, though an error, should still modify the
  2900. // configuration.
  2901. TEST(SSLTest, EmptyCipherList) {
  2902. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2903. ASSERT_TRUE(ctx);
  2904. // Initially, the cipher list is not empty.
  2905. EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2906. // Configuring the empty cipher list fails.
  2907. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), ""));
  2908. ERR_clear_error();
  2909. // But the cipher list is still updated to empty.
  2910. EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2911. }
  2912. // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the
  2913. // test |SSL_TICKET_AEAD_METHOD| can fail.
  2914. enum ssl_test_ticket_aead_failure_mode {
  2915. ssl_test_ticket_aead_ok = 0,
  2916. ssl_test_ticket_aead_seal_fail,
  2917. ssl_test_ticket_aead_open_soft_fail,
  2918. ssl_test_ticket_aead_open_hard_fail,
  2919. };
  2920. struct ssl_test_ticket_aead_state {
  2921. unsigned retry_count;
  2922. ssl_test_ticket_aead_failure_mode failure_mode;
  2923. };
  2924. static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to,
  2925. const CRYPTO_EX_DATA *from,
  2926. void **from_d, int index,
  2927. long argl, void *argp) {
  2928. abort();
  2929. }
  2930. static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr,
  2931. CRYPTO_EX_DATA *ad, int index,
  2932. long argl, void *argp) {
  2933. auto state = reinterpret_cast<ssl_test_ticket_aead_state*>(ptr);
  2934. if (state == nullptr) {
  2935. return;
  2936. }
  2937. OPENSSL_free(state);
  2938. }
  2939. static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT;
  2940. static int g_ssl_test_ticket_aead_ex_index;
  2941. static int ssl_test_ticket_aead_get_ex_index() {
  2942. CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] {
  2943. g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index(
  2944. 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup,
  2945. ssl_test_ticket_aead_ex_index_free);
  2946. });
  2947. return g_ssl_test_ticket_aead_ex_index;
  2948. }
  2949. static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) {
  2950. return 1;
  2951. }
  2952. static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len,
  2953. size_t max_out_len, const uint8_t *in,
  2954. size_t in_len) {
  2955. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2956. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2957. if (state->failure_mode == ssl_test_ticket_aead_seal_fail ||
  2958. max_out_len < in_len + 1) {
  2959. return 0;
  2960. }
  2961. OPENSSL_memmove(out, in, in_len);
  2962. out[in_len] = 0xff;
  2963. *out_len = in_len + 1;
  2964. return 1;
  2965. }
  2966. static ssl_ticket_aead_result_t ssl_test_ticket_aead_open(
  2967. SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
  2968. const uint8_t *in, size_t in_len) {
  2969. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2970. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2971. if (state->retry_count > 0) {
  2972. state->retry_count--;
  2973. return ssl_ticket_aead_retry;
  2974. }
  2975. switch (state->failure_mode) {
  2976. case ssl_test_ticket_aead_ok:
  2977. break;
  2978. case ssl_test_ticket_aead_seal_fail:
  2979. // If |seal| failed then there shouldn't be any ticket to try and
  2980. // decrypt.
  2981. abort();
  2982. break;
  2983. case ssl_test_ticket_aead_open_soft_fail:
  2984. return ssl_ticket_aead_ignore_ticket;
  2985. case ssl_test_ticket_aead_open_hard_fail:
  2986. return ssl_ticket_aead_error;
  2987. }
  2988. if (in_len == 0 || in[in_len - 1] != 0xff) {
  2989. return ssl_ticket_aead_ignore_ticket;
  2990. }
  2991. if (max_out_len < in_len - 1) {
  2992. return ssl_ticket_aead_error;
  2993. }
  2994. OPENSSL_memmove(out, in, in_len - 1);
  2995. *out_len = in_len - 1;
  2996. return ssl_ticket_aead_success;
  2997. }
  2998. static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = {
  2999. ssl_test_ticket_aead_max_overhead,
  3000. ssl_test_ticket_aead_seal,
  3001. ssl_test_ticket_aead_open,
  3002. };
  3003. static void ConnectClientAndServerWithTicketMethod(
  3004. bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server,
  3005. SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count,
  3006. ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) {
  3007. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  3008. ASSERT_TRUE(client);
  3009. ASSERT_TRUE(server);
  3010. SSL_set_connect_state(client.get());
  3011. SSL_set_accept_state(server.get());
  3012. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  3013. OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state)));
  3014. ASSERT_TRUE(state);
  3015. OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state));
  3016. state->retry_count = retry_count;
  3017. state->failure_mode = failure_mode;
  3018. ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(),
  3019. state));
  3020. SSL_set_session(client.get(), session);
  3021. BIO *bio1, *bio2;
  3022. ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0));
  3023. // SSL_set_bio takes ownership.
  3024. SSL_set_bio(client.get(), bio1, bio1);
  3025. SSL_set_bio(server.get(), bio2, bio2);
  3026. if (CompleteHandshakes(client.get(), server.get())) {
  3027. *out_client = std::move(client);
  3028. *out_server = std::move(server);
  3029. } else {
  3030. out_client->reset();
  3031. out_server->reset();
  3032. }
  3033. }
  3034. class TicketAEADMethodTest
  3035. : public ::testing::TestWithParam<testing::tuple<
  3036. uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>> {};
  3037. TEST_P(TicketAEADMethodTest, Resume) {
  3038. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3039. ASSERT_TRUE(cert);
  3040. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3041. ASSERT_TRUE(key);
  3042. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3043. ASSERT_TRUE(server_ctx);
  3044. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3045. ASSERT_TRUE(client_ctx);
  3046. const uint16_t version = testing::get<0>(GetParam());
  3047. const unsigned retry_count = testing::get<1>(GetParam());
  3048. const ssl_test_ticket_aead_failure_mode failure_mode =
  3049. testing::get<2>(GetParam());
  3050. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3051. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3052. ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version));
  3053. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version));
  3054. ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version));
  3055. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version));
  3056. SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
  3057. SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
  3058. SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
  3059. SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
  3060. SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession);
  3061. SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod);
  3062. bssl::UniquePtr<SSL> client, server;
  3063. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3064. server_ctx.get(), retry_count,
  3065. failure_mode, nullptr);
  3066. switch (failure_mode) {
  3067. case ssl_test_ticket_aead_ok:
  3068. case ssl_test_ticket_aead_open_hard_fail:
  3069. case ssl_test_ticket_aead_open_soft_fail:
  3070. ASSERT_TRUE(client);
  3071. break;
  3072. case ssl_test_ticket_aead_seal_fail:
  3073. EXPECT_FALSE(client);
  3074. return;
  3075. }
  3076. EXPECT_FALSE(SSL_session_reused(client.get()));
  3077. EXPECT_FALSE(SSL_session_reused(server.get()));
  3078. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  3079. SSL_read(client.get(), nullptr, 0);
  3080. bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
  3081. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3082. server_ctx.get(), retry_count,
  3083. failure_mode, session.get());
  3084. switch (failure_mode) {
  3085. case ssl_test_ticket_aead_ok:
  3086. ASSERT_TRUE(client);
  3087. EXPECT_TRUE(SSL_session_reused(client.get()));
  3088. EXPECT_TRUE(SSL_session_reused(server.get()));
  3089. break;
  3090. case ssl_test_ticket_aead_seal_fail:
  3091. abort();
  3092. break;
  3093. case ssl_test_ticket_aead_open_hard_fail:
  3094. EXPECT_FALSE(client);
  3095. break;
  3096. case ssl_test_ticket_aead_open_soft_fail:
  3097. ASSERT_TRUE(client);
  3098. EXPECT_FALSE(SSL_session_reused(client.get()));
  3099. EXPECT_FALSE(SSL_session_reused(server.get()));
  3100. }
  3101. }
  3102. INSTANTIATE_TEST_CASE_P(
  3103. TicketAEADMethodTests, TicketAEADMethodTest,
  3104. testing::Combine(
  3105. testing::Values(TLS1_2_VERSION, TLS1_3_VERSION),
  3106. testing::Values(0, 1, 2),
  3107. testing::Values(ssl_test_ticket_aead_ok,
  3108. ssl_test_ticket_aead_seal_fail,
  3109. ssl_test_ticket_aead_open_soft_fail,
  3110. ssl_test_ticket_aead_open_hard_fail)));
  3111. TEST(SSLTest, SSL3Method) {
  3112. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3113. ASSERT_TRUE(cert);
  3114. // For compatibility, SSLv3_method should work up to SSL_CTX_new and SSL_new.
  3115. bssl::UniquePtr<SSL_CTX> ssl3_ctx(SSL_CTX_new(SSLv3_method()));
  3116. ASSERT_TRUE(ssl3_ctx);
  3117. ASSERT_TRUE(SSL_CTX_use_certificate(ssl3_ctx.get(), cert.get()));
  3118. bssl::UniquePtr<SSL> ssl(SSL_new(ssl3_ctx.get()));
  3119. EXPECT_TRUE(ssl);
  3120. // Create a normal TLS context to test against.
  3121. bssl::UniquePtr<SSL_CTX> tls_ctx(SSL_CTX_new(TLS_method()));
  3122. ASSERT_TRUE(tls_ctx);
  3123. ASSERT_TRUE(SSL_CTX_use_certificate(tls_ctx.get(), cert.get()));
  3124. // However, handshaking an SSLv3_method server should fail to resolve the
  3125. // version range. Explicit calls to SSL_CTX_set_min_proto_version are the only
  3126. // way to enable SSL 3.0.
  3127. bssl::UniquePtr<SSL> client, server;
  3128. EXPECT_FALSE(ConnectClientAndServer(&client, &server, tls_ctx.get(),
  3129. ssl3_ctx.get(),
  3130. nullptr /* no session */));
  3131. uint32_t err = ERR_get_error();
  3132. EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
  3133. EXPECT_EQ(SSL_R_NO_SUPPORTED_VERSIONS_ENABLED, ERR_GET_REASON(err));
  3134. // Likewise for SSLv3_method clients.
  3135. EXPECT_FALSE(ConnectClientAndServer(&client, &server, ssl3_ctx.get(),
  3136. tls_ctx.get(),
  3137. nullptr /* no session */));
  3138. err = ERR_get_error();
  3139. EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
  3140. EXPECT_EQ(SSL_R_NO_SUPPORTED_VERSIONS_ENABLED, ERR_GET_REASON(err));
  3141. }
  3142. TEST(SSLTest, SelectNextProto) {
  3143. uint8_t *result;
  3144. uint8_t result_len;
  3145. // If there is an overlap, it should be returned.
  3146. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3147. SSL_select_next_proto(&result, &result_len,
  3148. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3149. (const uint8_t *)"\1x\1y\1a\1z", 8));
  3150. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3151. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3152. SSL_select_next_proto(&result, &result_len,
  3153. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3154. (const uint8_t *)"\1x\1y\2bb\1z", 9));
  3155. EXPECT_EQ(Bytes("bb"), Bytes(result, result_len));
  3156. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3157. SSL_select_next_proto(&result, &result_len,
  3158. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3159. (const uint8_t *)"\1x\1y\3ccc\1z", 10));
  3160. EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len));
  3161. // Peer preference order takes precedence over local.
  3162. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3163. SSL_select_next_proto(&result, &result_len,
  3164. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3165. (const uint8_t *)"\3ccc\2bb\1a", 9));
  3166. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3167. // If there is no overlap, return the first local protocol.
  3168. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3169. SSL_select_next_proto(&result, &result_len,
  3170. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3171. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3172. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3173. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3174. SSL_select_next_proto(&result, &result_len, nullptr, 0,
  3175. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3176. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3177. }
  3178. // TODO(davidben): Convert this file to GTest properly.
  3179. TEST(SSLTest, AllTests) {
  3180. if (!TestSSL_SESSIONEncoding(kOpenSSLSession) ||
  3181. !TestSSL_SESSIONEncoding(kCustomSession) ||
  3182. !TestSSL_SESSIONEncoding(kBoringSSLSession) ||
  3183. !TestBadSSL_SESSIONEncoding(kBadSessionExtraField) ||
  3184. !TestBadSSL_SESSIONEncoding(kBadSessionVersion) ||
  3185. !TestBadSSL_SESSIONEncoding(kBadSessionTrailingData) ||
  3186. // Test the padding extension at TLS 1.2.
  3187. !TestPaddingExtension(TLS1_2_VERSION, TLS1_2_VERSION) ||
  3188. // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there
  3189. // will be no PSK binder after the padding extension.
  3190. !TestPaddingExtension(TLS1_3_VERSION, TLS1_2_VERSION) ||
  3191. // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there
  3192. // will be a PSK binder after the padding extension.
  3193. !TestPaddingExtension(TLS1_3_VERSION, TLS1_3_DRAFT_VERSION) ||
  3194. !ForEachVersion(TestSequenceNumber) ||
  3195. !ForEachVersion(TestOneSidedShutdown) ||
  3196. !ForEachVersion(TestGetPeerCertificate) ||
  3197. !ForEachVersion(TestRetainOnlySHA256OfCerts) ||
  3198. !TestClientHello() ||
  3199. !ForEachVersion(TestSessionIDContext) ||
  3200. !ForEachVersion(TestSessionTimeout) ||
  3201. !ForEachVersion(TestSNICallback) ||
  3202. !ForEachVersion(TestVersion) ||
  3203. !ForEachVersion(TestALPNCipherAvailable) ||
  3204. !ForEachVersion(TestSSLClearSessionResumption) ||
  3205. !ForEachVersion(TestAutoChain) ||
  3206. !ForEachVersion(TestSSLWriteRetry) ||
  3207. !ForEachVersion(TestRecordCallback)) {
  3208. ADD_FAILURE() << "Tests failed";
  3209. }
  3210. }