boringssl/ssl/s3_lib.c
David Benjamin 65226257c1 Add SSL_CIPHER_get_rfc_name.
OpenSSL's internal names for the ciphers are not the standard ones and are not
easy to consistently map to the standard ones. Add an API to get the real names
out. (WebRTC wants an API to get the standard names out.)

Also change some incorrect flags on SHA-256 TLS 1.2 ciphers;
SSL_HANDSHAKE_MAC_DEFAULT and SSL_HANDSHAKE_MAC_SHA256 are the same after TLS
1.2. A TLS 1.2 cipher should be tagged explicitly with SHA-256. (This avoids
tripping a check in SSL_CIPHER_get_rfc_name which asserts that default-hash
ciphers only ever use SHA-1 or MD5 for the bulk cipher MAC.)

Change-Id: Iaec2fd4aa97df29883094d3c2ae60f0ba003bf07
2015-02-09 17:31:28 -08:00

1532 lines
46 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <assert.h>
#include <stdio.h>
#include <openssl/buf.h>
#include <openssl/dh.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include "ssl_locl.h"
#define SSL3_NUM_CIPHERS (sizeof(ssl3_ciphers) / sizeof(SSL_CIPHER))
/* list of available SSLv3 ciphers (sorted by id) */
const SSL_CIPHER ssl3_ciphers[] = {
/* The RSA ciphers */
/* Cipher 04 */
{
1, SSL3_TXT_RSA_RC4_128_MD5, SSL3_CK_RSA_RC4_128_MD5, SSL_kRSA, SSL_aRSA,
SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 05 */
{
1, SSL3_TXT_RSA_RC4_128_SHA, SSL3_CK_RSA_RC4_128_SHA, SSL_kRSA, SSL_aRSA,
SSL_RC4, SSL_SHA1, SSL_SSLV3, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 0A */
{
1, SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA,
SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168,
},
/* The Ephemeral DH ciphers */
/* Cipher 18 */
{
1, SSL3_TXT_ADH_RC4_128_MD5, SSL3_CK_ADH_RC4_128_MD5, SSL_kEDH, SSL_aNULL,
SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* New AES ciphersuites */
/* Cipher 2F */
{
1, TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA,
SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 33 */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
SSL_kEDH, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 34 */
{
1, TLS1_TXT_ADH_WITH_AES_128_SHA, TLS1_CK_ADH_WITH_AES_128_SHA, SSL_kEDH,
SSL_aNULL, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 35 */
{
1, TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA,
SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* Cipher 39 */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
SSL_kEDH, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* Cipher 3A */
{
1, TLS1_TXT_ADH_WITH_AES_256_SHA, TLS1_CK_ADH_WITH_AES_256_SHA, SSL_kEDH,
SSL_aNULL, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* TLS v1.2 ciphersuites */
/* Cipher 3C */
{
1, TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256,
SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2,
SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher 3D */
{
1, TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256,
SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_TLSV1_2,
SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
},
/* Cipher 67 */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kEDH, SSL_aRSA, SSL_AES128,
SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher 6B */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kEDH, SSL_aRSA, SSL_AES256,
SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
},
/* Cipher 6C */
{
1, TLS1_TXT_ADH_WITH_AES_128_SHA256, TLS1_CK_ADH_WITH_AES_128_SHA256,
SSL_kEDH, SSL_aNULL, SSL_AES128, SSL_SHA256, SSL_TLSV1_2,
SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher 6D */
{
1, TLS1_TXT_ADH_WITH_AES_256_SHA256, TLS1_CK_ADH_WITH_AES_256_SHA256,
SSL_kEDH, SSL_aNULL, SSL_AES256, SSL_SHA256, SSL_TLSV1_2,
SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
},
/* Cipher 8A */
{
1, TLS1_TXT_PSK_WITH_RC4_128_SHA, TLS1_CK_PSK_WITH_RC4_128_SHA, SSL_kPSK,
SSL_aPSK, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 8C */
{
1, TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher 8D */
{
1, TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* GCM ciphersuites from RFC5288 */
/* Cipher 9C */
{
1, TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher 9D */
{
1, TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher 9E */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kEDH, SSL_aRSA, SSL_AES128GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher 9F */
{
1, TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kEDH, SSL_aRSA, SSL_AES256GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher A6 */
{
1, TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256,
TLS1_CK_ADH_WITH_AES_128_GCM_SHA256, SSL_kEDH, SSL_aNULL, SSL_AES128GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher A7 */
{
1, TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384,
TLS1_CK_ADH_WITH_AES_256_GCM_SHA384, SSL_kEDH, SSL_aNULL, SSL_AES256GCM,
SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher C007 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_kEECDH, SSL_aECDSA, SSL_RC4,
SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128,
128,
},
/* Cipher C009 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kEECDH, SSL_aECDSA,
SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C00A */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kEECDH, SSL_aECDSA,
SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* Cipher C011 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
SSL_kEECDH, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C013 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kEECDH, SSL_aRSA, SSL_AES128,
SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C014 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kEECDH, SSL_aRSA, SSL_AES256,
SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* Cipher C016 */
{
1, TLS1_TXT_ECDH_anon_WITH_RC4_128_SHA, TLS1_CK_ECDH_anon_WITH_RC4_128_SHA,
SSL_kEECDH, SSL_aNULL, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C018 */
{
1, TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA, SSL_kEECDH, SSL_aNULL, SSL_AES128,
SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
},
/* Cipher C019 */
{
1, TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA, SSL_kEECDH, SSL_aNULL, SSL_AES256,
SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
},
/* HMAC based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C023 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kEECDH, SSL_aECDSA,
SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher C024 */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kEECDH, SSL_aECDSA,
SSL_AES256, SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256,
},
/* Cipher C027 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kEECDH, SSL_aRSA, SSL_AES128,
SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
},
/* Cipher C028 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kEECDH, SSL_aRSA, SSL_AES256,
SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256,
},
/* GCM based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C02B */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kEECDH, SSL_aECDSA,
SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher C02C */
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kEECDH, SSL_aECDSA,
SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* Cipher C02F */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kEECDH, SSL_aRSA,
SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
/* Cipher C030 */
{
1, TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kEECDH, SSL_aRSA,
SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256, 256,
},
/* ECDH PSK ciphersuites */
/* Cipher CAFE */
{
1, TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256, SSL_kEECDH, SSL_aPSK,
SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128, 128,
},
{
1, TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305,
TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305, SSL_kEECDH, SSL_aRSA,
SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
256, 0,
},
{
1, TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305, SSL_kEECDH, SSL_aECDSA,
SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
256, 0,
},
{
1, TLS1_TXT_DHE_RSA_WITH_CHACHA20_POLY1305,
TLS1_CK_DHE_RSA_CHACHA20_POLY1305, SSL_kEDH, SSL_aRSA,
SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
256, 0,
},
};
const SSL3_ENC_METHOD SSLv3_enc_data = {
tls1_enc,
ssl3_prf,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
ssl3_final_finish_mac,
MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH,
ssl3_cert_verify_mac,
SSL3_MD_CLIENT_FINISHED_CONST, 4,
SSL3_MD_SERVER_FINISHED_CONST, 4,
ssl3_alert_code,
(int (*)(SSL *, uint8_t *, size_t, const char *, size_t, const uint8_t *,
size_t, int use_context)) ssl_undefined_function,
0,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write,
};
int ssl3_num_ciphers(void) { return SSL3_NUM_CIPHERS; }
const SSL_CIPHER *ssl3_get_cipher(unsigned int u) {
if (u >= SSL3_NUM_CIPHERS) {
return NULL;
}
return &ssl3_ciphers[SSL3_NUM_CIPHERS - 1 - u];
}
int ssl3_pending(const SSL *s) {
if (s->rstate == SSL_ST_READ_BODY) {
return 0;
}
return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length
: 0;
}
void ssl3_set_handshake_header(SSL *s, int htype, unsigned long len) {
uint8_t *p = (uint8_t *)s->init_buf->data;
*(p++) = htype;
l2n3(len, p);
s->init_num = (int)len + SSL3_HM_HEADER_LENGTH;
s->init_off = 0;
/* Add the message to the handshake hash. */
ssl3_finish_mac(s, (uint8_t *)s->init_buf->data, s->init_num);
}
int ssl3_handshake_write(SSL *s) { return ssl3_do_write(s, SSL3_RT_HANDSHAKE); }
int ssl3_new(SSL *s) {
SSL3_STATE *s3;
s3 = OPENSSL_malloc(sizeof *s3);
if (s3 == NULL) {
goto err;
}
memset(s3, 0, sizeof *s3);
memset(s3->rrec.seq_num, 0, sizeof(s3->rrec.seq_num));
memset(s3->wrec.seq_num, 0, sizeof(s3->wrec.seq_num));
s->s3 = s3;
/* Set the version to the highest supported version for TLS. This controls the
* initial state of |s->enc_method| and what the API reports as the version
* prior to negotiation.
*
* TODO(davidben): This is fragile and confusing. */
s->version = TLS1_2_VERSION;
return 1;
err:
return 0;
}
void ssl3_free(SSL *s) {
if (s == NULL || s->s3 == NULL) {
return;
}
if (s->s3->sniff_buffer != NULL) {
BUF_MEM_free(s->s3->sniff_buffer);
}
ssl3_cleanup_key_block(s);
if (s->s3->rbuf.buf != NULL) {
ssl3_release_read_buffer(s);
}
if (s->s3->wbuf.buf != NULL) {
ssl3_release_write_buffer(s);
}
if (s->s3->tmp.dh != NULL) {
DH_free(s->s3->tmp.dh);
}
if (s->s3->tmp.ecdh != NULL) {
EC_KEY_free(s->s3->tmp.ecdh);
}
if (s->s3->tmp.ca_names != NULL) {
sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free);
}
if (s->s3->tmp.certificate_types != NULL) {
OPENSSL_free(s->s3->tmp.certificate_types);
}
if (s->s3->tmp.peer_ecpointformatlist) {
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
}
if (s->s3->tmp.peer_ellipticcurvelist) {
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
}
if (s->s3->tmp.peer_psk_identity_hint) {
OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
}
if (s->s3->handshake_buffer) {
BIO_free(s->s3->handshake_buffer);
}
if (s->s3->handshake_dgst) {
ssl3_free_digest_list(s);
}
if (s->s3->alpn_selected) {
OPENSSL_free(s->s3->alpn_selected);
}
OPENSSL_cleanse(s->s3, sizeof *s->s3);
OPENSSL_free(s->s3);
s->s3 = NULL;
}
static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len);
long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg) {
int ret = 0;
if (cmd == SSL_CTRL_SET_TMP_RSA || cmd == SSL_CTRL_SET_TMP_RSA_CB ||
cmd == SSL_CTRL_SET_TMP_DH || cmd == SSL_CTRL_SET_TMP_DH_CB) {
if (!ssl_cert_inst(&s->cert)) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_MALLOC_FAILURE);
return 0;
}
}
switch (cmd) {
case SSL_CTRL_GET_SESSION_REUSED:
ret = s->hit;
break;
case SSL_CTRL_GET_CLIENT_CERT_REQUEST:
break;
case SSL_CTRL_GET_NUM_RENEGOTIATIONS:
ret = s->s3->num_renegotiations;
break;
case SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS:
ret = s->s3->num_renegotiations;
s->s3->num_renegotiations = 0;
break;
case SSL_CTRL_GET_TOTAL_RENEGOTIATIONS:
ret = s->s3->total_renegotiations;
break;
case SSL_CTRL_GET_FLAGS:
ret = (int)(s->s3->flags);
break;
case SSL_CTRL_NEED_TMP_RSA:
/* Temporary RSA keys are never used. */
ret = 0;
break;
case SSL_CTRL_SET_TMP_RSA:
/* Temporary RSA keys are never used. */
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
break;
case SSL_CTRL_SET_TMP_RSA_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return ret;
case SSL_CTRL_SET_TMP_DH: {
DH *dh = (DH *)parg;
if (dh == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return ret;
}
dh = DHparams_dup(dh);
if (dh == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB);
return ret;
}
if (!(s->options & SSL_OP_SINGLE_DH_USE) && !DH_generate_key(dh)) {
DH_free(dh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB);
return ret;
}
if (s->cert->dh_tmp != NULL) {
DH_free(s->cert->dh_tmp);
}
s->cert->dh_tmp = dh;
ret = 1;
break;
}
case SSL_CTRL_SET_TMP_DH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return ret;
case SSL_CTRL_SET_TMP_ECDH: {
EC_KEY *ecdh = NULL;
if (parg == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return ret;
}
if (!EC_KEY_up_ref((EC_KEY *)parg)) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_ECDH_LIB);
return ret;
}
ecdh = (EC_KEY *)parg;
if (!(s->options & SSL_OP_SINGLE_ECDH_USE) && !EC_KEY_generate_key(ecdh)) {
EC_KEY_free(ecdh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_ECDH_LIB);
return ret;
}
if (s->cert->ecdh_tmp != NULL) {
EC_KEY_free(s->cert->ecdh_tmp);
}
s->cert->ecdh_tmp = ecdh;
ret = 1;
break;
}
case SSL_CTRL_SET_TMP_ECDH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return ret;
case SSL_CTRL_SET_TLSEXT_HOSTNAME:
if (larg == TLSEXT_NAMETYPE_host_name) {
if (s->tlsext_hostname != NULL) {
OPENSSL_free(s->tlsext_hostname);
}
s->tlsext_hostname = NULL;
ret = 1;
if (parg == NULL) {
break;
}
if (strlen((char *)parg) > TLSEXT_MAXLEN_host_name) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_SSL3_EXT_INVALID_SERVERNAME);
return 0;
}
s->tlsext_hostname = BUF_strdup((char *) parg);
if (s->tlsext_hostname == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl,
SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE);
return 0;
}
break;
case SSL_CTRL_SET_TLSEXT_DEBUG_ARG:
s->tlsext_debug_arg = parg;
ret = 1;
break;
case SSL_CTRL_CHAIN:
if (larg) {
return ssl_cert_set1_chain(s->cert, (STACK_OF(X509) *)parg);
} else {
return ssl_cert_set0_chain(s->cert, (STACK_OF(X509) *)parg);
}
case SSL_CTRL_CHAIN_CERT:
if (larg) {
return ssl_cert_add1_chain_cert(s->cert, (X509 *)parg);
} else {
return ssl_cert_add0_chain_cert(s->cert, (X509 *)parg);
}
case SSL_CTRL_GET_CHAIN_CERTS:
*(STACK_OF(X509) **)parg = s->cert->key->chain;
break;
case SSL_CTRL_SELECT_CURRENT_CERT:
return ssl_cert_select_current(s->cert, (X509 *)parg);
case SSL_CTRL_GET_CURVES: {
const uint16_t *clist = s->s3->tmp.peer_ellipticcurvelist;
size_t clistlen = s->s3->tmp.peer_ellipticcurvelist_length;
if (parg) {
size_t i;
int *cptr = parg;
int nid;
for (i = 0; i < clistlen; i++) {
nid = tls1_ec_curve_id2nid(clist[i]);
if (nid != NID_undef) {
cptr[i] = nid;
} else {
cptr[i] = TLSEXT_nid_unknown | clist[i];
}
}
}
return (int)clistlen;
}
case SSL_CTRL_SET_CURVES:
return tls1_set_curves(&s->tlsext_ellipticcurvelist,
&s->tlsext_ellipticcurvelist_length, parg, larg);
case SSL_CTRL_SET_ECDH_AUTO:
s->cert->ecdh_tmp_auto = larg;
return 1;
case SSL_CTRL_SET_SIGALGS:
return tls1_set_sigalgs(s->cert, parg, larg, 0);
case SSL_CTRL_SET_CLIENT_SIGALGS:
return tls1_set_sigalgs(s->cert, parg, larg, 1);
case SSL_CTRL_GET_CLIENT_CERT_TYPES: {
const uint8_t **pctype = parg;
if (s->server || !s->s3->tmp.cert_req) {
return 0;
}
if (pctype) {
*pctype = s->s3->tmp.certificate_types;
}
return (int)s->s3->tmp.num_certificate_types;
}
case SSL_CTRL_SET_CLIENT_CERT_TYPES:
if (!s->server) {
return 0;
}
return ssl3_set_req_cert_type(s->cert, parg, larg);
case SSL_CTRL_BUILD_CERT_CHAIN:
return ssl_build_cert_chain(s->cert, s->ctx->cert_store, larg);
case SSL_CTRL_SET_VERIFY_CERT_STORE:
return ssl_cert_set_cert_store(s->cert, parg, 0, larg);
case SSL_CTRL_SET_CHAIN_CERT_STORE:
return ssl_cert_set_cert_store(s->cert, parg, 1, larg);
case SSL_CTRL_GET_SERVER_TMP_KEY:
if (s->server || !s->session || !s->session->sess_cert) {
return 0;
} else {
SESS_CERT *sc;
EVP_PKEY *ptmp;
int rv = 0;
sc = s->session->sess_cert;
if (!sc->peer_dh_tmp && !sc->peer_ecdh_tmp) {
return 0;
}
ptmp = EVP_PKEY_new();
if (!ptmp) {
return 0;
}
if (sc->peer_dh_tmp) {
rv = EVP_PKEY_set1_DH(ptmp, sc->peer_dh_tmp);
} else if (sc->peer_ecdh_tmp) {
rv = EVP_PKEY_set1_EC_KEY(ptmp, sc->peer_ecdh_tmp);
}
if (rv) {
*(EVP_PKEY **)parg = ptmp;
return 1;
}
EVP_PKEY_free(ptmp);
return 0;
}
case SSL_CTRL_GET_EC_POINT_FORMATS: {
const uint8_t **pformat = parg;
if (!s->s3->tmp.peer_ecpointformatlist) {
return 0;
}
*pformat = s->s3->tmp.peer_ecpointformatlist;
return (int)s->s3->tmp.peer_ecpointformatlist_length;
}
case SSL_CTRL_CHANNEL_ID:
s->tlsext_channel_id_enabled = 1;
ret = 1;
break;
case SSL_CTRL_SET_CHANNEL_ID:
s->tlsext_channel_id_enabled = 1;
if (EVP_PKEY_bits(parg) != 256) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_CHANNEL_ID_NOT_P256);
break;
}
if (s->tlsext_channel_id_private) {
EVP_PKEY_free(s->tlsext_channel_id_private);
}
s->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY *)parg);
ret = 1;
break;
case SSL_CTRL_GET_CHANNEL_ID:
if (!s->s3->tlsext_channel_id_valid) {
break;
}
memcpy(parg, s->s3->tlsext_channel_id, larg < 64 ? larg : 64);
return 64;
case SSL_CTRL_FALLBACK_SCSV:
s->fallback_scsv = 1;
ret = 1;
break;
default:
break;
}
return ret;
}
long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp)(void)) {
int ret = 0;
if ((cmd == SSL_CTRL_SET_TMP_RSA_CB || cmd == SSL_CTRL_SET_TMP_DH_CB) &&
!ssl_cert_inst(&s->cert)) {
OPENSSL_PUT_ERROR(SSL, ssl3_callback_ctrl, ERR_R_MALLOC_FAILURE);
return 0;
}
switch (cmd) {
case SSL_CTRL_SET_TMP_RSA_CB:
/* Ignore the callback; temporary RSA keys are never used. */
break;
case SSL_CTRL_SET_TMP_DH_CB:
s->cert->dh_tmp_cb = (DH * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
s->cert->ecdh_tmp_cb = (EC_KEY * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TLSEXT_DEBUG_CB:
s->tlsext_debug_cb =
(void (*)(SSL *, int, int, uint8_t *, int, void *))fp;
break;
default:
break;
}
return ret;
}
long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) {
CERT *cert;
cert = ctx->cert;
switch (cmd) {
case SSL_CTRL_NEED_TMP_RSA:
/* Temporary RSA keys are never used. */
return 0;
case SSL_CTRL_SET_TMP_RSA:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_RSA_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_DH: {
DH *new = NULL, *dh;
dh = (DH *)parg;
new = DHparams_dup(dh);
if (new == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB);
return 0;
}
if (!(ctx->options & SSL_OP_SINGLE_DH_USE) && !DH_generate_key(new)) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB);
DH_free(new);
return 0;
}
if (cert->dh_tmp != NULL) {
DH_free(cert->dh_tmp);
}
cert->dh_tmp = new;
return 1;
}
case SSL_CTRL_SET_TMP_DH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_ECDH: {
EC_KEY *ecdh = NULL;
if (parg == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_ECDH_LIB);
return 0;
}
ecdh = EC_KEY_dup((EC_KEY *)parg);
if (ecdh == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_EC_LIB);
return 0;
}
if (!(ctx->options & SSL_OP_SINGLE_ECDH_USE) &&
!EC_KEY_generate_key(ecdh)) {
EC_KEY_free(ecdh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_ECDH_LIB);
return 0;
}
if (cert->ecdh_tmp != NULL) {
EC_KEY_free(cert->ecdh_tmp);
}
cert->ecdh_tmp = ecdh;
return 1;
}
case SSL_CTRL_SET_TMP_ECDH_CB:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG:
ctx->tlsext_servername_arg = parg;
break;
case SSL_CTRL_SET_TLSEXT_TICKET_KEYS:
case SSL_CTRL_GET_TLSEXT_TICKET_KEYS: {
uint8_t *keys = parg;
if (!keys) {
return 48;
}
if (larg != 48) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_INVALID_TICKET_KEYS_LENGTH);
return 0;
}
if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS) {
memcpy(ctx->tlsext_tick_key_name, keys, 16);
memcpy(ctx->tlsext_tick_hmac_key, keys + 16, 16);
memcpy(ctx->tlsext_tick_aes_key, keys + 32, 16);
} else {
memcpy(keys, ctx->tlsext_tick_key_name, 16);
memcpy(keys + 16, ctx->tlsext_tick_hmac_key, 16);
memcpy(keys + 32, ctx->tlsext_tick_aes_key, 16);
}
return 1;
}
case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG:
ctx->tlsext_status_arg = parg;
return 1;
break;
case SSL_CTRL_SET_CURVES:
return tls1_set_curves(&ctx->tlsext_ellipticcurvelist,
&ctx->tlsext_ellipticcurvelist_length, parg, larg);
case SSL_CTRL_SET_ECDH_AUTO:
ctx->cert->ecdh_tmp_auto = larg;
return 1;
case SSL_CTRL_SET_SIGALGS:
return tls1_set_sigalgs(ctx->cert, parg, larg, 0);
case SSL_CTRL_SET_CLIENT_SIGALGS:
return tls1_set_sigalgs(ctx->cert, parg, larg, 1);
case SSL_CTRL_SET_CLIENT_CERT_TYPES:
return ssl3_set_req_cert_type(ctx->cert, parg, larg);
case SSL_CTRL_BUILD_CERT_CHAIN:
return ssl_build_cert_chain(ctx->cert, ctx->cert_store, larg);
case SSL_CTRL_SET_VERIFY_CERT_STORE:
return ssl_cert_set_cert_store(ctx->cert, parg, 0, larg);
case SSL_CTRL_SET_CHAIN_CERT_STORE:
return ssl_cert_set_cert_store(ctx->cert, parg, 1, larg);
case SSL_CTRL_EXTRA_CHAIN_CERT:
if (ctx->extra_certs == NULL) {
ctx->extra_certs = sk_X509_new_null();
if (ctx->extra_certs == NULL) {
return 0;
}
}
sk_X509_push(ctx->extra_certs, (X509 *)parg);
break;
case SSL_CTRL_GET_EXTRA_CHAIN_CERTS:
if (ctx->extra_certs == NULL && larg == 0) {
*(STACK_OF(X509) **)parg = ctx->cert->key->chain;
} else {
*(STACK_OF(X509) **)parg = ctx->extra_certs;
}
break;
case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS:
if (ctx->extra_certs) {
sk_X509_pop_free(ctx->extra_certs, X509_free);
ctx->extra_certs = NULL;
}
break;
case SSL_CTRL_CHAIN:
if (larg) {
return ssl_cert_set1_chain(ctx->cert, (STACK_OF(X509) *)parg);
} else {
return ssl_cert_set0_chain(ctx->cert, (STACK_OF(X509) *)parg);
}
case SSL_CTRL_CHAIN_CERT:
if (larg) {
return ssl_cert_add1_chain_cert(ctx->cert, (X509 *)parg);
} else {
return ssl_cert_add0_chain_cert(ctx->cert, (X509 *)parg);
}
case SSL_CTRL_GET_CHAIN_CERTS:
*(STACK_OF(X509) **)parg = ctx->cert->key->chain;
break;
case SSL_CTRL_SELECT_CURRENT_CERT:
return ssl_cert_select_current(ctx->cert, (X509 *)parg);
case SSL_CTRL_CHANNEL_ID:
ctx->tlsext_channel_id_enabled = 1;
return 1;
case SSL_CTRL_SET_CHANNEL_ID:
ctx->tlsext_channel_id_enabled = 1;
if (EVP_PKEY_bits(parg) != 256) {
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_CHANNEL_ID_NOT_P256);
break;
}
if (ctx->tlsext_channel_id_private) {
EVP_PKEY_free(ctx->tlsext_channel_id_private);
}
ctx->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY *)parg);
break;
default:
return 0;
}
return 1;
}
long ssl3_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void)) {
CERT *cert;
cert = ctx->cert;
switch (cmd) {
case SSL_CTRL_SET_TMP_RSA_CB:
/* Ignore the callback; temporary RSA keys are never used. */
break;
case SSL_CTRL_SET_TMP_DH_CB:
cert->dh_tmp_cb = (DH * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
cert->ecdh_tmp_cb = (EC_KEY * (*)(SSL *, int, int))fp;
break;
case SSL_CTRL_SET_TLSEXT_SERVERNAME_CB:
ctx->tlsext_servername_callback = (int (*)(SSL *, int *, void *))fp;
break;
case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB:
ctx->tlsext_status_cb = (int (*)(SSL *, void *))fp;
break;
case SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB:
ctx->tlsext_ticket_key_cb = (int (
*)(SSL *, uint8_t *, uint8_t *, EVP_CIPHER_CTX *, HMAC_CTX *, int))fp;
break;
default:
return 0;
}
return 1;
}
/* ssl3_get_cipher_by_value returns the SSL_CIPHER with value |value| or NULL
* if none exists.
*
* This function needs to check if the ciphers required are actually
* available. */
const SSL_CIPHER *ssl3_get_cipher_by_value(uint16_t value) {
SSL_CIPHER c;
c.id = 0x03000000L | value;
return bsearch(&c, ssl3_ciphers, SSL3_NUM_CIPHERS, sizeof(SSL_CIPHER),
ssl_cipher_id_cmp);
}
/* ssl3_get_cipher_by_value returns the cipher value of |c|. */
uint16_t ssl3_get_cipher_value(const SSL_CIPHER *c) {
unsigned long id = c->id;
/* All ciphers are SSLv3 now. */
assert((id & 0xff000000) == 0x03000000);
return id & 0xffff;
}
struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(SSL *s) {
if (s->cipher_list != NULL) {
return s->cipher_list;
}
if (s->version >= TLS1_1_VERSION && s->ctx != NULL &&
s->ctx->cipher_list_tls11 != NULL) {
return s->ctx->cipher_list_tls11;
}
if (s->ctx != NULL && s->ctx->cipher_list != NULL) {
return s->ctx->cipher_list;
}
return NULL;
}
const SSL_CIPHER *ssl3_choose_cipher(
SSL *s, STACK_OF(SSL_CIPHER) * clnt,
struct ssl_cipher_preference_list_st *server_pref) {
const SSL_CIPHER *c, *ret = NULL;
STACK_OF(SSL_CIPHER) *srvr = server_pref->ciphers, *prio, *allow;
size_t i;
int ok;
size_t cipher_index;
unsigned long alg_k, alg_a, mask_k, mask_a;
/* in_group_flags will either be NULL, or will point to an array of bytes
* which indicate equal-preference groups in the |prio| stack. See the
* comment about |in_group_flags| in the |ssl_cipher_preference_list_st|
* struct. */
const uint8_t *in_group_flags;
/* group_min contains the minimal index so far found in a group, or -1 if no
* such value exists yet. */
int group_min = -1;
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
prio = srvr;
in_group_flags = server_pref->in_group_flags;
allow = clnt;
} else {
prio = clnt;
in_group_flags = NULL;
allow = srvr;
}
ssl_get_compatible_server_ciphers(s, &mask_k, &mask_a);
for (i = 0; i < sk_SSL_CIPHER_num(prio); i++) {
c = sk_SSL_CIPHER_value(prio, i);
ok = 1;
/* Skip TLS v1.2 only ciphersuites if not supported */
if ((c->algorithm_ssl & SSL_TLSV1_2) && !SSL_USE_TLS1_2_CIPHERS(s)) {
ok = 0;
}
alg_k = c->algorithm_mkey;
alg_a = c->algorithm_auth;
ok = ok && (alg_k & mask_k) && (alg_a & mask_a);
if (ok && sk_SSL_CIPHER_find(allow, &cipher_index, c)) {
if (in_group_flags != NULL && in_group_flags[i] == 1) {
/* This element of |prio| is in a group. Update the minimum index found
* so far and continue looking. */
if (group_min == -1 || (size_t)group_min > cipher_index) {
group_min = cipher_index;
}
} else {
if (group_min != -1 && (size_t)group_min < cipher_index) {
cipher_index = group_min;
}
ret = sk_SSL_CIPHER_value(allow, cipher_index);
break;
}
}
if (in_group_flags != NULL && in_group_flags[i] == 0 && group_min != -1) {
/* We are about to leave a group, but we found a match in it, so that's
* our answer. */
ret = sk_SSL_CIPHER_value(allow, group_min);
break;
}
}
return ret;
}
int ssl3_get_req_cert_type(SSL *s, uint8_t *p) {
int ret = 0;
const uint8_t *sig;
size_t i, siglen;
int have_rsa_sign = 0;
int have_ecdsa_sign = 0;
/* If we have custom certificate types set, use them */
if (s->cert->client_certificate_types) {
memcpy(p, s->cert->client_certificate_types,
s->cert->num_client_certificate_types);
return s->cert->num_client_certificate_types;
}
/* get configured sigalgs */
siglen = tls12_get_psigalgs(s, &sig);
for (i = 0; i < siglen; i += 2, sig += 2) {
switch (sig[1]) {
case TLSEXT_signature_rsa:
have_rsa_sign = 1;
break;
case TLSEXT_signature_ecdsa:
have_ecdsa_sign = 1;
break;
}
}
if (have_rsa_sign) {
p[ret++] = SSL3_CT_RSA_SIGN;
}
/* ECDSA certs can be used with RSA cipher suites as well so we don't need to
* check for SSL_kECDH or SSL_kEECDH. */
if (s->version >= TLS1_VERSION && have_ecdsa_sign) {
p[ret++] = TLS_CT_ECDSA_SIGN;
}
return ret;
}
static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len) {
if (c->client_certificate_types) {
OPENSSL_free(c->client_certificate_types);
c->client_certificate_types = NULL;
}
c->num_client_certificate_types = 0;
if (!p || !len) {
return 1;
}
if (len > 0xff) {
return 0;
}
c->client_certificate_types = BUF_memdup(p, len);
if (!c->client_certificate_types) {
return 0;
}
c->num_client_certificate_types = len;
return 1;
}
int ssl3_shutdown(SSL *s) {
int ret;
/* Do nothing if configured not to send a close_notify. */
if (s->quiet_shutdown) {
s->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN;
return 1;
}
if (!(s->shutdown & SSL_SENT_SHUTDOWN)) {
s->shutdown |= SSL_SENT_SHUTDOWN;
ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY);
/* our shutdown alert has been sent now, and if it still needs to be
* written, s->s3->alert_dispatch will be true */
if (s->s3->alert_dispatch) {
return -1; /* return WANT_WRITE */
}
} else if (s->s3->alert_dispatch) {
/* resend it if not sent */
ret = s->method->ssl_dispatch_alert(s);
if (ret == -1) {
/* we only get to return -1 here the 2nd/Nth invocation, we must have
* already signalled return 0 upon a previous invoation, return
* WANT_WRITE */
return ret;
}
} else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
/* If we are waiting for a close from our peer, we are closed */
s->method->ssl_read_bytes(s, 0, NULL, 0, 0);
if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
return -1; /* return WANT_READ */
}
}
if (s->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) &&
!s->s3->alert_dispatch) {
return 1;
} else {
return 0;
}
}
int ssl3_write(SSL *s, const void *buf, int len) {
ERR_clear_system_error();
if (s->s3->renegotiate) {
ssl3_renegotiate_check(s);
}
return s->method->ssl_write_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len);
}
static int ssl3_read_internal(SSL *s, void *buf, int len, int peek) {
ERR_clear_system_error();
if (s->s3->renegotiate) {
ssl3_renegotiate_check(s);
}
return s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len, peek);
}
int ssl3_read(SSL *s, void *buf, int len) {
return ssl3_read_internal(s, buf, len, 0);
}
int ssl3_peek(SSL *s, void *buf, int len) {
return ssl3_read_internal(s, buf, len, 1);
}
int ssl3_renegotiate(SSL *s) {
if (s->handshake_func == NULL) {
return 1;
}
s->s3->renegotiate = 1;
return 1;
}
int ssl3_renegotiate_check(SSL *s) {
if (s->s3->renegotiate && s->s3->rbuf.left == 0 && s->s3->wbuf.left == 0 &&
!SSL_in_init(s)) {
/* if we are the server, and we have sent a 'RENEGOTIATE' message, we
* need to go to SSL_ST_ACCEPT. */
s->state = SSL_ST_RENEGOTIATE;
s->s3->renegotiate = 0;
s->s3->num_renegotiations++;
s->s3->total_renegotiations++;
return 1;
}
return 0;
}
/* If we are using default SHA1+MD5 algorithms switch to new SHA256 PRF and
* handshake macs if required. */
long ssl_get_algorithm2(SSL *s) {
static const unsigned long kMask = SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF;
long alg2 = s->s3->tmp.new_cipher->algorithm2;
if (s->enc_method->enc_flags & SSL_ENC_FLAG_SHA256_PRF &&
(alg2 & kMask) == kMask) {
return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256;
}
return alg2;
}