boringssl/crypto/evp/p_dsa_asn1.c
David Benjamin 3cadf63c68 Remove DSA write_params.
This imports upstream's ea6b07b54c1f8fc2275a121cdda071e2df7bd6c1 along
with a bugfix in 987157f6f63fa70dbeffca3c8bc62f26e9767ff2.

In an SPKI, a DSA key is only an INTEGER, with the group information in
the AlgorithmIdentifier. But a standalone DSAPublicKey is more complex
(and apparently made up by OpenSSL). OpenSSL implemented this with a
write_params boolean and making DSAPublicKey a CHOICE.

Instead, have p_dsa_asn1.c encode an INTEGER directly. d2i_DSAPublicKey
only parses the standalone form. (That code will be replaced later, but
first do this in preparation for rewriting the DSA ASN.1 code.)

Change-Id: I6fbe298d2723b9816806e9c196c724359b9ffd63
Reviewed-on: https://boringssl-review.googlesource.com/7021
Reviewed-by: Adam Langley <agl@google.com>
2016-02-16 23:54:38 +00:00

594 lines
14 KiB
C

/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
* 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/evp.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/digest.h>
#include <openssl/dsa.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/x509.h>
#include "../dsa/internal.h"
#include "internal.h"
static int dsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) {
const uint8_t *p, *pm;
int pklen, pmlen;
int ptype;
void *pval;
ASN1_STRING *pstr;
X509_ALGOR *palg;
ASN1_INTEGER *public_key = NULL;
DSA *dsa = NULL;
if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) {
return 0;
}
X509_ALGOR_get0(NULL, &ptype, &pval, palg);
if (ptype == V_ASN1_SEQUENCE) {
pstr = pval;
pm = pstr->data;
pmlen = pstr->length;
dsa = d2i_DSAparams(NULL, &pm, pmlen);
if (dsa == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
goto err;
}
} else if (ptype == V_ASN1_NULL || ptype == V_ASN1_UNDEF) {
dsa = DSA_new();
if (dsa == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
} else {
OPENSSL_PUT_ERROR(EVP, EVP_R_PARAMETER_ENCODING_ERROR);
goto err;
}
public_key = d2i_ASN1_INTEGER(NULL, &p, pklen);
if (public_key == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
goto err;
}
dsa->pub_key = ASN1_INTEGER_to_BN(public_key, NULL);
if (dsa->pub_key == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BN_DECODE_ERROR);
goto err;
}
ASN1_INTEGER_free(public_key);
EVP_PKEY_assign_DSA(pkey, dsa);
return 1;
err:
ASN1_INTEGER_free(public_key);
DSA_free(dsa);
return 0;
}
static int dsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) {
DSA *dsa;
ASN1_STRING *pval = NULL;
uint8_t *penc = NULL;
int penclen;
dsa = pkey->pkey.dsa;
int ptype;
if (dsa->p && dsa->q && dsa->g) {
pval = ASN1_STRING_new();
if (!pval) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
pval->length = i2d_DSAparams(dsa, &pval->data);
if (pval->length <= 0) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
ptype = V_ASN1_SEQUENCE;
} else {
ptype = V_ASN1_UNDEF;
}
ASN1_INTEGER *pubint = BN_to_ASN1_INTEGER(dsa->pub_key, NULL);
if (pubint == NULL) {
goto err;
}
penclen = i2d_ASN1_INTEGER(pubint, &penc);
ASN1_INTEGER_free(pubint);
if (penclen <= 0) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_DSA), ptype, pval,
penc, penclen)) {
return 1;
}
err:
OPENSSL_free(penc);
ASN1_STRING_free(pval);
return 0;
}
static int dsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) {
const uint8_t *p, *pm;
int pklen, pmlen;
int ptype;
void *pval;
ASN1_STRING *pstr;
X509_ALGOR *palg;
ASN1_INTEGER *privkey = NULL;
BN_CTX *ctx = NULL;
/* In PKCS#8 DSA: you just get a private key integer and parameters in the
* AlgorithmIdentifier the pubkey must be recalculated. */
STACK_OF(ASN1_TYPE) *ndsa = NULL;
DSA *dsa = NULL;
if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) {
return 0;
}
X509_ALGOR_get0(NULL, &ptype, &pval, palg);
/* Check for broken DSA PKCS#8, UGH! */
if (*p == (V_ASN1_SEQUENCE | V_ASN1_CONSTRUCTED)) {
ASN1_TYPE *t1, *t2;
ndsa = d2i_ASN1_SEQUENCE_ANY(NULL, &p, pklen);
if (ndsa == NULL) {
goto decerr;
}
if (sk_ASN1_TYPE_num(ndsa) != 2) {
goto decerr;
}
/* Handle Two broken types:
* SEQUENCE {parameters, priv_key}
* SEQUENCE {pub_key, priv_key}. */
t1 = sk_ASN1_TYPE_value(ndsa, 0);
t2 = sk_ASN1_TYPE_value(ndsa, 1);
if (t1->type == V_ASN1_SEQUENCE) {
p8->broken = PKCS8_EMBEDDED_PARAM;
pval = t1->value.ptr;
} else if (ptype == V_ASN1_SEQUENCE) {
p8->broken = PKCS8_NS_DB;
} else {
goto decerr;
}
if (t2->type != V_ASN1_INTEGER) {
goto decerr;
}
privkey = t2->value.integer;
} else {
const uint8_t *q = p;
privkey = d2i_ASN1_INTEGER(NULL, &p, pklen);
if (privkey == NULL) {
goto decerr;
}
if (privkey->type == V_ASN1_NEG_INTEGER) {
p8->broken = PKCS8_NEG_PRIVKEY;
ASN1_INTEGER_free(privkey);
privkey = d2i_ASN1_UINTEGER(NULL, &q, pklen);
if (privkey == NULL) {
goto decerr;
}
}
if (ptype != V_ASN1_SEQUENCE) {
goto decerr;
}
}
pstr = pval;
pm = pstr->data;
pmlen = pstr->length;
dsa = d2i_DSAparams(NULL, &pm, pmlen);
if (dsa == NULL) {
goto decerr;
}
/* We have parameters. Now set private key */
dsa->priv_key = ASN1_INTEGER_to_BN(privkey, NULL);
if (dsa->priv_key == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN);
goto dsaerr;
}
/* Calculate public key. */
dsa->pub_key = BN_new();
if (dsa->pub_key == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto dsaerr;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto dsaerr;
}
if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx)) {
OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN);
goto dsaerr;
}
EVP_PKEY_assign_DSA(pkey, dsa);
BN_CTX_free(ctx);
sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free);
ASN1_INTEGER_free(privkey);
return 1;
decerr:
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
dsaerr:
BN_CTX_free(ctx);
ASN1_INTEGER_free(privkey);
sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free);
DSA_free(dsa);
return 0;
}
static int dsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) {
ASN1_STRING *params = NULL;
ASN1_INTEGER *prkey = NULL;
uint8_t *dp = NULL;
int dplen;
if (!pkey->pkey.dsa || !pkey->pkey.dsa->priv_key) {
OPENSSL_PUT_ERROR(EVP, EVP_R_MISSING_PARAMETERS);
goto err;
}
params = ASN1_STRING_new();
if (!params) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
params->length = i2d_DSAparams(pkey->pkey.dsa, &params->data);
if (params->length <= 0) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
params->type = V_ASN1_SEQUENCE;
/* Get private key into integer. */
prkey = BN_to_ASN1_INTEGER(pkey->pkey.dsa->priv_key, NULL);
if (!prkey) {
OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN);
goto err;
}
dplen = i2d_ASN1_INTEGER(prkey, &dp);
ASN1_INTEGER_free(prkey);
prkey = NULL;
if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_dsa), 0,
V_ASN1_SEQUENCE, params, dp, dplen)) {
goto err;
}
return 1;
err:
OPENSSL_free(dp);
ASN1_STRING_free(params);
ASN1_INTEGER_free(prkey);
return 0;
}
static int int_dsa_size(const EVP_PKEY *pkey) {
return DSA_size(pkey->pkey.dsa);
}
static int dsa_bits(const EVP_PKEY *pkey) {
return BN_num_bits(pkey->pkey.dsa->p);
}
static int dsa_missing_parameters(const EVP_PKEY *pkey) {
DSA *dsa;
dsa = pkey->pkey.dsa;
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
return 1;
}
return 0;
}
static int dup_bn_into(BIGNUM **out, BIGNUM *src) {
BIGNUM *a;
a = BN_dup(src);
if (a == NULL) {
return 0;
}
BN_free(*out);
*out = a;
return 1;
}
static int dsa_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) {
if (!dup_bn_into(&to->pkey.dsa->p, from->pkey.dsa->p) ||
!dup_bn_into(&to->pkey.dsa->q, from->pkey.dsa->q) ||
!dup_bn_into(&to->pkey.dsa->g, from->pkey.dsa->g)) {
return 0;
}
return 1;
}
static int dsa_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) {
return BN_cmp(a->pkey.dsa->p, b->pkey.dsa->p) == 0 &&
BN_cmp(a->pkey.dsa->q, b->pkey.dsa->q) == 0 &&
BN_cmp(a->pkey.dsa->g, b->pkey.dsa->g) == 0;
}
static int dsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) {
return BN_cmp(b->pkey.dsa->pub_key, a->pkey.dsa->pub_key) == 0;
}
static void int_dsa_free(EVP_PKEY *pkey) { DSA_free(pkey->pkey.dsa); }
static void update_buflen(const BIGNUM *b, size_t *pbuflen) {
size_t i;
if (!b) {
return;
}
i = BN_num_bytes(b);
if (*pbuflen < i) {
*pbuflen = i;
}
}
static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) {
uint8_t *m = NULL;
int ret = 0;
size_t buf_len = 0;
const char *ktype = NULL;
const BIGNUM *priv_key, *pub_key;
priv_key = NULL;
if (ptype == 2) {
priv_key = x->priv_key;
}
pub_key = NULL;
if (ptype > 0) {
pub_key = x->pub_key;
}
ktype = "DSA-Parameters";
if (ptype == 2) {
ktype = "Private-Key";
} else if (ptype == 1) {
ktype = "Public-Key";
}
update_buflen(x->p, &buf_len);
update_buflen(x->q, &buf_len);
update_buflen(x->g, &buf_len);
update_buflen(priv_key, &buf_len);
update_buflen(pub_key, &buf_len);
m = OPENSSL_malloc(buf_len + 10);
if (m == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
if (priv_key) {
if (!BIO_indent(bp, off, 128) ||
BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) {
goto err;
}
}
if (!ASN1_bn_print(bp, "priv:", priv_key, m, off) ||
!ASN1_bn_print(bp, "pub: ", pub_key, m, off) ||
!ASN1_bn_print(bp, "P: ", x->p, m, off) ||
!ASN1_bn_print(bp, "Q: ", x->q, m, off) ||
!ASN1_bn_print(bp, "G: ", x->g, m, off)) {
goto err;
}
ret = 1;
err:
OPENSSL_free(m);
return ret;
}
static int dsa_param_decode(EVP_PKEY *pkey, const uint8_t **pder, int derlen) {
DSA *dsa;
dsa = d2i_DSAparams(NULL, pder, derlen);
if (dsa == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_DSA_LIB);
return 0;
}
EVP_PKEY_assign_DSA(pkey, dsa);
return 1;
}
static int dsa_param_encode(const EVP_PKEY *pkey, uint8_t **pder) {
return i2d_DSAparams(pkey->pkey.dsa, pder);
}
static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_dsa_print(bp, pkey->pkey.dsa, indent, 0);
}
static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_dsa_print(bp, pkey->pkey.dsa, indent, 1);
}
static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_dsa_print(bp, pkey->pkey.dsa, indent, 2);
}
static int old_dsa_priv_decode(EVP_PKEY *pkey, const uint8_t **pder,
int derlen) {
DSA *dsa;
dsa = d2i_DSAPrivateKey(NULL, pder, derlen);
if (dsa == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_DSA_LIB);
return 0;
}
EVP_PKEY_assign_DSA(pkey, dsa);
return 1;
}
static int old_dsa_priv_encode(const EVP_PKEY *pkey, uint8_t **pder) {
return i2d_DSAPrivateKey(pkey->pkey.dsa, pder);
}
static int dsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) {
DSA_SIG *dsa_sig;
const uint8_t *p;
if (!sig) {
return BIO_puts(bp, "\n") > 0;
}
p = sig->data;
dsa_sig = d2i_DSA_SIG(NULL, &p, sig->length);
if (dsa_sig == NULL) {
return X509_signature_dump(bp, sig, indent);
}
int rv = 0;
size_t buf_len = 0;
uint8_t *m = NULL;
update_buflen(dsa_sig->r, &buf_len);
update_buflen(dsa_sig->s, &buf_len);
m = OPENSSL_malloc(buf_len + 10);
if (m == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
if (BIO_write(bp, "\n", 1) != 1 ||
!ASN1_bn_print(bp, "r: ", dsa_sig->r, m, indent) ||
!ASN1_bn_print(bp, "s: ", dsa_sig->s, m, indent)) {
goto err;
}
rv = 1;
err:
OPENSSL_free(m);
DSA_SIG_free(dsa_sig);
return rv;
}
const EVP_PKEY_ASN1_METHOD dsa_asn1_meth = {
EVP_PKEY_DSA,
0,
"DSA",
dsa_pub_decode,
dsa_pub_encode,
dsa_pub_cmp,
dsa_pub_print,
dsa_priv_decode,
dsa_priv_encode,
dsa_priv_print,
NULL /* pkey_opaque */,
NULL /* pkey_supports_digest */,
int_dsa_size,
dsa_bits,
dsa_param_decode,
dsa_param_encode,
dsa_missing_parameters,
dsa_copy_parameters,
dsa_cmp_parameters,
dsa_param_print,
dsa_sig_print,
int_dsa_free,
old_dsa_priv_decode,
old_dsa_priv_encode,
NULL /* digest_verify_init_from_algorithm */,
NULL /* digest_sign_algorithm */,
};