3d450d2844
This commit improves the performance of ECDSA signature verification (over NIST P-256 curve) for x86 platforms. The speedup is by a factor of 1.15x. It does so by: 1) Leveraging the fact that the verification does not need to run in constant time. To this end, we implemented: a) the function ecp_nistz256_points_mul_public in a similar way to the current ecp_nistz256_points_mul function by removing its constant time features. b) the Binary Extended Euclidean Algorithm (BEEU) in x86 assembly to replace the current modular inverse function used for the inversion. 2) The last step in the ECDSA_verify function compares the (x) affine coordinate with the signature (r) value. Converting x from the Jacobian's representation to the affine coordinate requires to perform one inversions (x_affine = x * z^(-2)). We save this inversion and speed up the computations by instead bringing r to x (r_jacobian = r*z^2) which is faster. The measured results are: Before (on a Kaby Lake desktop with gcc-5): Did 26000 ECDSA P-224 signing operations in 1002372us (25938.5 ops/sec) Did 11000 ECDSA P-224 verify operations in 1043821us (10538.2 ops/sec) Did 55000 ECDSA P-256 signing operations in 1017560us (54050.9 ops/sec) Did 17000 ECDSA P-256 verify operations in 1051280us (16170.8 ops/sec) After (on a Kaby Lake desktop with gcc-5): Did 27000 ECDSA P-224 signing operations in 1011287us (26698.7 ops/sec) Did 11640 ECDSA P-224 verify operations in 1076698us (10810.8 ops/sec) Did 55000 ECDSA P-256 signing operations in 1016880us (54087.0 ops/sec) Did 20000 ECDSA P-256 verify operations in 1038736us (19254.2 ops/sec) Before (on a Skylake server platform with gcc-5): Did 25000 ECDSA P-224 signing operations in 1021651us (24470.2 ops/sec) Did 10373 ECDSA P-224 verify operations in 1046563us (9911.5 ops/sec) Did 50000 ECDSA P-256 signing operations in 1002774us (49861.7 ops/sec) Did 15000 ECDSA P-256 verify operations in 1006471us (14903.6 ops/sec) After (on a Skylake server platform with gcc-5): Did 25000 ECDSA P-224 signing operations in 1020958us (24486.8 ops/sec) Did 10373 ECDSA P-224 verify operations in 1046359us (9913.4 ops/sec) Did 50000 ECDSA P-256 signing operations in 1003996us (49801.0 ops/sec) Did 18000 ECDSA P-256 verify operations in 1021604us (17619.4 ops/sec) Developers and authors: *************************************************************************** Nir Drucker (1,2), Shay Gueron (1,2) (1) Amazon Web Services Inc. (2) University of Haifa, Israel *************************************************************************** Change-Id: Idd42a7bc40626bce974ea000b61fdb5bad33851c Reviewed-on: https://boringssl-review.googlesource.com/c/31304 Commit-Queue: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
649 lines
21 KiB
C
649 lines
21 KiB
C
/*
|
|
* Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2014, Intel Corporation. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*
|
|
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
|
|
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
|
|
* (2) University of Haifa, Israel
|
|
*
|
|
* Reference:
|
|
* S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
|
|
* 256 Bit Primes"
|
|
*/
|
|
|
|
#include <openssl/ec.h>
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
|
|
#include "../bn/internal.h"
|
|
#include "../delocate.h"
|
|
#include "../../internal.h"
|
|
#include "internal.h"
|
|
#include "p256-x86_64.h"
|
|
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
|
|
!defined(OPENSSL_SMALL)
|
|
|
|
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
|
|
|
|
// One converted into the Montgomery domain
|
|
static const BN_ULONG ONE[P256_LIMBS] = {
|
|
TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
|
|
TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
|
|
};
|
|
|
|
// P256_ORDER is the order of the P-256 group, not in Montgomery form.
|
|
static const BN_ULONG P256_ORDER[P256_LIMBS] = {
|
|
TOBN(0xf3b9cac2, 0xfc632551), TOBN(0xbce6faad, 0xa7179e84),
|
|
TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0x00000000),
|
|
};
|
|
|
|
// Precomputed tables for the default generator
|
|
#include "p256-x86_64-table.h"
|
|
|
|
// Recode window to a signed digit, see util-64.c for details
|
|
static unsigned booth_recode_w5(unsigned in) {
|
|
unsigned s, d;
|
|
|
|
s = ~((in >> 5) - 1);
|
|
d = (1 << 6) - in - 1;
|
|
d = (d & s) | (in & ~s);
|
|
d = (d >> 1) + (d & 1);
|
|
|
|
return (d << 1) + (s & 1);
|
|
}
|
|
|
|
static unsigned booth_recode_w7(unsigned in) {
|
|
unsigned s, d;
|
|
|
|
s = ~((in >> 7) - 1);
|
|
d = (1 << 8) - in - 1;
|
|
d = (d & s) | (in & ~s);
|
|
d = (d >> 1) + (d & 1);
|
|
|
|
return (d << 1) + (s & 1);
|
|
}
|
|
|
|
// copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
|
|
// if |move| is zero.
|
|
//
|
|
// WARNING: this breaks the usual convention of constant-time functions
|
|
// returning masks.
|
|
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
|
|
const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
|
|
BN_ULONG mask1 = ((BN_ULONG)0) - move;
|
|
BN_ULONG mask2 = ~mask1;
|
|
|
|
dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
|
|
dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
|
|
dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
|
|
dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
|
|
if (P256_LIMBS == 8) {
|
|
dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
|
|
dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
|
|
dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
|
|
dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
|
|
}
|
|
}
|
|
|
|
// is_not_zero returns one iff in != 0 and zero otherwise.
|
|
//
|
|
// WARNING: this breaks the usual convention of constant-time functions
|
|
// returning masks.
|
|
//
|
|
// (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
|
|
// (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
|
|
// )
|
|
//
|
|
// (declare-fun x () (_ BitVec 64))
|
|
//
|
|
// (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
|
|
// (check-sat)
|
|
//
|
|
// (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
|
|
// (check-sat)
|
|
//
|
|
static BN_ULONG is_not_zero(BN_ULONG in) {
|
|
in |= (0 - in);
|
|
in >>= BN_BITS2 - 1;
|
|
return in;
|
|
}
|
|
|
|
// ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
|
|
// That is, |r| is the modular inverse of |in| for input and output in the
|
|
// Montgomery domain.
|
|
static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
|
|
const BN_ULONG in[P256_LIMBS]) {
|
|
/* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
|
|
ffffffff
|
|
We use FLT and used poly-2 as exponent */
|
|
BN_ULONG p2[P256_LIMBS];
|
|
BN_ULONG p4[P256_LIMBS];
|
|
BN_ULONG p8[P256_LIMBS];
|
|
BN_ULONG p16[P256_LIMBS];
|
|
BN_ULONG p32[P256_LIMBS];
|
|
BN_ULONG res[P256_LIMBS];
|
|
int i;
|
|
|
|
ecp_nistz256_sqr_mont(res, in);
|
|
ecp_nistz256_mul_mont(p2, res, in); // 3*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p2);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(p4, res, p2); // f*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p4);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(p8, res, p4); // ff*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p8);
|
|
for (i = 0; i < 7; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(p16, res, p8); // ffff*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p16);
|
|
for (i = 0; i < 15; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p32);
|
|
for (i = 0; i < 31; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, in);
|
|
|
|
for (i = 0; i < 32 * 4; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p32);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p32);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p16);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p8);
|
|
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(res, res, p4);
|
|
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(res, res, p2);
|
|
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(r, res, in);
|
|
}
|
|
|
|
// r = p * p_scalar
|
|
static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
|
|
const EC_RAW_POINT *p,
|
|
const EC_SCALAR *p_scalar) {
|
|
assert(p != NULL);
|
|
assert(p_scalar != NULL);
|
|
assert(group->field.width == P256_LIMBS);
|
|
|
|
static const unsigned kWindowSize = 5;
|
|
static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
|
|
|
|
// A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
|
|
// add no more than 63 bytes of overhead. Thus, |table| should require
|
|
// ~1599 ((96 * 16) + 63) bytes of stack space.
|
|
alignas(64) P256_POINT table[16];
|
|
uint8_t p_str[33];
|
|
OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
|
|
p_str[32] = 0;
|
|
|
|
// table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
|
|
// not stored. All other values are actually stored with an offset of -1 in
|
|
// table.
|
|
P256_POINT *row = table;
|
|
assert(group->field.width == P256_LIMBS);
|
|
OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
|
|
|
|
ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
|
|
ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
|
|
ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
|
|
ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
|
|
ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
|
|
ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
|
|
ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
|
|
|
|
BN_ULONG tmp[P256_LIMBS];
|
|
alignas(32) P256_POINT h;
|
|
unsigned index = 255;
|
|
unsigned wvalue = p_str[(index - 1) / 8];
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
|
|
ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
|
|
|
|
while (index >= 5) {
|
|
if (index != 255) {
|
|
unsigned off = (index - 1) / 8;
|
|
|
|
wvalue = p_str[off] | p_str[off + 1] << 8;
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
|
|
wvalue = booth_recode_w5(wvalue);
|
|
|
|
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(tmp, h.Y);
|
|
copy_conditional(h.Y, tmp, (wvalue & 1));
|
|
|
|
ecp_nistz256_point_add(r, r, &h);
|
|
}
|
|
|
|
index -= kWindowSize;
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
}
|
|
|
|
// Final window
|
|
wvalue = p_str[0];
|
|
wvalue = (wvalue << 1) & kMask;
|
|
|
|
wvalue = booth_recode_w5(wvalue);
|
|
|
|
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(tmp, h.Y);
|
|
copy_conditional(h.Y, tmp, wvalue & 1);
|
|
|
|
ecp_nistz256_point_add(r, r, &h);
|
|
}
|
|
|
|
typedef union {
|
|
P256_POINT p;
|
|
P256_POINT_AFFINE a;
|
|
} p256_point_union_t;
|
|
|
|
static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) {
|
|
static const unsigned kWindowSize = 7;
|
|
static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
|
|
*index = kWindowSize;
|
|
|
|
unsigned wvalue = (p_str[0] << 1) & kMask;
|
|
return booth_recode_w7(wvalue);
|
|
}
|
|
|
|
static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) {
|
|
static const unsigned kWindowSize = 7;
|
|
static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
|
|
|
|
const unsigned off = (*index - 1) / 8;
|
|
unsigned wvalue = p_str[off] | p_str[off + 1] << 8;
|
|
wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
|
|
*index += kWindowSize;
|
|
|
|
return booth_recode_w7(wvalue);
|
|
}
|
|
|
|
static void mul_p_add_and_store(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar,
|
|
const EC_RAW_POINT *p_,
|
|
const EC_SCALAR *p_scalar,
|
|
p256_point_union_t *t, p256_point_union_t *p) {
|
|
const int p_is_infinity = g_scalar == NULL;
|
|
if (p_scalar != NULL) {
|
|
P256_POINT *out = &t->p;
|
|
if (p_is_infinity) {
|
|
out = &p->p;
|
|
}
|
|
|
|
ecp_nistz256_windowed_mul(group, out, p_, p_scalar);
|
|
if (!p_is_infinity) {
|
|
ecp_nistz256_point_add(&p->p, &p->p, out);
|
|
}
|
|
}
|
|
|
|
assert(group->field.width == P256_LIMBS);
|
|
OPENSSL_memcpy(r->X.words, p->p.X, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(r->Y.words, p->p.Y, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(r->Z.words, p->p.Z, P256_LIMBS * sizeof(BN_ULONG));
|
|
}
|
|
|
|
static void ecp_nistz256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar,
|
|
const EC_RAW_POINT *p_,
|
|
const EC_SCALAR *p_scalar) {
|
|
assert((p_ != NULL) == (p_scalar != NULL));
|
|
|
|
alignas(32) p256_point_union_t t, p;
|
|
|
|
if (g_scalar != NULL) {
|
|
uint8_t p_str[33];
|
|
OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
|
|
p_str[32] = 0;
|
|
|
|
// First window
|
|
unsigned index = 0;
|
|
unsigned wvalue = calc_first_wvalue(&index, p_str);
|
|
|
|
const PRECOMP256_ROW *const precomputed_table =
|
|
(const PRECOMP256_ROW *)ecp_nistz256_precomputed;
|
|
ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(p.p.Z, p.p.Y);
|
|
copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
|
|
|
|
// Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
|
|
// is infinity and |ONE| otherwise. |p| was computed from the table, so it
|
|
// is infinity iff |wvalue >> 1| is zero.
|
|
OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
|
|
copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
|
|
|
|
for (int i = 1; i < 37; i++) {
|
|
wvalue = calc_wvalue(&index, p_str);
|
|
|
|
ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(t.p.Z, t.a.Y);
|
|
copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
|
|
|
|
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
|
|
}
|
|
}
|
|
|
|
mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
|
|
}
|
|
|
|
static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
|
|
EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar,
|
|
const EC_RAW_POINT *p_,
|
|
const EC_SCALAR *p_scalar) {
|
|
assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
|
|
|
|
alignas(32) p256_point_union_t t, p;
|
|
uint8_t p_str[33];
|
|
OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
|
|
p_str[32] = 0;
|
|
|
|
// First window
|
|
unsigned index = 0;
|
|
unsigned wvalue = calc_first_wvalue(&index, p_str);
|
|
|
|
const PRECOMP256_ROW *const precomputed_table =
|
|
(const PRECOMP256_ROW *)ecp_nistz256_precomputed;
|
|
|
|
// Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
|
|
// is infinity and |ONE| otherwise. |p| was computed from the table, so it
|
|
// is infinity iff |wvalue >> 1| is zero.
|
|
if ((wvalue >> 1) != 0) {
|
|
OPENSSL_memcpy(&p.a, &precomputed_table[0][(wvalue >> 1) - 1], sizeof(p.a));
|
|
OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
|
|
} else {
|
|
OPENSSL_memset(&p.a, 0, sizeof(p.a));
|
|
OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
|
|
}
|
|
|
|
if ((wvalue & 1) == 1) {
|
|
ecp_nistz256_neg(p.p.Y, p.p.Y);
|
|
}
|
|
|
|
for (int i = 1; i < 37; i++) {
|
|
wvalue = calc_wvalue(&index, p_str);
|
|
|
|
if ((wvalue >> 1) == 0) {
|
|
continue;
|
|
}
|
|
|
|
OPENSSL_memcpy(&t.a, &precomputed_table[i][(wvalue >> 1) - 1], sizeof(p.a));
|
|
|
|
if ((wvalue & 1) == 1) {
|
|
ecp_nistz256_neg(t.a.Y, t.a.Y);
|
|
}
|
|
|
|
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
|
|
}
|
|
|
|
mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
|
|
}
|
|
|
|
static int ecp_nistz256_get_affine(const EC_GROUP *group,
|
|
const EC_RAW_POINT *point, BIGNUM *x,
|
|
BIGNUM *y) {
|
|
if (ec_GFp_simple_is_at_infinity(group, point)) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
|
|
return 0;
|
|
}
|
|
|
|
BN_ULONG z_inv2[P256_LIMBS];
|
|
BN_ULONG z_inv3[P256_LIMBS];
|
|
assert(group->field.width == P256_LIMBS);
|
|
ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words);
|
|
ecp_nistz256_sqr_mont(z_inv2, z_inv3);
|
|
|
|
// Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
|
|
// and then calling |ecp_nistz256_from_mont| again to convert the |y|
|
|
// coordinate below, convert the common factor |z_inv2| once now, saving one
|
|
// reduction.
|
|
ecp_nistz256_from_mont(z_inv2, z_inv2);
|
|
|
|
if (x != NULL) {
|
|
BN_ULONG x_aff[P256_LIMBS];
|
|
ecp_nistz256_mul_mont(x_aff, z_inv2, point->X.words);
|
|
if (!bn_set_words(x, x_aff, P256_LIMBS)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (y != NULL) {
|
|
BN_ULONG y_aff[P256_LIMBS];
|
|
ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
|
|
ecp_nistz256_mul_mont(y_aff, z_inv3, point->Y.words);
|
|
if (!bn_set_words(y, y_aff, P256_LIMBS)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
|
|
const EC_SCALAR *in) {
|
|
// table[i] stores a power of |in| corresponding to the matching enum value.
|
|
enum {
|
|
// The following indices specify the power in binary.
|
|
i_1 = 0,
|
|
i_10,
|
|
i_11,
|
|
i_101,
|
|
i_111,
|
|
i_1010,
|
|
i_1111,
|
|
i_10101,
|
|
i_101010,
|
|
i_101111,
|
|
// The following indices specify 2^N-1, or N ones in a row.
|
|
i_x6,
|
|
i_x8,
|
|
i_x16,
|
|
i_x32
|
|
};
|
|
BN_ULONG table[15][P256_LIMBS];
|
|
|
|
// https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
|
|
//
|
|
// Even though this code path spares 12 squarings, 4.5%, and 13
|
|
// multiplications, 25%, the overall sign operation is not that much faster,
|
|
// not more that 2%. Most of the performance of this function comes from the
|
|
// scalar operations.
|
|
|
|
// Pre-calculate powers.
|
|
OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
|
|
ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
|
|
ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
|
|
ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
|
|
ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
|
|
|
|
// Compute |in| raised to the order-2.
|
|
ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
|
|
ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
|
|
static const struct {
|
|
uint8_t p, i;
|
|
} kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11},
|
|
{5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101},
|
|
{3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111},
|
|
{2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111},
|
|
{4, i_111}, {5, i_111}, {5, i_101}, {3, i_11},
|
|
{10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11},
|
|
{3, i_1}, {7, i_10101}, {6, i_1111}};
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
|
|
ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
|
|
ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
|
|
}
|
|
}
|
|
|
|
static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group,
|
|
EC_SCALAR *out,
|
|
const EC_SCALAR *in) {
|
|
if (!beeu_mod_inverse_vartime(out->words, in->words, P256_ORDER)) {
|
|
return 0;
|
|
}
|
|
|
|
// The result should be returned in the Montgomery domain.
|
|
ec_scalar_to_montgomery(group, out, out);
|
|
return 1;
|
|
}
|
|
|
|
static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
|
|
const EC_POINT *p, const BIGNUM *r,
|
|
BN_CTX *ctx) {
|
|
if (ec_GFp_simple_is_at_infinity(group, &p->raw)) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
|
|
return 0;
|
|
}
|
|
|
|
BN_ULONG r_words[P256_LIMBS];
|
|
if (!bn_copy_words(r_words, P256_LIMBS, r)) {
|
|
return 0;
|
|
}
|
|
|
|
// We wish to compare X/Z^2 with r. This is equivalent to comparing X with
|
|
// r*Z^2. Note that X and Z are represented in Montgomery form, while r is
|
|
// not.
|
|
BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
|
|
ecp_nistz256_mul_mont(Z2_mont, p->raw.Z.words, p->raw.Z.words);
|
|
ecp_nistz256_mul_mont(r_Z2, r_words, Z2_mont);
|
|
ecp_nistz256_from_mont(X, p->raw.X.words);
|
|
|
|
if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
|
|
return 1;
|
|
}
|
|
|
|
// During signing the x coefficient is reduced modulo the group order.
|
|
// Therefore there is a small possibility, less than 1/2^128, that group_order
|
|
// < p.x < P. in that case we need not only to compare against |r| but also to
|
|
// compare against r+group_order.
|
|
|
|
// P_MINUS_ORDER is the difference between the field order (p) and the group
|
|
// order (N). This value is not in the Montgomery domain.
|
|
static const BN_ULONG P_MINUS_ORDER[P256_LIMBS] = {
|
|
TOBN(0x0c46353d, 0x039cdaae), TOBN(0x43190553, 0x58e8617b),
|
|
TOBN(0x00000000, 0x00000000), TOBN(0x00000000, 0x00000000)};
|
|
|
|
if (bn_less_than_words(r_words, P_MINUS_ORDER, P256_LIMBS)) {
|
|
// We can add in-place, ignoring the carry, because: r + group_order < p <
|
|
// 2^256
|
|
bn_add_words(r_words, r_words, P256_ORDER, P256_LIMBS);
|
|
ecp_nistz256_mul_mont(r_Z2, r_words, Z2_mont);
|
|
if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
|
|
out->group_init = ec_GFp_mont_group_init;
|
|
out->group_finish = ec_GFp_mont_group_finish;
|
|
out->group_set_curve = ec_GFp_mont_group_set_curve;
|
|
out->point_get_affine_coordinates = ecp_nistz256_get_affine;
|
|
out->mul = ecp_nistz256_points_mul;
|
|
out->mul_public = ecp_nistz256_points_mul_public;
|
|
out->felem_mul = ec_GFp_mont_felem_mul;
|
|
out->felem_sqr = ec_GFp_mont_felem_sqr;
|
|
out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
|
|
out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
|
|
out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord;
|
|
out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime;
|
|
out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
|
|
};
|
|
|
|
#endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
|
|
!defined(OPENSSL_SMALL) */
|