boringssl/crypto/fipsmodule/ec/simple.c
Nir Drucker 3d450d2844 Speed up ECDSA verify on x86-64.
This commit improves the performance of ECDSA signature verification
(over NIST P-256 curve) for x86 platforms. The speedup is by a factor of 1.15x.
It does so by:
  1) Leveraging the fact that the verification does not need
     to run in constant time. To this end, we implemented:
    a) the function ecp_nistz256_points_mul_public in a similar way to
       the current ecp_nistz256_points_mul function by removing its constant
       time features.
    b) the Binary Extended Euclidean Algorithm (BEEU) in x86 assembly to
       replace the current modular inverse function used for the inversion.
  2) The last step in the ECDSA_verify function compares the (x) affine
     coordinate with the signature (r) value. Converting x from the Jacobian's
     representation to the affine coordinate requires to perform one inversions
     (x_affine = x * z^(-2)). We save this inversion and speed up the computations
     by instead bringing r to x (r_jacobian = r*z^2) which is faster.

The measured results are:
Before (on a Kaby Lake desktop with gcc-5):
Did 26000 ECDSA P-224 signing operations in 1002372us (25938.5 ops/sec)
Did 11000 ECDSA P-224 verify operations in 1043821us (10538.2 ops/sec)
Did 55000 ECDSA P-256 signing operations in 1017560us (54050.9 ops/sec)
Did 17000 ECDSA P-256 verify operations in 1051280us (16170.8 ops/sec)

After (on a Kaby Lake desktop with gcc-5):
Did 27000 ECDSA P-224 signing operations in 1011287us (26698.7 ops/sec)
Did 11640 ECDSA P-224 verify operations in 1076698us (10810.8 ops/sec)
Did 55000 ECDSA P-256 signing operations in 1016880us (54087.0 ops/sec)
Did 20000 ECDSA P-256 verify operations in 1038736us (19254.2 ops/sec)

Before (on a Skylake server platform with gcc-5):
Did 25000 ECDSA P-224 signing operations in 1021651us (24470.2 ops/sec)
Did 10373 ECDSA P-224 verify operations in 1046563us (9911.5 ops/sec)
Did 50000 ECDSA P-256 signing operations in 1002774us (49861.7 ops/sec)
Did 15000 ECDSA P-256 verify operations in 1006471us (14903.6 ops/sec)

After (on a Skylake server platform with gcc-5):
Did 25000 ECDSA P-224 signing operations in 1020958us (24486.8 ops/sec)
Did 10373 ECDSA P-224 verify operations in 1046359us (9913.4 ops/sec)
Did 50000 ECDSA P-256 signing operations in 1003996us (49801.0 ops/sec)
Did 18000 ECDSA P-256 verify operations in 1021604us (17619.4 ops/sec)

Developers and authors:
***************************************************************************
Nir Drucker (1,2), Shay Gueron (1,2)
(1) Amazon Web Services Inc.
(2) University of Haifa, Israel
***************************************************************************

Change-Id: Idd42a7bc40626bce974ea000b61fdb5bad33851c
Reviewed-on: https://boringssl-review.googlesource.com/c/31304
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2018-11-05 23:48:07 +00:00

625 lines
20 KiB
C

/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../../internal.h"
// Most method functions in this file are designed to work with non-trivial
// representations of field elements if necessary (see ecp_mont.c): while
// standard modular addition and subtraction are used, the field_mul and
// field_sqr methods will be used for multiplication, and field_encode and
// field_decode (if defined) will be used for converting between
// representations.
//
// Functions here specifically assume that if a non-trivial representation is
// used, it is a Montgomery representation (i.e. 'encoding' means multiplying
// by some factor R).
int ec_GFp_simple_group_init(EC_GROUP *group) {
BN_init(&group->field);
group->a_is_minus3 = 0;
return 1;
}
void ec_GFp_simple_group_finish(EC_GROUP *group) {
BN_free(&group->field);
}
int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx) {
int ret = 0;
BN_CTX *new_ctx = NULL;
// p must be a prime > 3
if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == NULL) {
goto err;
}
// group->field
if (!BN_copy(&group->field, p)) {
goto err;
}
BN_set_negative(&group->field, 0);
// Store the field in minimal form, so it can be used with |BN_ULONG| arrays.
bn_set_minimal_width(&group->field);
// group->a
if (!BN_nnmod(tmp, a, &group->field, ctx) ||
!ec_bignum_to_felem(group, &group->a, tmp)) {
goto err;
}
// group->a_is_minus3
if (!BN_add_word(tmp, 3)) {
goto err;
}
group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field));
// group->b
if (!BN_nnmod(tmp, b, &group->field, ctx) ||
!ec_bignum_to_felem(group, &group->b, tmp)) {
goto err;
}
if (!ec_bignum_to_felem(group, &group->one, BN_value_one())) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
BIGNUM *b) {
if ((p != NULL && !BN_copy(p, &group->field)) ||
(a != NULL && !ec_felem_to_bignum(group, a, &group->a)) ||
(b != NULL && !ec_felem_to_bignum(group, b, &group->b))) {
return 0;
}
return 1;
}
unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
return BN_num_bits(&group->field);
}
void ec_GFp_simple_point_init(EC_RAW_POINT *point) {
OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM));
OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM));
OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM));
}
void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) {
OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM));
OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM));
OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM));
}
void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
EC_RAW_POINT *point) {
// Although it is strictly only necessary to zero Z, we zero the entire point
// in case |point| was stack-allocated and yet to be initialized.
ec_GFp_simple_point_init(point);
}
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
EC_RAW_POINT *point,
const BIGNUM *x,
const BIGNUM *y) {
if (x == NULL || y == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (!ec_bignum_to_felem(group, &point->X, x) ||
!ec_bignum_to_felem(group, &point->Y, y)) {
return 0;
}
OPENSSL_memcpy(&point->Z, &group->one, sizeof(EC_FELEM));
return 1;
}
void ec_GFp_simple_add(const EC_GROUP *group, EC_RAW_POINT *out,
const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
if (a == b) {
ec_GFp_simple_dbl(group, out, a);
return;
}
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
//
// Coq transcription and correctness proof:
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
EC_FELEM x_out, y_out, z_out;
BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
// z1z1 = z1z1 = z1**2
EC_FELEM z1z1;
felem_sqr(group, &z1z1, &a->Z);
// z2z2 = z2**2
EC_FELEM z2z2;
felem_sqr(group, &z2z2, &b->Z);
// u1 = x1*z2z2
EC_FELEM u1;
felem_mul(group, &u1, &a->X, &z2z2);
// two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
EC_FELEM two_z1z2;
ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
felem_sqr(group, &two_z1z2, &two_z1z2);
ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
// s1 = y1 * z2**3
EC_FELEM s1;
felem_mul(group, &s1, &b->Z, &z2z2);
felem_mul(group, &s1, &s1, &a->Y);
// u2 = x2*z1z1
EC_FELEM u2;
felem_mul(group, &u2, &b->X, &z1z1);
// h = u2 - u1
EC_FELEM h;
ec_felem_sub(group, &h, &u2, &u1);
BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
// z_out = two_z1z2 * h
felem_mul(group, &z_out, &h, &two_z1z2);
// z1z1z1 = z1 * z1z1
EC_FELEM z1z1z1;
felem_mul(group, &z1z1z1, &a->Z, &z1z1);
// s2 = y2 * z1**3
EC_FELEM s2;
felem_mul(group, &s2, &b->Y, &z1z1z1);
// r = (s2 - s1)*2
EC_FELEM r;
ec_felem_sub(group, &r, &s2, &s1);
ec_felem_add(group, &r, &r, &r);
BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
// This case will never occur in the constant-time |ec_GFp_simple_mul|.
if (!xneq && !yneq && z1nz && z2nz) {
ec_GFp_simple_dbl(group, out, a);
return;
}
// I = (2h)**2
EC_FELEM i;
ec_felem_add(group, &i, &h, &h);
felem_sqr(group, &i, &i);
// J = h * I
EC_FELEM j;
felem_mul(group, &j, &h, &i);
// V = U1 * I
EC_FELEM v;
felem_mul(group, &v, &u1, &i);
// x_out = r**2 - J - 2V
felem_sqr(group, &x_out, &r);
ec_felem_sub(group, &x_out, &x_out, &j);
ec_felem_sub(group, &x_out, &x_out, &v);
ec_felem_sub(group, &x_out, &x_out, &v);
// y_out = r(V-x_out) - 2 * s1 * J
ec_felem_sub(group, &y_out, &v, &x_out);
felem_mul(group, &y_out, &y_out, &r);
EC_FELEM s1j;
felem_mul(group, &s1j, &s1, &j);
ec_felem_sub(group, &y_out, &y_out, &s1j);
ec_felem_sub(group, &y_out, &y_out, &s1j);
ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
}
void ec_GFp_simple_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a) {
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
if (group->a_is_minus3) {
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
// delta = z^2
felem_sqr(group, &delta, &a->Z);
// gamma = y^2
felem_sqr(group, &gamma, &a->Y);
// beta = x*gamma
felem_mul(group, &beta, &a->X, &gamma);
// alpha = 3*(x-delta)*(x+delta)
ec_felem_sub(group, &ftmp, &a->X, &delta);
ec_felem_add(group, &ftmp2, &a->X, &delta);
ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
felem_mul(group, &alpha, &ftmp, &ftmp2);
// x' = alpha^2 - 8*beta
felem_sqr(group, &r->X, &alpha);
ec_felem_add(group, &fourbeta, &beta, &beta);
ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
ec_felem_sub(group, &r->X, &r->X, &tmptmp);
// z' = (y + z)^2 - gamma - delta
ec_felem_add(group, &delta, &gamma, &delta);
ec_felem_add(group, &ftmp, &a->Y, &a->Z);
felem_sqr(group, &r->Z, &ftmp);
ec_felem_sub(group, &r->Z, &r->Z, &delta);
// y' = alpha*(4*beta - x') - 8*gamma^2
ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
ec_felem_add(group, &gamma, &gamma, &gamma);
felem_sqr(group, &gamma, &gamma);
felem_mul(group, &r->Y, &alpha, &r->Y);
ec_felem_add(group, &gamma, &gamma, &gamma);
ec_felem_sub(group, &r->Y, &r->Y, &gamma);
} else {
// The method is taken from:
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
//
// Coq transcription and correctness proof:
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
EC_FELEM xx, yy, yyyy, zz;
felem_sqr(group, &xx, &a->X);
felem_sqr(group, &yy, &a->Y);
felem_sqr(group, &yyyy, &yy);
felem_sqr(group, &zz, &a->Z);
// s = 2*((x_in + yy)^2 - xx - yyyy)
EC_FELEM s;
ec_felem_add(group, &s, &a->X, &yy);
felem_sqr(group, &s, &s);
ec_felem_sub(group, &s, &s, &xx);
ec_felem_sub(group, &s, &s, &yyyy);
ec_felem_add(group, &s, &s, &s);
// m = 3*xx + a*zz^2
EC_FELEM m;
felem_sqr(group, &m, &zz);
felem_mul(group, &m, &group->a, &m);
ec_felem_add(group, &m, &m, &xx);
ec_felem_add(group, &m, &m, &xx);
ec_felem_add(group, &m, &m, &xx);
// x_out = m^2 - 2*s
felem_sqr(group, &r->X, &m);
ec_felem_sub(group, &r->X, &r->X, &s);
ec_felem_sub(group, &r->X, &r->X, &s);
// z_out = (y_in + z_in)^2 - yy - zz
ec_felem_add(group, &r->Z, &a->Y, &a->Z);
felem_sqr(group, &r->Z, &r->Z);
ec_felem_sub(group, &r->Z, &r->Z, &yy);
ec_felem_sub(group, &r->Z, &r->Z, &zz);
// y_out = m*(s-x_out) - 8*yyyy
ec_felem_add(group, &yyyy, &yyyy, &yyyy);
ec_felem_add(group, &yyyy, &yyyy, &yyyy);
ec_felem_add(group, &yyyy, &yyyy, &yyyy);
ec_felem_sub(group, &r->Y, &s, &r->X);
felem_mul(group, &r->Y, &r->Y, &m);
ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
}
}
void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) {
ec_felem_neg(group, &point->Y, &point->Y);
}
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
const EC_RAW_POINT *point) {
return ec_felem_non_zero_mask(group, &point->Z) == 0;
}
int ec_GFp_simple_is_on_curve(const EC_GROUP *group,
const EC_RAW_POINT *point) {
if (ec_GFp_simple_is_at_infinity(group, point)) {
return 1;
}
// We have a curve defined by a Weierstrass equation
// y^2 = x^3 + a*x + b.
// The point to consider is given in Jacobian projective coordinates
// where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
// Substituting this and multiplying by Z^6 transforms the above equation
// into
// Y^2 = X^3 + a*X*Z^4 + b*Z^6.
// To test this, we add up the right-hand side in 'rh'.
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
// rh := X^2
EC_FELEM rh;
felem_sqr(group, &rh, &point->X);
EC_FELEM tmp, Z4, Z6;
if (!ec_felem_equal(group, &point->Z, &group->one)) {
felem_sqr(group, &tmp, &point->Z);
felem_sqr(group, &Z4, &tmp);
felem_mul(group, &Z6, &Z4, &tmp);
// rh := (rh + a*Z^4)*X
if (group->a_is_minus3) {
ec_felem_add(group, &tmp, &Z4, &Z4);
ec_felem_add(group, &tmp, &tmp, &Z4);
ec_felem_sub(group, &rh, &rh, &tmp);
felem_mul(group, &rh, &rh, &point->X);
} else {
felem_mul(group, &tmp, &Z4, &group->a);
ec_felem_add(group, &rh, &rh, &tmp);
felem_mul(group, &rh, &rh, &point->X);
}
// rh := rh + b*Z^6
felem_mul(group, &tmp, &group->b, &Z6);
ec_felem_add(group, &rh, &rh, &tmp);
} else {
// rh := (rh + a)*X
ec_felem_add(group, &rh, &rh, &group->a);
felem_mul(group, &rh, &rh, &point->X);
// rh := rh + b
ec_felem_add(group, &rh, &rh, &group->b);
}
// 'lh' := Y^2
felem_sqr(group, &tmp, &point->Y);
return ec_felem_equal(group, &tmp, &rh);
}
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_RAW_POINT *a,
const EC_RAW_POINT *b) {
// Note this function returns zero if |a| and |b| are equal and 1 if they are
// not equal.
if (ec_GFp_simple_is_at_infinity(group, a)) {
return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1;
}
if (ec_GFp_simple_is_at_infinity(group, b)) {
return 1;
}
int a_Z_is_one = ec_felem_equal(group, &a->Z, &group->one);
int b_Z_is_one = ec_felem_equal(group, &b->Z, &group->one);
if (a_Z_is_one && b_Z_is_one) {
return !ec_felem_equal(group, &a->X, &b->X) ||
!ec_felem_equal(group, &a->Y, &b->Y);
}
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
// We have to decide whether
// (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
// or equivalently, whether
// (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
EC_FELEM tmp1, tmp2, Za23, Zb23;
const EC_FELEM *tmp1_, *tmp2_;
if (!b_Z_is_one) {
felem_sqr(group, &Zb23, &b->Z);
felem_mul(group, &tmp1, &a->X, &Zb23);
tmp1_ = &tmp1;
} else {
tmp1_ = &a->X;
}
if (!a_Z_is_one) {
felem_sqr(group, &Za23, &a->Z);
felem_mul(group, &tmp2, &b->X, &Za23);
tmp2_ = &tmp2;
} else {
tmp2_ = &b->X;
}
// Compare X_a*Z_b^2 with X_b*Z_a^2.
if (!ec_felem_equal(group, tmp1_, tmp2_)) {
return 1; // The points differ.
}
if (!b_Z_is_one) {
felem_mul(group, &Zb23, &Zb23, &b->Z);
felem_mul(group, &tmp1, &a->Y, &Zb23);
// tmp1_ = &tmp1
} else {
tmp1_ = &a->Y;
}
if (!a_Z_is_one) {
felem_mul(group, &Za23, &Za23, &a->Z);
felem_mul(group, &tmp2, &b->Y, &Za23);
// tmp2_ = &tmp2
} else {
tmp2_ = &b->Y;
}
// Compare Y_a*Z_b^3 with Y_b*Z_a^3.
if (!ec_felem_equal(group, tmp1_, tmp2_)) {
return 1; // The points differ.
}
// The points are equal.
return 0;
}
int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group,
EC_SCALAR *out,
const EC_SCALAR *in) {
// This implementation (in fact) runs in constant time,
// even though for this interface it is not mandatory.
// out = in^-1 in the Montgomery domain. This is
// |ec_scalar_to_montgomery| followed by |ec_scalar_inv_montgomery|, but
// |ec_scalar_inv_montgomery| followed by |ec_scalar_from_montgomery| is
// equivalent and slightly more efficient.
ec_scalar_inv_montgomery(group, out, in);
ec_scalar_from_montgomery(group, out, out);
return 1;
}
// Compares the x (affine) coordinate of the point p with x.
// Return 1 on success 0 otherwise
// Assumption: the caller starts the BN_CTX.
int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_POINT *p,
const BIGNUM *r, BN_CTX *ctx) {
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *X = BN_CTX_get(ctx);
if (X == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto out;
}
if (!EC_POINT_get_affine_coordinates_GFp(group, p, X, NULL, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto out;
}
if (!ec_field_element_to_scalar(group, X)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto out;
}
// The signature is correct iff |X| is equal to |r|.
if (BN_ucmp(X, r) != 0) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
goto out;
}
ret = 1;
out:
BN_CTX_end(ctx);
return ret;
}