Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.
 
 
 
 
 
 

485 řádky
18 KiB

  1. /* ====================================================================
  2. * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in
  13. * the documentation and/or other materials provided with the
  14. * distribution.
  15. *
  16. * 3. All advertising materials mentioning features or use of this
  17. * software must display the following acknowledgment:
  18. * "This product includes software developed by the OpenSSL Project
  19. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  20. *
  21. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  22. * endorse or promote products derived from this software without
  23. * prior written permission. For written permission, please contact
  24. * openssl-core@openssl.org.
  25. *
  26. * 5. Products derived from this software may not be called "OpenSSL"
  27. * nor may "OpenSSL" appear in their names without prior written
  28. * permission of the OpenSSL Project.
  29. *
  30. * 6. Redistributions of any form whatsoever must retain the following
  31. * acknowledgment:
  32. * "This product includes software developed by the OpenSSL Project
  33. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  34. *
  35. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  36. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  39. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  41. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  42. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  43. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  44. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  45. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  46. * OF THE POSSIBILITY OF SUCH DAMAGE.
  47. * ====================================================================
  48. *
  49. * This product includes cryptographic software written by Eric Young
  50. * (eay@cryptsoft.com). This product includes software written by Tim
  51. * Hudson (tjh@cryptsoft.com). */
  52. #include <assert.h>
  53. #include <string.h>
  54. #include <openssl/digest.h>
  55. #include <openssl/nid.h>
  56. #include <openssl/sha.h>
  57. #include "../internal.h"
  58. #include "internal.h"
  59. /* TODO(davidben): unsigned should be size_t. The various constant_time
  60. * functions need to be switched to size_t. */
  61. /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
  62. * field. (SHA-384/512 have 128-bit length.) */
  63. #define MAX_HASH_BIT_COUNT_BYTES 16
  64. /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
  65. * Currently SHA-384/512 has a 128-byte block size and that's the largest
  66. * supported by TLS.) */
  67. #define MAX_HASH_BLOCK_SIZE 128
  68. int EVP_tls_cbc_remove_padding(size_t *out_padding_ok, size_t *out_len,
  69. const uint8_t *in, size_t in_len,
  70. size_t block_size, size_t mac_size) {
  71. const size_t overhead = 1 /* padding length byte */ + mac_size;
  72. /* These lengths are all public so we can test them in non-constant time. */
  73. if (overhead > in_len) {
  74. return 0;
  75. }
  76. size_t padding_length = in[in_len - 1];
  77. size_t good = constant_time_ge_s(in_len, overhead + padding_length);
  78. /* The padding consists of a length byte at the end of the record and
  79. * then that many bytes of padding, all with the same value as the
  80. * length byte. Thus, with the length byte included, there are i+1
  81. * bytes of padding.
  82. *
  83. * We can't check just |padding_length+1| bytes because that leaks
  84. * decrypted information. Therefore we always have to check the maximum
  85. * amount of padding possible. (Again, the length of the record is
  86. * public information so we can use it.) */
  87. size_t to_check = 256; /* maximum amount of padding, inc length byte. */
  88. if (to_check > in_len) {
  89. to_check = in_len;
  90. }
  91. for (size_t i = 0; i < to_check; i++) {
  92. uint8_t mask = constant_time_ge_8(padding_length, i);
  93. uint8_t b = in[in_len - 1 - i];
  94. /* The final |padding_length+1| bytes should all have the value
  95. * |padding_length|. Therefore the XOR should be zero. */
  96. good &= ~(mask & (padding_length ^ b));
  97. }
  98. /* If any of the final |padding_length+1| bytes had the wrong value,
  99. * one or more of the lower eight bits of |good| will be cleared. */
  100. good = constant_time_eq_s(0xff, good & 0xff);
  101. /* Always treat |padding_length| as zero on error. If, assuming block size of
  102. * 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
  103. * and returned -1, distinguishing good MAC and bad padding from bad MAC and
  104. * bad padding would give POODLE's padding oracle. */
  105. padding_length = good & (padding_length + 1);
  106. *out_len = in_len - padding_length;
  107. *out_padding_ok = good;
  108. return 1;
  109. }
  110. void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
  111. size_t in_len, size_t orig_len) {
  112. uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
  113. uint8_t *rotated_mac = rotated_mac1;
  114. uint8_t *rotated_mac_tmp = rotated_mac2;
  115. /* mac_end is the index of |in| just after the end of the MAC. */
  116. size_t mac_end = in_len;
  117. size_t mac_start = mac_end - md_size;
  118. assert(orig_len >= in_len);
  119. assert(in_len >= md_size);
  120. assert(md_size <= EVP_MAX_MD_SIZE);
  121. /* scan_start contains the number of bytes that we can ignore because
  122. * the MAC's position can only vary by 255 bytes. */
  123. size_t scan_start = 0;
  124. /* This information is public so it's safe to branch based on it. */
  125. if (orig_len > md_size + 255 + 1) {
  126. scan_start = orig_len - (md_size + 255 + 1);
  127. }
  128. size_t rotate_offset = 0;
  129. uint8_t mac_started = 0;
  130. OPENSSL_memset(rotated_mac, 0, md_size);
  131. for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) {
  132. if (j >= md_size) {
  133. j -= md_size;
  134. }
  135. size_t is_mac_start = constant_time_eq_s(i, mac_start);
  136. mac_started |= is_mac_start;
  137. uint8_t mac_ended = constant_time_ge_8(i, mac_end);
  138. rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
  139. /* Save the offset that |mac_start| is mapped to. */
  140. rotate_offset |= j & is_mac_start;
  141. }
  142. /* Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
  143. * position. */
  144. for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) {
  145. /* Rotate by |offset| iff the corresponding bit is set in
  146. * |rotate_offset|, placing the result in |rotated_mac_tmp|. */
  147. const uint8_t skip_rotate = (rotate_offset & 1) - 1;
  148. for (size_t i = 0, j = offset; i < md_size; i++, j++) {
  149. if (j >= md_size) {
  150. j -= md_size;
  151. }
  152. rotated_mac_tmp[i] =
  153. constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
  154. }
  155. /* Swap pointers so |rotated_mac| contains the (possibly) rotated value.
  156. * Note the number of iterations and thus the identity of these pointers is
  157. * public information. */
  158. uint8_t *tmp = rotated_mac;
  159. rotated_mac = rotated_mac_tmp;
  160. rotated_mac_tmp = tmp;
  161. }
  162. OPENSSL_memcpy(out, rotated_mac, md_size);
  163. }
  164. /* u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
  165. * big-endian order. The value of p is advanced by four. */
  166. #define u32toBE(n, p) \
  167. do { \
  168. *((p)++) = (uint8_t)((n) >> 24); \
  169. *((p)++) = (uint8_t)((n) >> 16); \
  170. *((p)++) = (uint8_t)((n) >> 8); \
  171. *((p)++) = (uint8_t)((n)); \
  172. } while (0)
  173. /* u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in
  174. * big-endian order. The value of p is advanced by eight. */
  175. #define u64toBE(n, p) \
  176. do { \
  177. *((p)++) = (uint8_t)((n) >> 56); \
  178. *((p)++) = (uint8_t)((n) >> 48); \
  179. *((p)++) = (uint8_t)((n) >> 40); \
  180. *((p)++) = (uint8_t)((n) >> 32); \
  181. *((p)++) = (uint8_t)((n) >> 24); \
  182. *((p)++) = (uint8_t)((n) >> 16); \
  183. *((p)++) = (uint8_t)((n) >> 8); \
  184. *((p)++) = (uint8_t)((n)); \
  185. } while (0)
  186. typedef union {
  187. SHA_CTX sha1;
  188. SHA256_CTX sha256;
  189. SHA512_CTX sha512;
  190. } HASH_CTX;
  191. static void tls1_sha1_transform(HASH_CTX *ctx, const uint8_t *block) {
  192. SHA1_Transform(&ctx->sha1, block);
  193. }
  194. static void tls1_sha256_transform(HASH_CTX *ctx, const uint8_t *block) {
  195. SHA256_Transform(&ctx->sha256, block);
  196. }
  197. static void tls1_sha512_transform(HASH_CTX *ctx, const uint8_t *block) {
  198. SHA512_Transform(&ctx->sha512, block);
  199. }
  200. /* These functions serialize the state of a hash and thus perform the standard
  201. * "final" operation without adding the padding and length that such a function
  202. * typically does. */
  203. static void tls1_sha1_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
  204. SHA_CTX *sha1 = &ctx->sha1;
  205. u32toBE(sha1->h[0], md_out);
  206. u32toBE(sha1->h[1], md_out);
  207. u32toBE(sha1->h[2], md_out);
  208. u32toBE(sha1->h[3], md_out);
  209. u32toBE(sha1->h[4], md_out);
  210. }
  211. static void tls1_sha256_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
  212. SHA256_CTX *sha256 = &ctx->sha256;
  213. for (unsigned i = 0; i < 8; i++) {
  214. u32toBE(sha256->h[i], md_out);
  215. }
  216. }
  217. static void tls1_sha512_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
  218. SHA512_CTX *sha512 = &ctx->sha512;
  219. for (unsigned i = 0; i < 8; i++) {
  220. u64toBE(sha512->h[i], md_out);
  221. }
  222. }
  223. int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
  224. switch (EVP_MD_type(md)) {
  225. case NID_sha1:
  226. case NID_sha256:
  227. case NID_sha384:
  228. return 1;
  229. default:
  230. return 0;
  231. }
  232. }
  233. int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
  234. size_t *md_out_size, const uint8_t header[13],
  235. const uint8_t *data, size_t data_plus_mac_size,
  236. size_t data_plus_mac_plus_padding_size,
  237. const uint8_t *mac_secret,
  238. unsigned mac_secret_length) {
  239. HASH_CTX md_state;
  240. void (*md_final_raw)(HASH_CTX *ctx, uint8_t *md_out);
  241. void (*md_transform)(HASH_CTX *ctx, const uint8_t *block);
  242. unsigned md_size, md_block_size = 64;
  243. /* md_length_size is the number of bytes in the length field that terminates
  244. * the hash. */
  245. unsigned md_length_size = 8;
  246. /* Bound the acceptable input so we can forget about many possible overflows
  247. * later in this function. This is redundant with the record size limits in
  248. * TLS. */
  249. if (data_plus_mac_plus_padding_size >= 1024 * 1024) {
  250. assert(0);
  251. return 0;
  252. }
  253. switch (EVP_MD_type(md)) {
  254. case NID_sha1:
  255. SHA1_Init(&md_state.sha1);
  256. md_final_raw = tls1_sha1_final_raw;
  257. md_transform = tls1_sha1_transform;
  258. md_size = SHA_DIGEST_LENGTH;
  259. break;
  260. case NID_sha256:
  261. SHA256_Init(&md_state.sha256);
  262. md_final_raw = tls1_sha256_final_raw;
  263. md_transform = tls1_sha256_transform;
  264. md_size = SHA256_DIGEST_LENGTH;
  265. break;
  266. case NID_sha384:
  267. SHA384_Init(&md_state.sha512);
  268. md_final_raw = tls1_sha512_final_raw;
  269. md_transform = tls1_sha512_transform;
  270. md_size = SHA384_DIGEST_LENGTH;
  271. md_block_size = 128;
  272. md_length_size = 16;
  273. break;
  274. default:
  275. /* EVP_tls_cbc_record_digest_supported should have been called first to
  276. * check that the hash function is supported. */
  277. assert(0);
  278. *md_out_size = 0;
  279. return 0;
  280. }
  281. assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
  282. assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
  283. assert(md_size <= EVP_MAX_MD_SIZE);
  284. static const size_t kHeaderLength = 13;
  285. /* kVarianceBlocks is the number of blocks of the hash that we have to
  286. * calculate in constant time because they could be altered by the
  287. * padding value.
  288. *
  289. * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
  290. * required to be minimal. Therefore we say that the final six blocks
  291. * can vary based on the padding. */
  292. static const size_t kVarianceBlocks = 6;
  293. /* From now on we're dealing with the MAC, which conceptually has 13
  294. * bytes of `header' before the start of the data. */
  295. size_t len = data_plus_mac_plus_padding_size + kHeaderLength;
  296. /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
  297. * |header|, assuming that there's no padding. */
  298. size_t max_mac_bytes = len - md_size - 1;
  299. /* num_blocks is the maximum number of hash blocks. */
  300. size_t num_blocks =
  301. (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
  302. /* In order to calculate the MAC in constant time we have to handle
  303. * the final blocks specially because the padding value could cause the
  304. * end to appear somewhere in the final |kVarianceBlocks| blocks and we
  305. * can't leak where. However, |num_starting_blocks| worth of data can
  306. * be hashed right away because no padding value can affect whether
  307. * they are plaintext. */
  308. size_t num_starting_blocks = 0;
  309. /* k is the starting byte offset into the conceptual header||data where
  310. * we start processing. */
  311. size_t k = 0;
  312. /* mac_end_offset is the index just past the end of the data to be
  313. * MACed. */
  314. size_t mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
  315. /* c is the index of the 0x80 byte in the final hash block that
  316. * contains application data. */
  317. size_t c = mac_end_offset % md_block_size;
  318. /* index_a is the hash block number that contains the 0x80 terminating
  319. * value. */
  320. size_t index_a = mac_end_offset / md_block_size;
  321. /* index_b is the hash block number that contains the 64-bit hash
  322. * length, in bits. */
  323. size_t index_b = (mac_end_offset + md_length_size) / md_block_size;
  324. if (num_blocks > kVarianceBlocks) {
  325. num_starting_blocks = num_blocks - kVarianceBlocks;
  326. k = md_block_size * num_starting_blocks;
  327. }
  328. /* bits is the hash-length in bits. It includes the additional hash
  329. * block for the masked HMAC key. */
  330. size_t bits = 8 * mac_end_offset; /* at most 18 bits to represent */
  331. /* Compute the initial HMAC block. */
  332. bits += 8 * md_block_size;
  333. /* hmac_pad is the masked HMAC key. */
  334. uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
  335. OPENSSL_memset(hmac_pad, 0, md_block_size);
  336. assert(mac_secret_length <= sizeof(hmac_pad));
  337. OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
  338. for (size_t i = 0; i < md_block_size; i++) {
  339. hmac_pad[i] ^= 0x36;
  340. }
  341. md_transform(&md_state, hmac_pad);
  342. /* The length check means |bits| fits in four bytes. */
  343. uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
  344. OPENSSL_memset(length_bytes, 0, md_length_size - 4);
  345. length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
  346. length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
  347. length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
  348. length_bytes[md_length_size - 1] = (uint8_t)bits;
  349. if (k > 0) {
  350. /* k is a multiple of md_block_size. */
  351. uint8_t first_block[MAX_HASH_BLOCK_SIZE];
  352. OPENSSL_memcpy(first_block, header, 13);
  353. OPENSSL_memcpy(first_block + 13, data, md_block_size - 13);
  354. md_transform(&md_state, first_block);
  355. for (size_t i = 1; i < k / md_block_size; i++) {
  356. md_transform(&md_state, data + md_block_size * i - 13);
  357. }
  358. }
  359. uint8_t mac_out[EVP_MAX_MD_SIZE];
  360. OPENSSL_memset(mac_out, 0, sizeof(mac_out));
  361. /* We now process the final hash blocks. For each block, we construct
  362. * it in constant time. If the |i==index_a| then we'll include the 0x80
  363. * bytes and zero pad etc. For each block we selectively copy it, in
  364. * constant time, to |mac_out|. */
  365. for (size_t i = num_starting_blocks;
  366. i <= num_starting_blocks + kVarianceBlocks; i++) {
  367. uint8_t block[MAX_HASH_BLOCK_SIZE];
  368. uint8_t is_block_a = constant_time_eq_8(i, index_a);
  369. uint8_t is_block_b = constant_time_eq_8(i, index_b);
  370. for (size_t j = 0; j < md_block_size; j++) {
  371. uint8_t b = 0;
  372. if (k < kHeaderLength) {
  373. b = header[k];
  374. } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
  375. b = data[k - kHeaderLength];
  376. }
  377. k++;
  378. uint8_t is_past_c = is_block_a & constant_time_ge_8(j, c);
  379. uint8_t is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
  380. /* If this is the block containing the end of the
  381. * application data, and we are at the offset for the
  382. * 0x80 value, then overwrite b with 0x80. */
  383. b = constant_time_select_8(is_past_c, 0x80, b);
  384. /* If this the the block containing the end of the
  385. * application data and we're past the 0x80 value then
  386. * just write zero. */
  387. b = b & ~is_past_cp1;
  388. /* If this is index_b (the final block), but not
  389. * index_a (the end of the data), then the 64-bit
  390. * length didn't fit into index_a and we're having to
  391. * add an extra block of zeros. */
  392. b &= ~is_block_b | is_block_a;
  393. /* The final bytes of one of the blocks contains the
  394. * length. */
  395. if (j >= md_block_size - md_length_size) {
  396. /* If this is index_b, write a length byte. */
  397. b = constant_time_select_8(
  398. is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
  399. }
  400. block[j] = b;
  401. }
  402. md_transform(&md_state, block);
  403. md_final_raw(&md_state, block);
  404. /* If this is index_b, copy the hash value to |mac_out|. */
  405. for (size_t j = 0; j < md_size; j++) {
  406. mac_out[j] |= block[j] & is_block_b;
  407. }
  408. }
  409. EVP_MD_CTX md_ctx;
  410. EVP_MD_CTX_init(&md_ctx);
  411. if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
  412. EVP_MD_CTX_cleanup(&md_ctx);
  413. return 0;
  414. }
  415. /* Complete the HMAC in the standard manner. */
  416. for (size_t i = 0; i < md_block_size; i++) {
  417. hmac_pad[i] ^= 0x6a;
  418. }
  419. EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
  420. EVP_DigestUpdate(&md_ctx, mac_out, md_size);
  421. unsigned md_out_size_u;
  422. EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
  423. *md_out_size = md_out_size_u;
  424. EVP_MD_CTX_cleanup(&md_ctx);
  425. return 1;
  426. }