04c36b5062
RC4_CHAR is a bit in the x86(-64) CPUID information that switches the RC4 asm code from using an array of 256 uint32_t's to 256 uint8_t's. It was originally written for the P4, where the uint8_t style was faster. (On modern chips, setting RC4_CHAR took RC4-MD5 from 458 to 304 MB/s. Although I wonder whether, on a server with many connections, using less cache wouldn't be better.) However, I'm not too worried about a slowdown of RC4 on P4 systems these days (the last new P4 chip was released nine years ago) and I want the code to be simplier. Also, RC4_CHAR was set when the CPUID family was 15, but Intel actually lists 15 as a special code meaning "also check the extended family bits", which the asm didn't do. The RC4_CHAR support remains in the RC4 asm code to avoid drift with upstream. Change-Id: If3febc925a83a76f453b9e9f8de5ee43759927c6 Reviewed-on: https://boringssl-review.googlesource.com/3550 Reviewed-by: David Benjamin <davidben@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
165 lines
3.7 KiB
Raku
165 lines
3.7 KiB
Raku
#!/usr/bin/env perl
|
|
|
|
$flavour = shift;
|
|
$output = shift;
|
|
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
|
|
|
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
|
( $xlate="${dir}perlasm/x86_64-xlate.pl" and -f $xlate) or
|
|
die "can't locate x86_64-xlate.pl";
|
|
|
|
open OUT,"| \"$^X\" $xlate $flavour $output";
|
|
*STDOUT=*OUT;
|
|
|
|
($arg1,$arg2,$arg3,$arg4)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order
|
|
("%rdi","%rsi","%rdx","%rcx"); # Unix order
|
|
|
|
print<<___;
|
|
.text
|
|
|
|
.globl OPENSSL_ia32_cpuid
|
|
.type OPENSSL_ia32_cpuid,\@function,1
|
|
.hidden OPENSSL_ia32_cpuid
|
|
.align 16
|
|
OPENSSL_ia32_cpuid:
|
|
# On Windows, $arg1 is rcx, but that will be clobbered. So make Windows
|
|
# use the same register as Unix.
|
|
mov $arg1,%rdi
|
|
mov %rbx,%r8 # save %rbx
|
|
|
|
xor %eax,%eax
|
|
mov %eax,8(%rdi) # clear 3rd word
|
|
cpuid
|
|
mov %eax,%r11d # max value for standard query level
|
|
|
|
xor %eax,%eax
|
|
cmp \$0x756e6547,%ebx # "Genu"
|
|
setne %al
|
|
mov %eax,%r9d
|
|
cmp \$0x49656e69,%edx # "ineI"
|
|
setne %al
|
|
or %eax,%r9d
|
|
cmp \$0x6c65746e,%ecx # "ntel"
|
|
setne %al
|
|
or %eax,%r9d # 0 indicates Intel CPU
|
|
jz .Lintel
|
|
|
|
cmp \$0x68747541,%ebx # "Auth"
|
|
setne %al
|
|
mov %eax,%r10d
|
|
cmp \$0x69746E65,%edx # "enti"
|
|
setne %al
|
|
or %eax,%r10d
|
|
cmp \$0x444D4163,%ecx # "cAMD"
|
|
setne %al
|
|
or %eax,%r10d # 0 indicates AMD CPU
|
|
jnz .Lintel
|
|
|
|
# AMD specific
|
|
# See http://developer.amd.com/wordpress/media/2012/10/254811.pdf (1)
|
|
|
|
mov \$0x80000000,%eax
|
|
cpuid
|
|
# Returns "The largest CPUID extended function input value supported by
|
|
# the processor implementation." in EAX.
|
|
cmp \$0x80000001,%eax
|
|
jb .Lintel
|
|
mov %eax,%r10d
|
|
mov \$0x80000001,%eax
|
|
cpuid
|
|
# Returns feature bits in ECX. See page 20 of [1].
|
|
# TODO(fork): I think this should be a MOV.
|
|
or %ecx,%r9d
|
|
and \$0x00000801,%r9d # isolate AMD XOP bit, 1<<11
|
|
|
|
cmp \$0x80000008,%r10d
|
|
jb .Lintel
|
|
|
|
mov \$0x80000008,%eax
|
|
cpuid
|
|
# Returns APIC ID and number of cores in ECX. See page 27 of [1].
|
|
movzb %cl,%r10 # number of cores - 1
|
|
inc %r10 # number of cores
|
|
|
|
mov \$1,%eax
|
|
cpuid
|
|
# See page 13 of [1].
|
|
bt \$28,%edx # test hyper-threading bit
|
|
jnc .Lgeneric
|
|
shr \$16,%ebx # number of logical processors
|
|
cmp %r10b,%bl
|
|
ja .Lgeneric
|
|
and \$0xefffffff,%edx # Clear hyper-threading bit.
|
|
jmp .Lgeneric
|
|
|
|
.Lintel:
|
|
cmp \$4,%r11d
|
|
mov \$-1,%r10d
|
|
jb .Lnocacheinfo
|
|
|
|
mov \$4,%eax
|
|
mov \$0,%ecx # query L1D
|
|
cpuid
|
|
mov %eax,%r10d
|
|
shr \$14,%r10d
|
|
and \$0xfff,%r10d # number of cores -1 per L1D
|
|
|
|
cmp \$7,%r11d
|
|
jb .Lnocacheinfo
|
|
|
|
mov \$7,%eax
|
|
xor %ecx,%ecx
|
|
cpuid
|
|
mov %ebx,8(%rdi)
|
|
|
|
.Lnocacheinfo:
|
|
mov \$1,%eax
|
|
cpuid
|
|
# Gets feature information. See table 3-21 in the Intel manual.
|
|
and \$0xbfefffff,%edx # force reserved bits to 0
|
|
cmp \$0,%r9d
|
|
jne .Lnotintel
|
|
or \$0x40000000,%edx # set reserved bit#30 on Intel CPUs
|
|
.Lnotintel:
|
|
bt \$28,%edx # test hyper-threading bit
|
|
jnc .Lgeneric
|
|
and \$0xefffffff,%edx # ~(1<<28) - clear hyper-threading.
|
|
cmp \$0,%r10d
|
|
je .Lgeneric
|
|
|
|
or \$0x10000000,%edx # 1<<28
|
|
shr \$16,%ebx
|
|
cmp \$1,%bl # see if cache is shared
|
|
ja .Lgeneric
|
|
and \$0xefffffff,%edx # ~(1<<28)
|
|
.Lgeneric:
|
|
and \$0x00000800,%r9d # isolate AMD XOP flag
|
|
and \$0xfffff7ff,%ecx
|
|
or %ecx,%r9d # merge AMD XOP flag
|
|
|
|
mov %edx,%r10d # %r9d:%r10d is copy of %ecx:%edx
|
|
bt \$27,%r9d # check OSXSAVE bit
|
|
jnc .Lclear_avx
|
|
xor %ecx,%ecx # XCR0
|
|
.byte 0x0f,0x01,0xd0 # xgetbv
|
|
and \$6,%eax # isolate XMM and YMM state support
|
|
cmp \$6,%eax
|
|
je .Ldone
|
|
.Lclear_avx:
|
|
mov \$0xefffe7ff,%eax # ~(1<<28|1<<12|1<<11)
|
|
and %eax,%r9d # clear AVX, FMA and AMD XOP bits
|
|
andl \$0xffffffdf,8(%rdi) # cleax AVX2, ~(1<<5)
|
|
.Ldone:
|
|
movl %r9d,4(%rdi)
|
|
movl %r10d,0(%rdi)
|
|
mov %r8,%rbx # restore %rbx
|
|
ret
|
|
.size OPENSSL_ia32_cpuid,.-OPENSSL_ia32_cpuid
|
|
|
|
___
|
|
|
|
close STDOUT; # flush
|