boringssl/ssl/ssl_key_share.cc
David Benjamin 6dda166d21 Support additional curve names.
Node's default settings spell P-256 as prime256v1. This comes from
OpenSSL additionally allowing the long and short names of each curve's
NID. This works out to one additional name per curve for the ones we
support. To avoid depending on the giant OID table, this replicates the
names in libssl.

Change-Id: I456a2db6939eb6745e5a9d2f12cf6886e6265b9f
Reviewed-on: https://boringssl-review.googlesource.com/22545
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-11-03 01:32:49 +00:00

251 lines
7.2 KiB
C++

/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <utility>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/curve25519.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include "internal.h"
#include "../crypto/internal.h"
namespace bssl {
namespace {
class ECKeyShare : public SSLKeyShare {
public:
ECKeyShare(int nid, uint16_t group_id) : nid_(nid), group_id_(group_id) {}
~ECKeyShare() override {}
uint16_t GroupID() const override { return group_id_; }
bool Offer(CBB *out) override {
assert(!private_key_);
// Set up a shared |BN_CTX| for all operations.
UniquePtr<BN_CTX> bn_ctx(BN_CTX_new());
if (!bn_ctx) {
return false;
}
BN_CTXScope scope(bn_ctx.get());
// Generate a private key.
UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(nid_));
private_key_.reset(BN_new());
if (!group || !private_key_ ||
!BN_rand_range_ex(private_key_.get(), 1,
EC_GROUP_get0_order(group.get()))) {
return false;
}
// Compute the corresponding public key and serialize it.
UniquePtr<EC_POINT> public_key(EC_POINT_new(group.get()));
if (!public_key ||
!EC_POINT_mul(group.get(), public_key.get(), private_key_.get(), NULL,
NULL, bn_ctx.get()) ||
!EC_POINT_point2cbb(out, group.get(), public_key.get(),
POINT_CONVERSION_UNCOMPRESSED, bn_ctx.get())) {
return false;
}
return true;
}
bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
Span<const uint8_t> peer_key) override {
assert(private_key_);
*out_alert = SSL_AD_INTERNAL_ERROR;
// Set up a shared |BN_CTX| for all operations.
UniquePtr<BN_CTX> bn_ctx(BN_CTX_new());
if (!bn_ctx) {
return false;
}
BN_CTXScope scope(bn_ctx.get());
UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(nid_));
if (!group) {
return false;
}
UniquePtr<EC_POINT> peer_point(EC_POINT_new(group.get()));
UniquePtr<EC_POINT> result(EC_POINT_new(group.get()));
BIGNUM *x = BN_CTX_get(bn_ctx.get());
if (!peer_point || !result || !x) {
return false;
}
if (!EC_POINT_oct2point(group.get(), peer_point.get(), peer_key.data(),
peer_key.size(), bn_ctx.get())) {
*out_alert = SSL_AD_DECODE_ERROR;
return false;
}
// Compute the x-coordinate of |peer_key| * |private_key_|.
if (!EC_POINT_mul(group.get(), result.get(), NULL, peer_point.get(),
private_key_.get(), bn_ctx.get()) ||
!EC_POINT_get_affine_coordinates_GFp(group.get(), result.get(), x, NULL,
bn_ctx.get())) {
return false;
}
// Encode the x-coordinate left-padded with zeros.
Array<uint8_t> secret;
if (!secret.Init((EC_GROUP_get_degree(group.get()) + 7) / 8) ||
!BN_bn2bin_padded(secret.data(), secret.size(), x)) {
return false;
}
*out_secret = std::move(secret);
return true;
}
private:
UniquePtr<BIGNUM> private_key_;
int nid_;
uint16_t group_id_;
};
class X25519KeyShare : public SSLKeyShare {
public:
X25519KeyShare() {}
~X25519KeyShare() override {
OPENSSL_cleanse(private_key_, sizeof(private_key_));
}
uint16_t GroupID() const override { return SSL_CURVE_X25519; }
bool Offer(CBB *out) override {
uint8_t public_key[32];
X25519_keypair(public_key, private_key_);
return !!CBB_add_bytes(out, public_key, sizeof(public_key));
}
bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
Span<const uint8_t> peer_key) override {
*out_alert = SSL_AD_INTERNAL_ERROR;
Array<uint8_t> secret;
if (!secret.Init(32)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return false;
}
if (peer_key.size() != 32 ||
!X25519(secret.data(), private_key_, peer_key.data())) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
return false;
}
*out_secret = std::move(secret);
return true;
}
private:
uint8_t private_key_[32];
};
CONSTEXPR_ARRAY struct {
int nid;
uint16_t group_id;
const char name[8], alias[11];
} kNamedGroups[] = {
{NID_secp224r1, SSL_CURVE_SECP224R1, "P-224", "secp224r1"},
{NID_X9_62_prime256v1, SSL_CURVE_SECP256R1, "P-256", "prime256v1"},
{NID_secp384r1, SSL_CURVE_SECP384R1, "P-384", "secp384r1"},
{NID_secp521r1, SSL_CURVE_SECP521R1, "P-521", "secp521r1"},
{NID_X25519, SSL_CURVE_X25519, "X25519", "x25519"},
};
} // namespace
UniquePtr<SSLKeyShare> SSLKeyShare::Create(uint16_t group_id) {
switch (group_id) {
case SSL_CURVE_SECP224R1:
return UniquePtr<SSLKeyShare>(
New<ECKeyShare>(NID_secp224r1, SSL_CURVE_SECP224R1));
case SSL_CURVE_SECP256R1:
return UniquePtr<SSLKeyShare>(
New<ECKeyShare>(NID_X9_62_prime256v1, SSL_CURVE_SECP256R1));
case SSL_CURVE_SECP384R1:
return UniquePtr<SSLKeyShare>(
New<ECKeyShare>(NID_secp384r1, SSL_CURVE_SECP384R1));
case SSL_CURVE_SECP521R1:
return UniquePtr<SSLKeyShare>(
New<ECKeyShare>(NID_secp521r1, SSL_CURVE_SECP521R1));
case SSL_CURVE_X25519:
return UniquePtr<SSLKeyShare>(New<X25519KeyShare>());
default:
return nullptr;
}
}
bool SSLKeyShare::Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
uint8_t *out_alert, Span<const uint8_t> peer_key) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return Offer(out_public_key) &&
Finish(out_secret, out_alert, peer_key);
}
int ssl_nid_to_group_id(uint16_t *out_group_id, int nid) {
for (const auto &group : kNamedGroups) {
if (group.nid == nid) {
*out_group_id = group.group_id;
return 1;
}
}
return 0;
}
int ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len) {
for (const auto &group : kNamedGroups) {
if (len == strlen(group.name) &&
!strncmp(group.name, name, len)) {
*out_group_id = group.group_id;
return 1;
}
if (len == strlen(group.alias) &&
!strncmp(group.alias, name, len)) {
*out_group_id = group.group_id;
return 1;
}
}
return 0;
}
} // namespace bssl
using namespace bssl;
const char* SSL_get_curve_name(uint16_t group_id) {
for (const auto &group : kNamedGroups) {
if (group.group_id == group_id) {
return group.name;
}
}
return nullptr;
}