4492a61567
Note the legacy client cert callback case fixes a leak. Change-Id: I2772167bd03d308676d9e00885c751207002b31e Reviewed-on: https://boringssl-review.googlesource.com/18824 Commit-Queue: Steven Valdez <svaldez@google.com> Reviewed-by: Steven Valdez <svaldez@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
519 lines
18 KiB
C++
519 lines
18 KiB
C++
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
|
|
#include <openssl/ec.h>
|
|
#include <openssl/ec_key.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
#include "../crypto/internal.h"
|
|
|
|
|
|
namespace bssl {
|
|
|
|
int ssl_is_key_type_supported(int key_type) {
|
|
return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
|
|
key_type == EVP_PKEY_ED25519;
|
|
}
|
|
|
|
static int ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
|
|
if (!ssl_is_key_type_supported(pkey->type)) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
if (cert->chain != NULL &&
|
|
sk_CRYPTO_BUFFER_value(cert->chain, 0) != NULL &&
|
|
/* Sanity-check that the private key and the certificate match. */
|
|
!ssl_cert_check_private_key(cert, pkey)) {
|
|
return 0;
|
|
}
|
|
|
|
EVP_PKEY_free(cert->privatekey);
|
|
EVP_PKEY_up_ref(pkey);
|
|
cert->privatekey = pkey;
|
|
|
|
return 1;
|
|
}
|
|
|
|
typedef struct {
|
|
uint16_t sigalg;
|
|
int pkey_type;
|
|
int curve;
|
|
const EVP_MD *(*digest_func)(void);
|
|
char is_rsa_pss;
|
|
} SSL_SIGNATURE_ALGORITHM;
|
|
|
|
static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
|
|
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, 0},
|
|
{SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, 0},
|
|
{SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 0},
|
|
{SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 0},
|
|
{SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 0},
|
|
|
|
{SSL_SIGN_RSA_PSS_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 1},
|
|
{SSL_SIGN_RSA_PSS_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 1},
|
|
{SSL_SIGN_RSA_PSS_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 1},
|
|
|
|
{SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, 0},
|
|
{SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
|
|
&EVP_sha256, 0},
|
|
{SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
|
|
0},
|
|
{SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
|
|
0},
|
|
|
|
{SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, NULL, 0},
|
|
};
|
|
|
|
static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
|
|
if (kSignatureAlgorithms[i].sigalg == sigalg) {
|
|
return &kSignatureAlgorithms[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int ssl_has_private_key(const SSL *ssl) {
|
|
return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL;
|
|
}
|
|
|
|
static int pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
|
|
uint16_t sigalg) {
|
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
|
|
if (alg == NULL ||
|
|
EVP_PKEY_id(pkey) != alg->pkey_type) {
|
|
return 0;
|
|
}
|
|
|
|
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
|
|
/* RSA keys may only be used with RSA-PSS. */
|
|
if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
|
|
return 0;
|
|
}
|
|
|
|
/* EC keys have a curve requirement. */
|
|
if (alg->pkey_type == EVP_PKEY_EC &&
|
|
(alg->curve == NID_undef ||
|
|
EC_GROUP_get_curve_name(
|
|
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, uint16_t sigalg,
|
|
int is_verify) {
|
|
if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
|
|
const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
|
|
EVP_PKEY_CTX *pctx;
|
|
if (is_verify) {
|
|
if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
|
|
return 0;
|
|
}
|
|
} else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
|
|
return 0;
|
|
}
|
|
|
|
if (alg->is_rsa_pss) {
|
|
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
|
|
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int legacy_sign_digest_supported(const SSL_SIGNATURE_ALGORITHM *alg) {
|
|
return (alg->pkey_type == EVP_PKEY_EC || alg->pkey_type == EVP_PKEY_RSA) &&
|
|
!alg->is_rsa_pss;
|
|
}
|
|
|
|
static enum ssl_private_key_result_t legacy_sign(
|
|
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint16_t sigalg,
|
|
const uint8_t *in, size_t in_len) {
|
|
/* TODO(davidben): Remove support for |sign_digest|-only
|
|
* |SSL_PRIVATE_KEY_METHOD|s. */
|
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
|
|
if (alg == NULL || !legacy_sign_digest_supported(alg)) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY);
|
|
return ssl_private_key_failure;
|
|
}
|
|
|
|
const EVP_MD *md = alg->digest_func();
|
|
uint8_t hash[EVP_MAX_MD_SIZE];
|
|
unsigned hash_len;
|
|
if (!EVP_Digest(in, in_len, hash, &hash_len, md, NULL)) {
|
|
return ssl_private_key_failure;
|
|
}
|
|
|
|
return ssl->cert->key_method->sign_digest(ssl, out, out_len, max_out, md,
|
|
hash, hash_len);
|
|
}
|
|
|
|
enum ssl_private_key_result_t ssl_private_key_sign(
|
|
SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
|
|
uint16_t sigalg, const uint8_t *in, size_t in_len) {
|
|
SSL *const ssl = hs->ssl;
|
|
if (ssl->cert->key_method != NULL) {
|
|
enum ssl_private_key_result_t ret;
|
|
if (hs->pending_private_key_op) {
|
|
ret = ssl->cert->key_method->complete(ssl, out, out_len, max_out);
|
|
} else {
|
|
ret = (ssl->cert->key_method->sign != NULL
|
|
? ssl->cert->key_method->sign
|
|
: legacy_sign)(ssl, out, out_len, max_out, sigalg, in, in_len);
|
|
}
|
|
hs->pending_private_key_op = ret == ssl_private_key_retry;
|
|
return ret;
|
|
}
|
|
|
|
*out_len = max_out;
|
|
ScopedEVP_MD_CTX ctx;
|
|
if (!setup_ctx(ssl, ctx.get(), ssl->cert->privatekey, sigalg, 0 /* sign */) ||
|
|
!EVP_DigestSign(ctx.get(), out, out_len, in, in_len)) {
|
|
return ssl_private_key_failure;
|
|
}
|
|
return ssl_private_key_success;
|
|
}
|
|
|
|
int ssl_public_key_verify(SSL *ssl, const uint8_t *signature,
|
|
size_t signature_len, uint16_t sigalg, EVP_PKEY *pkey,
|
|
const uint8_t *in, size_t in_len) {
|
|
ScopedEVP_MD_CTX ctx;
|
|
return setup_ctx(ssl, ctx.get(), pkey, sigalg, 1 /* verify */) &&
|
|
EVP_DigestVerify(ctx.get(), signature, signature_len, in, in_len);
|
|
}
|
|
|
|
enum ssl_private_key_result_t ssl_private_key_decrypt(
|
|
SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
|
|
const uint8_t *in, size_t in_len) {
|
|
SSL *const ssl = hs->ssl;
|
|
if (ssl->cert->key_method != NULL) {
|
|
enum ssl_private_key_result_t ret;
|
|
if (hs->pending_private_key_op) {
|
|
ret = ssl->cert->key_method->complete(ssl, out, out_len, max_out);
|
|
} else {
|
|
ret = ssl->cert->key_method->decrypt(ssl, out, out_len, max_out, in,
|
|
in_len);
|
|
}
|
|
hs->pending_private_key_op = ret == ssl_private_key_retry;
|
|
return ret;
|
|
}
|
|
|
|
RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey);
|
|
if (rsa == NULL) {
|
|
/* Decrypt operations are only supported for RSA keys. */
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
|
return ssl_private_key_failure;
|
|
}
|
|
|
|
/* Decrypt with no padding. PKCS#1 padding will be removed as part
|
|
* of the timing-sensitive code by the caller. */
|
|
if (!RSA_decrypt(rsa, out_len, out, max_out, in, in_len, RSA_NO_PADDING)) {
|
|
return ssl_private_key_failure;
|
|
}
|
|
return ssl_private_key_success;
|
|
}
|
|
|
|
int ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
|
|
uint16_t sigalg) {
|
|
SSL *const ssl = hs->ssl;
|
|
if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
|
|
* emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
|
|
* hash in TLS. Reasonable RSA key sizes are large enough for the largest
|
|
* defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
|
|
* SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
|
|
* size so that we can fall back to another algorithm in that case. */
|
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
|
|
if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
|
|
2 * EVP_MD_size(alg->digest_func()) + 2) {
|
|
return 0;
|
|
}
|
|
|
|
/* Newer algorithms require message-based private keys.
|
|
* TODO(davidben): Remove this check when sign_digest is gone. */
|
|
if (ssl->cert->key_method != NULL &&
|
|
ssl->cert->key_method->sign == NULL &&
|
|
!legacy_sign_digest_supported(alg)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
} // namespace bssl
|
|
|
|
using namespace bssl;
|
|
|
|
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
|
|
if (!pkey ||
|
|
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
|
|
return 0;
|
|
}
|
|
|
|
return ssl_set_pkey(ssl->cert, pkey.get());
|
|
}
|
|
|
|
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
|
|
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
|
|
if (!rsa) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
|
|
return 0;
|
|
}
|
|
|
|
return SSL_use_RSAPrivateKey(ssl, rsa.get());
|
|
}
|
|
|
|
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
|
|
if (pkey == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
return ssl_set_pkey(ssl->cert, pkey);
|
|
}
|
|
|
|
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
|
|
size_t der_len) {
|
|
if (der_len > LONG_MAX) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t *p = der;
|
|
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
|
|
if (!pkey || p != der + der_len) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
|
|
return 0;
|
|
}
|
|
|
|
return SSL_use_PrivateKey(ssl, pkey.get());
|
|
}
|
|
|
|
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
|
|
if (!pkey ||
|
|
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
|
|
return 0;
|
|
}
|
|
|
|
return ssl_set_pkey(ctx->cert, pkey.get());
|
|
}
|
|
|
|
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
|
|
size_t der_len) {
|
|
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
|
|
if (!rsa) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
|
|
return 0;
|
|
}
|
|
|
|
return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
|
|
}
|
|
|
|
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
|
|
if (pkey == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
return ssl_set_pkey(ctx->cert, pkey);
|
|
}
|
|
|
|
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
|
|
size_t der_len) {
|
|
if (der_len > LONG_MAX) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t *p = der;
|
|
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
|
|
if (!pkey || p != der + der_len) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
|
|
return 0;
|
|
}
|
|
|
|
return SSL_CTX_use_PrivateKey(ctx, pkey.get());
|
|
}
|
|
|
|
void SSL_set_private_key_method(SSL *ssl,
|
|
const SSL_PRIVATE_KEY_METHOD *key_method) {
|
|
ssl->cert->key_method = key_method;
|
|
}
|
|
|
|
void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
|
|
const SSL_PRIVATE_KEY_METHOD *key_method) {
|
|
ctx->cert->key_method = key_method;
|
|
}
|
|
|
|
static int set_algorithm_prefs(uint16_t **out_prefs, size_t *out_num_prefs,
|
|
const uint16_t *prefs, size_t num_prefs) {
|
|
OPENSSL_free(*out_prefs);
|
|
|
|
*out_num_prefs = 0;
|
|
*out_prefs = (uint16_t *)BUF_memdup(prefs, num_prefs * sizeof(prefs[0]));
|
|
if (*out_prefs == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
*out_num_prefs = num_prefs;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
|
|
size_t num_prefs) {
|
|
return set_algorithm_prefs(&ctx->cert->sigalgs, &ctx->cert->num_sigalgs,
|
|
prefs, num_prefs);
|
|
}
|
|
|
|
|
|
int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
|
|
size_t num_prefs) {
|
|
return set_algorithm_prefs(&ssl->cert->sigalgs, &ssl->cert->num_sigalgs,
|
|
prefs, num_prefs);
|
|
}
|
|
|
|
int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
|
|
size_t num_prefs) {
|
|
return set_algorithm_prefs(&ctx->verify_sigalgs, &ctx->num_verify_sigalgs,
|
|
prefs, num_prefs);
|
|
}
|
|
|
|
int SSL_set_private_key_digest_prefs(SSL *ssl, const int *digest_nids,
|
|
size_t num_digests) {
|
|
OPENSSL_free(ssl->cert->sigalgs);
|
|
|
|
static_assert(sizeof(int) >= 2 * sizeof(uint16_t),
|
|
"sigalgs allocation may overflow");
|
|
|
|
ssl->cert->num_sigalgs = 0;
|
|
ssl->cert->sigalgs =
|
|
(uint16_t *)OPENSSL_malloc(sizeof(uint16_t) * 2 * num_digests);
|
|
if (ssl->cert->sigalgs == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
/* Convert the digest list to a signature algorithms list.
|
|
*
|
|
* TODO(davidben): Replace this API with one that can express RSA-PSS, etc. */
|
|
for (size_t i = 0; i < num_digests; i++) {
|
|
switch (digest_nids[i]) {
|
|
case NID_sha1:
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA1;
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SHA1;
|
|
ssl->cert->num_sigalgs += 2;
|
|
break;
|
|
case NID_sha256:
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA256;
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] =
|
|
SSL_SIGN_ECDSA_SECP256R1_SHA256;
|
|
ssl->cert->num_sigalgs += 2;
|
|
break;
|
|
case NID_sha384:
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA384;
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] =
|
|
SSL_SIGN_ECDSA_SECP384R1_SHA384;
|
|
ssl->cert->num_sigalgs += 2;
|
|
break;
|
|
case NID_sha512:
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA512;
|
|
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] =
|
|
SSL_SIGN_ECDSA_SECP521R1_SHA512;
|
|
ssl->cert->num_sigalgs += 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|