8eadca50a2
(This is actually slightly silly as |a|'s probability distribution falls off exponentially, but it's easy enough to do right.) Instead, we run the loop to the end. This is still performant because we can, as before, return early on composite numbers. Only two calls actually run to the end. Moreover, running to the end has comparable cost to BN_mod_exp_mont_consttime. Median time goes from 0.140s to 0.231s. That cost some, but we're still faster than the original implementation. We're down to one more leak, which is that the BN_rand_range_ex call does not hide |w1|. That one may only be solved probabilistically... Median of 29 RSA keygens: 0m0.123s -> 0m0.145s (Accuracy beyond 0.1s is questionable.) Bug: 238 Change-Id: I4847cb0053118c572d2dd5f855388b5199fa6ce2 Reviewed-on: https://boringssl-review.googlesource.com/25888 Reviewed-by: Adam Langley <agl@google.com>
429 lines
11 KiB
C
429 lines
11 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
#include "../delocate.h"
|
|
|
|
|
|
BIGNUM *BN_new(void) {
|
|
BIGNUM *bn = OPENSSL_malloc(sizeof(BIGNUM));
|
|
|
|
if (bn == NULL) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memset(bn, 0, sizeof(BIGNUM));
|
|
bn->flags = BN_FLG_MALLOCED;
|
|
|
|
return bn;
|
|
}
|
|
|
|
void BN_init(BIGNUM *bn) {
|
|
OPENSSL_memset(bn, 0, sizeof(BIGNUM));
|
|
}
|
|
|
|
void BN_free(BIGNUM *bn) {
|
|
if (bn == NULL) {
|
|
return;
|
|
}
|
|
|
|
if ((bn->flags & BN_FLG_STATIC_DATA) == 0) {
|
|
OPENSSL_free(bn->d);
|
|
}
|
|
|
|
if (bn->flags & BN_FLG_MALLOCED) {
|
|
OPENSSL_free(bn);
|
|
} else {
|
|
bn->d = NULL;
|
|
}
|
|
}
|
|
|
|
void BN_clear_free(BIGNUM *bn) {
|
|
char should_free;
|
|
|
|
if (bn == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (bn->d != NULL) {
|
|
if ((bn->flags & BN_FLG_STATIC_DATA) == 0) {
|
|
OPENSSL_free(bn->d);
|
|
} else {
|
|
OPENSSL_cleanse(bn->d, bn->dmax * sizeof(bn->d[0]));
|
|
}
|
|
}
|
|
|
|
should_free = (bn->flags & BN_FLG_MALLOCED) != 0;
|
|
if (should_free) {
|
|
OPENSSL_free(bn);
|
|
} else {
|
|
OPENSSL_cleanse(bn, sizeof(BIGNUM));
|
|
}
|
|
}
|
|
|
|
BIGNUM *BN_dup(const BIGNUM *src) {
|
|
BIGNUM *copy;
|
|
|
|
if (src == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
copy = BN_new();
|
|
if (copy == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!BN_copy(copy, src)) {
|
|
BN_free(copy);
|
|
return NULL;
|
|
}
|
|
|
|
return copy;
|
|
}
|
|
|
|
BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src) {
|
|
if (src == dest) {
|
|
return dest;
|
|
}
|
|
|
|
if (!bn_wexpand(dest, src->width)) {
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memcpy(dest->d, src->d, sizeof(src->d[0]) * src->width);
|
|
|
|
dest->width = src->width;
|
|
dest->neg = src->neg;
|
|
return dest;
|
|
}
|
|
|
|
void BN_clear(BIGNUM *bn) {
|
|
if (bn->d != NULL) {
|
|
OPENSSL_memset(bn->d, 0, bn->dmax * sizeof(bn->d[0]));
|
|
}
|
|
|
|
bn->width = 0;
|
|
bn->neg = 0;
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(BIGNUM, BN_value_one) {
|
|
static const BN_ULONG kOneLimbs[1] = { 1 };
|
|
out->d = (BN_ULONG*) kOneLimbs;
|
|
out->width = 1;
|
|
out->dmax = 1;
|
|
out->neg = 0;
|
|
out->flags = BN_FLG_STATIC_DATA;
|
|
}
|
|
|
|
// BN_num_bits_word returns the minimum number of bits needed to represent the
|
|
// value in |l|.
|
|
unsigned BN_num_bits_word(BN_ULONG l) {
|
|
// |BN_num_bits| is often called on RSA prime factors. These have public bit
|
|
// lengths, but all bits beyond the high bit are secret, so count bits in
|
|
// constant time.
|
|
BN_ULONG x, mask;
|
|
int bits = (l != 0);
|
|
|
|
#if BN_BITS2 > 32
|
|
// Look at the upper half of |x|. |x| is at most 64 bits long.
|
|
x = l >> 32;
|
|
// Set |mask| to all ones if |x| (the top 32 bits of |l|) is non-zero and all
|
|
// all zeros otherwise.
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
// If |x| is non-zero, the lower half is included in the bit count in full,
|
|
// and we count the upper half. Otherwise, we count the lower half.
|
|
bits += 32 & mask;
|
|
l ^= (x ^ l) & mask; // |l| is |x| if |mask| and remains |l| otherwise.
|
|
#endif
|
|
|
|
// The remaining blocks are analogous iterations at lower powers of two.
|
|
x = l >> 16;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 16 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 8;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 8 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 4;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 4 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 2;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 2 & mask;
|
|
l ^= (x ^ l) & mask;
|
|
|
|
x = l >> 1;
|
|
mask = 0u - x;
|
|
mask = (0u - (mask >> (BN_BITS2 - 1)));
|
|
bits += 1 & mask;
|
|
|
|
return bits;
|
|
}
|
|
|
|
unsigned BN_num_bits(const BIGNUM *bn) {
|
|
const int width = bn_minimal_width(bn);
|
|
if (width == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return (width - 1) * BN_BITS2 + BN_num_bits_word(bn->d[width - 1]);
|
|
}
|
|
|
|
unsigned BN_num_bytes(const BIGNUM *bn) {
|
|
return (BN_num_bits(bn) + 7) / 8;
|
|
}
|
|
|
|
void BN_zero(BIGNUM *bn) {
|
|
bn->width = bn->neg = 0;
|
|
}
|
|
|
|
int BN_one(BIGNUM *bn) {
|
|
return BN_set_word(bn, 1);
|
|
}
|
|
|
|
int BN_set_word(BIGNUM *bn, BN_ULONG value) {
|
|
if (value == 0) {
|
|
BN_zero(bn);
|
|
return 1;
|
|
}
|
|
|
|
if (!bn_wexpand(bn, 1)) {
|
|
return 0;
|
|
}
|
|
|
|
bn->neg = 0;
|
|
bn->d[0] = value;
|
|
bn->width = 1;
|
|
return 1;
|
|
}
|
|
|
|
int BN_set_u64(BIGNUM *bn, uint64_t value) {
|
|
#if BN_BITS2 == 64
|
|
return BN_set_word(bn, value);
|
|
#elif BN_BITS2 == 32
|
|
if (value <= BN_MASK2) {
|
|
return BN_set_word(bn, (BN_ULONG)value);
|
|
}
|
|
|
|
if (!bn_wexpand(bn, 2)) {
|
|
return 0;
|
|
}
|
|
|
|
bn->neg = 0;
|
|
bn->d[0] = (BN_ULONG)value;
|
|
bn->d[1] = (BN_ULONG)(value >> 32);
|
|
bn->width = 2;
|
|
return 1;
|
|
#else
|
|
#error "BN_BITS2 must be 32 or 64."
|
|
#endif
|
|
}
|
|
|
|
int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num) {
|
|
if (!bn_wexpand(bn, num)) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memmove(bn->d, words, num * sizeof(BN_ULONG));
|
|
// |bn_wexpand| verified that |num| isn't too large.
|
|
bn->width = (int)num;
|
|
bn->neg = 0;
|
|
return 1;
|
|
}
|
|
|
|
int bn_fits_in_words(const BIGNUM *bn, size_t num) {
|
|
// All words beyond |num| must be zero.
|
|
BN_ULONG mask = 0;
|
|
for (size_t i = num; i < (size_t)bn->width; i++) {
|
|
mask |= bn->d[i];
|
|
}
|
|
return mask == 0;
|
|
}
|
|
|
|
int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn) {
|
|
if (bn->neg) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
|
|
size_t width = (size_t)bn->width;
|
|
if (width > num) {
|
|
if (!bn_fits_in_words(bn, num)) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
width = num;
|
|
}
|
|
|
|
OPENSSL_memset(out, 0, sizeof(BN_ULONG) * num);
|
|
OPENSSL_memcpy(out, bn->d, sizeof(BN_ULONG) * width);
|
|
return 1;
|
|
}
|
|
|
|
int BN_is_negative(const BIGNUM *bn) {
|
|
return bn->neg != 0;
|
|
}
|
|
|
|
void BN_set_negative(BIGNUM *bn, int sign) {
|
|
if (sign && !BN_is_zero(bn)) {
|
|
bn->neg = 1;
|
|
} else {
|
|
bn->neg = 0;
|
|
}
|
|
}
|
|
|
|
int bn_wexpand(BIGNUM *bn, size_t words) {
|
|
BN_ULONG *a;
|
|
|
|
if (words <= (size_t)bn->dmax) {
|
|
return 1;
|
|
}
|
|
|
|
if (words > (INT_MAX / (4 * BN_BITS2))) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
|
|
if (bn->flags & BN_FLG_STATIC_DATA) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
|
|
return 0;
|
|
}
|
|
|
|
a = OPENSSL_malloc(sizeof(BN_ULONG) * words);
|
|
if (a == NULL) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memcpy(a, bn->d, sizeof(BN_ULONG) * bn->width);
|
|
|
|
OPENSSL_free(bn->d);
|
|
bn->d = a;
|
|
bn->dmax = (int)words;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int bn_expand(BIGNUM *bn, size_t bits) {
|
|
if (bits + BN_BITS2 - 1 < bits) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
return bn_wexpand(bn, (bits+BN_BITS2-1)/BN_BITS2);
|
|
}
|
|
|
|
int bn_resize_words(BIGNUM *bn, size_t words) {
|
|
if ((size_t)bn->width <= words) {
|
|
if (!bn_wexpand(bn, words)) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memset(bn->d + bn->width, 0,
|
|
(words - bn->width) * sizeof(BN_ULONG));
|
|
bn->width = words;
|
|
return 1;
|
|
}
|
|
|
|
// All words beyond the new width must be zero.
|
|
if (!bn_fits_in_words(bn, words)) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
bn->width = words;
|
|
return 1;
|
|
}
|
|
|
|
void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
|
|
const BN_ULONG *b, size_t num) {
|
|
for (size_t i = 0; i < num; i++) {
|
|
OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
|
|
crypto_word_t_too_small);
|
|
r[i] = constant_time_select_w(mask, a[i], b[i]);
|
|
}
|
|
}
|
|
|
|
int bn_minimal_width(const BIGNUM *bn) {
|
|
int ret = bn->width;
|
|
while (ret > 0 && bn->d[ret - 1] == 0) {
|
|
ret--;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void bn_set_minimal_width(BIGNUM *bn) {
|
|
bn->width = bn_minimal_width(bn);
|
|
if (bn->width == 0) {
|
|
bn->neg = 0;
|
|
}
|
|
}
|