boringssl/crypto/fipsmodule/ec/ec_montgomery.c
David Benjamin 8370fb6b41 Implement constant-time generic multiplication.
This is slower, but constant-time. It intentionally omits the signed
digit optimization because we cannot be sure the doubling case will be
unreachable for all curves. This is a fallback generic implementation
for curves which we must support for compatibility but which are not
common or important enough to justify curve-specific work.

Before:
Did 814 ECDH P-384 operations in 1085384us (750.0 ops/sec)
Did 1430 ECDSA P-384 signing operations in 1081988us (1321.6 ops/sec)
Did 308 ECDH P-521 operations in 1057741us (291.2 ops/sec)
Did 539 ECDSA P-521 signing operations in 1049797us (513.4 ops/sec)

After:
Did 715 ECDH P-384 operations in 1080161us (661.9 ops/sec)
Did 1188 ECDSA P-384 verify operations in 1069567us (1110.7 ops/sec)
Did 275 ECDH P-521 operations in 1060503us (259.3 ops/sec)
Did 506 ECDSA P-521 signing operations in 1084739us (466.5 ops/sec)

But we're still faster than the old BIGNUM implementation. EC_FELEM
more than paid for both the loss of points_make_affine and this CL.

Bug: 239
Change-Id: I65d71a731aad16b523928ee47618822d503ea704
Reviewed-on: https://boringssl-review.googlesource.com/27708
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
2018-04-27 20:11:29 +00:00

236 lines
8.1 KiB
C

/* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../bn/internal.h"
#include "../delocate.h"
#include "internal.h"
int ec_GFp_mont_group_init(EC_GROUP *group) {
int ok;
ok = ec_GFp_simple_group_init(group);
group->mont = NULL;
return ok;
}
void ec_GFp_mont_group_finish(EC_GROUP *group) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
ec_GFp_simple_group_finish(group);
}
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
int ret = 0;
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
group->mont = BN_MONT_CTX_new_for_modulus(p, ctx);
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
goto err;
}
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
if (!ret) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
}
err:
BN_CTX_free(new_ctx);
return ret;
}
static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group,
EC_FELEM *out, const EC_FELEM *in) {
bn_to_montgomery_small(out->words, in->words, group->field.width,
group->mont);
}
static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group,
EC_FELEM *out,
const EC_FELEM *in) {
bn_from_montgomery_small(out->words, in->words, group->field.width,
group->mont);
}
static void ec_GFp_mont_felem_inv(const EC_GROUP *group, EC_FELEM *out,
const EC_FELEM *a) {
bn_mod_inverse_prime_mont_small(out->words, a->words, group->field.width,
group->mont);
}
void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a, const EC_FELEM *b) {
bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width,
group->mont);
}
void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a) {
bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width,
group->mont);
}
int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
const BIGNUM *in) {
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
return 0;
}
if (!bn_copy_words(out->words, group->field.width, in)) {
return 0;
}
ec_GFp_mont_felem_to_montgomery(group, out, out);
return 1;
}
int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
const EC_FELEM *in) {
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
return 0;
}
EC_FELEM tmp;
ec_GFp_mont_felem_from_montgomery(group, &tmp, in);
return bn_set_words(out, tmp.words, group->field.width);
}
static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
const EC_RAW_POINT *point,
BIGNUM *x, BIGNUM *y) {
if (ec_GFp_simple_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
// Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3).
EC_FELEM z1, z2;
ec_GFp_mont_felem_inv(group, &z2, &point->Z);
ec_GFp_mont_felem_sqr(group, &z1, &z2);
// Instead of using |ec_GFp_mont_felem_from_montgomery| to convert the |x|
// coordinate and then calling |ec_GFp_mont_felem_from_montgomery| again to
// convert the |y| coordinate below, convert the common factor |z1| once now,
// saving one reduction.
ec_GFp_mont_felem_from_montgomery(group, &z1, &z1);
if (x != NULL) {
EC_FELEM tmp;
ec_GFp_mont_felem_mul(group, &tmp, &point->X, &z1);
if (!bn_set_words(x, tmp.words, group->field.width)) {
return 0;
}
}
if (y != NULL) {
EC_FELEM tmp;
ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
ec_GFp_mont_felem_mul(group, &tmp, &point->Y, &z1);
if (!bn_set_words(y, tmp.words, group->field.width)) {
return 0;
}
}
return 1;
}
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
out->group_init = ec_GFp_mont_group_init;
out->group_finish = ec_GFp_mont_group_finish;
out->group_set_curve = ec_GFp_mont_group_set_curve;
out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
out->mul = ec_GFp_simple_mul;
out->mul_public = ec_GFp_simple_mul_public;
out->felem_mul = ec_GFp_mont_felem_mul;
out->felem_sqr = ec_GFp_mont_felem_sqr;
out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery;
}