boringssl/ssl/test/runner/key_agreement.go
David Benjamin 3c6a1ea674 Apply version/wire mapping at a higher layer in runner.
This is in preparation for implementing the version extension and is
probably what we should have done from the beginning as it makes
intolerance bugs simpler.

This means knobs like SendClientVersion and SendServerVersion deal with
the wire values while knobs like NegotiateVersion and MaxVersion deal
with logical versions. (This matches how the bugs have always worked.
SendFoo is just a weird post-processing bit on the handshake messages
while NegotiateVersion actually changes how BoGo behaves.)

BUG=90

Change-Id: I7f359d798d0899fa2742107fb3d854be19e731a4
Reviewed-on: https://boringssl-review.googlesource.com/11300
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-09-27 15:09:16 +00:00

1013 lines
33 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runner
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"io"
"math/big"
"./curve25519"
"./newhope"
)
type keyType int
const (
keyTypeRSA keyType = iota + 1
keyTypeECDSA
)
var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct {
version uint16
clientVersion uint16
exportKey *rsa.PrivateKey
}
func (ka *rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
// Save the client version for comparison later.
ka.clientVersion = clientHello.vers
if !config.Bugs.RSAEphemeralKey {
return nil, nil
}
// Generate an ephemeral RSA key to use instead of the real
// one, as in RSA_EXPORT.
key, err := rsa.GenerateKey(config.rand(), 512)
if err != nil {
return nil, err
}
ka.exportKey = key
modulus := key.N.Bytes()
exponent := big.NewInt(int64(key.E)).Bytes()
serverRSAParams := make([]byte, 0, 2+len(modulus)+2+len(exponent))
serverRSAParams = append(serverRSAParams, byte(len(modulus)>>8), byte(len(modulus)))
serverRSAParams = append(serverRSAParams, modulus...)
serverRSAParams = append(serverRSAParams, byte(len(exponent)>>8), byte(len(exponent)))
serverRSAParams = append(serverRSAParams, exponent...)
var sigAlg signatureAlgorithm
if ka.version >= VersionTLS12 {
sigAlg, err = selectSignatureAlgorithm(ka.version, cert.PrivateKey, config, clientHello.signatureAlgorithms)
if err != nil {
return nil, err
}
}
sig, err := signMessage(ka.version, cert.PrivateKey, config, sigAlg, serverRSAParams)
if err != nil {
return nil, errors.New("failed to sign RSA parameters: " + err.Error())
}
skx := new(serverKeyExchangeMsg)
sigAlgsLen := 0
if ka.version >= VersionTLS12 {
sigAlgsLen = 2
}
skx.key = make([]byte, len(serverRSAParams)+sigAlgsLen+2+len(sig))
copy(skx.key, serverRSAParams)
k := skx.key[len(serverRSAParams):]
if ka.version >= VersionTLS12 {
k[0] = byte(sigAlg >> 8)
k[1] = byte(sigAlg)
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
return skx, nil
}
func (ka *rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
preMasterSecret := make([]byte, 48)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, err
}
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
ciphertext := ckx.ciphertext
if version != VersionSSL30 {
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
if ciphertextLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
ciphertext = ckx.ciphertext[2:]
}
key := cert.PrivateKey.(*rsa.PrivateKey)
if ka.exportKey != nil {
key = ka.exportKey
}
err = rsa.DecryptPKCS1v15SessionKey(config.rand(), key, ciphertext, preMasterSecret)
if err != nil {
return nil, err
}
// This check should be done in constant-time, but this is a testing
// implementation. See the discussion at the end of section 7.4.7.1 of
// RFC 4346.
vers := uint16(preMasterSecret[0])<<8 | uint16(preMasterSecret[1])
if ka.clientVersion != vers {
return nil, fmt.Errorf("tls: invalid version in RSA premaster (got %04x, wanted %04x)", vers, ka.clientVersion)
}
return preMasterSecret, nil
}
func (ka *rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
return errors.New("tls: unexpected ServerKeyExchange")
}
func (ka *rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
bad := config.Bugs.BadRSAClientKeyExchange
preMasterSecret := make([]byte, 48)
vers := clientHello.vers
if bad == RSABadValueWrongVersion {
vers ^= 1
}
preMasterSecret[0] = byte(vers >> 8)
preMasterSecret[1] = byte(vers)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, nil, err
}
sentPreMasterSecret := preMasterSecret
if bad == RSABadValueTooLong {
sentPreMasterSecret = make([]byte, len(sentPreMasterSecret)+1)
copy(sentPreMasterSecret, preMasterSecret)
} else if bad == RSABadValueTooShort {
sentPreMasterSecret = sentPreMasterSecret[:len(sentPreMasterSecret)-1]
}
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), sentPreMasterSecret)
if err != nil {
return nil, nil, err
}
if bad == RSABadValueCorrupt {
encrypted[len(encrypted)-1] ^= 1
// Clear the high byte to ensure |encrypted| is still below the RSA modulus.
encrypted[0] = 0
}
ckx := new(clientKeyExchangeMsg)
if clientHello.vers != VersionSSL30 {
ckx.ciphertext = make([]byte, len(encrypted)+2)
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
ckx.ciphertext[1] = byte(len(encrypted))
copy(ckx.ciphertext[2:], encrypted)
} else {
ckx.ciphertext = encrypted
}
return preMasterSecret, ckx, nil
}
func (ka *rsaKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm {
return 0
}
// A ecdhCurve is an instance of ECDH-style key agreement for TLS.
type ecdhCurve interface {
// offer generates a keypair using rand. It returns the encoded |publicKey|.
offer(rand io.Reader) (publicKey []byte, err error)
// accept responds to the |peerKey| generated by |offer| with the acceptor's
// |publicKey|, and returns agreed-upon |preMasterSecret| to the acceptor.
accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error)
// finish returns the computed |preMasterSecret|, given the |peerKey|
// generated by |accept|.
finish(peerKey []byte) (preMasterSecret []byte, err error)
}
// ellipticECDHCurve implements ecdhCurve with an elliptic.Curve.
type ellipticECDHCurve struct {
curve elliptic.Curve
privateKey []byte
}
func (e *ellipticECDHCurve) offer(rand io.Reader) (publicKey []byte, err error) {
var x, y *big.Int
e.privateKey, x, y, err = elliptic.GenerateKey(e.curve, rand)
if err != nil {
return nil, err
}
return elliptic.Marshal(e.curve, x, y), nil
}
func (e *ellipticECDHCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) {
publicKey, err = e.offer(rand)
if err != nil {
return nil, nil, err
}
preMasterSecret, err = e.finish(peerKey)
if err != nil {
return nil, nil, err
}
return
}
func (e *ellipticECDHCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) {
x, y := elliptic.Unmarshal(e.curve, peerKey)
if x == nil {
return nil, errors.New("tls: invalid peer key")
}
x, _ = e.curve.ScalarMult(x, y, e.privateKey)
preMasterSecret = make([]byte, (e.curve.Params().BitSize+7)>>3)
xBytes := x.Bytes()
copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
return preMasterSecret, nil
}
// x25519ECDHCurve implements ecdhCurve with X25519.
type x25519ECDHCurve struct {
privateKey [32]byte
}
func (e *x25519ECDHCurve) offer(rand io.Reader) (publicKey []byte, err error) {
_, err = io.ReadFull(rand, e.privateKey[:])
if err != nil {
return
}
var out [32]byte
curve25519.ScalarBaseMult(&out, &e.privateKey)
return out[:], nil
}
func (e *x25519ECDHCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) {
publicKey, err = e.offer(rand)
if err != nil {
return nil, nil, err
}
preMasterSecret, err = e.finish(peerKey)
if err != nil {
return nil, nil, err
}
return
}
func (e *x25519ECDHCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) {
if len(peerKey) != 32 {
return nil, errors.New("tls: invalid peer key")
}
var out, peerKeyCopy [32]byte
copy(peerKeyCopy[:], peerKey)
curve25519.ScalarMult(&out, &e.privateKey, &peerKeyCopy)
// Per RFC 7748, reject the all-zero value in constant time.
var zeros [32]byte
if subtle.ConstantTimeCompare(zeros[:], out[:]) == 1 {
return nil, errors.New("tls: X25519 value with wrong order")
}
return out[:], nil
}
// cecpq1Curve is combined elliptic curve (X25519) and post-quantum (new hope) key
// agreement.
type cecpq1Curve struct {
x25519 *x25519ECDHCurve
newhope *newhope.Poly
}
func (e *cecpq1Curve) offer(rand io.Reader) (publicKey []byte, err error) {
var x25519OfferMsg, newhopeOfferMsg []byte
e.x25519 = new(x25519ECDHCurve)
if x25519OfferMsg, err = e.x25519.offer(rand); err != nil {
return nil, err
}
newhopeOfferMsg, e.newhope = newhope.Offer(rand)
return append(x25519OfferMsg, newhopeOfferMsg[:]...), nil
}
func (e *cecpq1Curve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) {
if len(peerKey) != 32+newhope.OfferMsgLen {
return nil, nil, errors.New("cecpq1: invalid offer message")
}
var x25519AcceptMsg, newhopeAcceptMsg []byte
var x25519Secret []byte
var newhopeSecret newhope.Key
x25519 := new(x25519ECDHCurve)
if x25519AcceptMsg, x25519Secret, err = x25519.accept(rand, peerKey[:32]); err != nil {
return nil, nil, err
}
if newhopeSecret, newhopeAcceptMsg, err = newhope.Accept(rand, peerKey[32:]); err != nil {
return nil, nil, err
}
return append(x25519AcceptMsg, newhopeAcceptMsg[:]...), append(x25519Secret, newhopeSecret[:]...), nil
}
func (e *cecpq1Curve) finish(peerKey []byte) (preMasterSecret []byte, err error) {
if len(peerKey) != 32+newhope.AcceptMsgLen {
return nil, errors.New("cecpq1: invalid accept message")
}
var x25519Secret []byte
var newhopeSecret newhope.Key
if x25519Secret, err = e.x25519.finish(peerKey[:32]); err != nil {
return nil, err
}
if newhopeSecret, err = e.newhope.Finish(peerKey[32:]); err != nil {
return nil, err
}
return append(x25519Secret, newhopeSecret[:]...), nil
}
func curveForCurveID(id CurveID) (ecdhCurve, bool) {
switch id {
case CurveP224:
return &ellipticECDHCurve{curve: elliptic.P224()}, true
case CurveP256:
return &ellipticECDHCurve{curve: elliptic.P256()}, true
case CurveP384:
return &ellipticECDHCurve{curve: elliptic.P384()}, true
case CurveP521:
return &ellipticECDHCurve{curve: elliptic.P521()}, true
case CurveX25519:
return &x25519ECDHCurve{}, true
default:
return nil, false
}
}
// keyAgreementAuthentication is a helper interface that specifies how
// to authenticate the ServerKeyExchange parameters.
type keyAgreementAuthentication interface {
signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error)
verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error
}
// nilKeyAgreementAuthentication does not authenticate the key
// agreement parameters.
type nilKeyAgreementAuthentication struct{}
func (ka *nilKeyAgreementAuthentication) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) {
skx := new(serverKeyExchangeMsg)
skx.key = params
return skx, nil
}
func (ka *nilKeyAgreementAuthentication) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error {
return nil
}
// signedKeyAgreement signs the ServerKeyExchange parameters with the
// server's private key.
type signedKeyAgreement struct {
keyType keyType
version uint16
peerSignatureAlgorithm signatureAlgorithm
}
func (ka *signedKeyAgreement) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) {
// The message to be signed is prepended by the randoms.
var msg []byte
msg = append(msg, clientHello.random...)
msg = append(msg, hello.random...)
msg = append(msg, params...)
var sigAlg signatureAlgorithm
var err error
if ka.version >= VersionTLS12 {
sigAlg, err = selectSignatureAlgorithm(ka.version, cert.PrivateKey, config, clientHello.signatureAlgorithms)
if err != nil {
return nil, err
}
}
sig, err := signMessage(ka.version, cert.PrivateKey, config, sigAlg, msg)
if err != nil {
return nil, err
}
if config.Bugs.SendSignatureAlgorithm != 0 {
sigAlg = config.Bugs.SendSignatureAlgorithm
}
skx := new(serverKeyExchangeMsg)
if config.Bugs.UnauthenticatedECDH {
skx.key = params
} else {
sigAlgsLen := 0
if ka.version >= VersionTLS12 {
sigAlgsLen = 2
}
skx.key = make([]byte, len(params)+sigAlgsLen+2+len(sig))
copy(skx.key, params)
k := skx.key[len(params):]
if ka.version >= VersionTLS12 {
k[0] = byte(sigAlg >> 8)
k[1] = byte(sigAlg)
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
}
return skx, nil
}
func (ka *signedKeyAgreement) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, params []byte, sig []byte) error {
// The peer's key must match the cipher type.
switch ka.keyType {
case keyTypeECDSA:
_, ok := cert.PublicKey.(*ecdsa.PublicKey)
if !ok {
return errors.New("tls: ECDHE ECDSA requires a ECDSA server public key")
}
case keyTypeRSA:
_, ok := cert.PublicKey.(*rsa.PublicKey)
if !ok {
return errors.New("tls: ECDHE RSA requires a RSA server public key")
}
default:
return errors.New("tls: unknown key type")
}
// The message to be signed is prepended by the randoms.
var msg []byte
msg = append(msg, clientHello.random...)
msg = append(msg, serverHello.random...)
msg = append(msg, params...)
var sigAlg signatureAlgorithm
if ka.version >= VersionTLS12 {
if len(sig) < 2 {
return errServerKeyExchange
}
sigAlg = signatureAlgorithm(sig[0])<<8 | signatureAlgorithm(sig[1])
sig = sig[2:]
// Stash the signature algorithm to be extracted by the handshake.
ka.peerSignatureAlgorithm = sigAlg
}
if len(sig) < 2 {
return errServerKeyExchange
}
sigLen := int(sig[0])<<8 | int(sig[1])
if sigLen+2 != len(sig) {
return errServerKeyExchange
}
sig = sig[2:]
return verifyMessage(ka.version, cert.PublicKey, config, sigAlg, msg, sig)
}
// ecdheKeyAgreement implements a TLS key agreement where the server
// generates a ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// either be ECDSA or RSA.
type ecdheKeyAgreement struct {
auth keyAgreementAuthentication
curve ecdhCurve
curveID CurveID
peerKey []byte
}
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
var curveid CurveID
preferredCurves := config.curvePreferences()
NextCandidate:
for _, candidate := range preferredCurves {
for _, c := range clientHello.supportedCurves {
if candidate == c {
curveid = c
break NextCandidate
}
}
}
if curveid == 0 {
return nil, errors.New("tls: no supported elliptic curves offered")
}
var ok bool
if ka.curve, ok = curveForCurveID(curveid); !ok {
return nil, errors.New("tls: preferredCurves includes unsupported curve")
}
ka.curveID = curveid
publicKey, err := ka.curve.offer(config.rand())
if err != nil {
return nil, err
}
// http://tools.ietf.org/html/rfc4492#section-5.4
serverECDHParams := make([]byte, 1+2+1+len(publicKey))
serverECDHParams[0] = 3 // named curve
if config.Bugs.SendCurve != 0 {
curveid = config.Bugs.SendCurve
}
serverECDHParams[1] = byte(curveid >> 8)
serverECDHParams[2] = byte(curveid)
serverECDHParams[3] = byte(len(publicKey))
copy(serverECDHParams[4:], publicKey)
if config.Bugs.InvalidECDHPoint {
serverECDHParams[4] ^= 0xff
}
return ka.auth.signParameters(config, cert, clientHello, hello, serverECDHParams)
}
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
return nil, errClientKeyExchange
}
return ka.curve.finish(ckx.ciphertext[1:])
}
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 4 {
return errServerKeyExchange
}
if skx.key[0] != 3 { // named curve
return errors.New("tls: server selected unsupported curve")
}
curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
ka.curveID = curveid
var ok bool
if ka.curve, ok = curveForCurveID(curveid); !ok {
return errors.New("tls: server selected unsupported curve")
}
publicLen := int(skx.key[3])
if publicLen+4 > len(skx.key) {
return errServerKeyExchange
}
// Save the peer key for later.
ka.peerKey = skx.key[4 : 4+publicLen]
// Check the signature.
serverECDHParams := skx.key[:4+publicLen]
sig := skx.key[4+publicLen:]
return ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverECDHParams, sig)
}
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
if ka.curve == nil {
return nil, nil, errors.New("missing ServerKeyExchange message")
}
publicKey, preMasterSecret, err := ka.curve.accept(config.rand(), ka.peerKey)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, 1+len(publicKey))
ckx.ciphertext[0] = byte(len(publicKey))
copy(ckx.ciphertext[1:], publicKey)
if config.Bugs.InvalidECDHPoint {
ckx.ciphertext[1] ^= 0xff
}
return preMasterSecret, ckx, nil
}
func (ka *ecdheKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm {
if auth, ok := ka.auth.(*signedKeyAgreement); ok {
return auth.peerSignatureAlgorithm
}
return 0
}
// cecpq1RSAKeyAgreement is like an ecdheKeyAgreement, but using the cecpq1Curve
// pseudo-curve, and without any parameters (e.g. curve name) other than the
// keys being exchanged. The signature may either be ECDSA or RSA.
type cecpq1KeyAgreement struct {
auth keyAgreementAuthentication
curve ecdhCurve
peerKey []byte
}
func (ka *cecpq1KeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
ka.curve = &cecpq1Curve{}
publicKey, err := ka.curve.offer(config.rand())
if err != nil {
return nil, err
}
if config.Bugs.CECPQ1BadX25519Part {
publicKey[0] ^= 1
}
if config.Bugs.CECPQ1BadNewhopePart {
publicKey[32] ^= 1
publicKey[33] ^= 1
publicKey[34] ^= 1
publicKey[35] ^= 1
}
var params []byte
params = append(params, byte(len(publicKey)>>8))
params = append(params, byte(len(publicKey)&0xff))
params = append(params, publicKey[:]...)
return ka.auth.signParameters(config, cert, clientHello, hello, params)
}
func (ka *cecpq1KeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
peerKeyLen := int(ckx.ciphertext[0])<<8 + int(ckx.ciphertext[1])
peerKey := ckx.ciphertext[2:]
if peerKeyLen != len(peerKey) {
return nil, errClientKeyExchange
}
return ka.curve.finish(peerKey)
}
func (ka *cecpq1KeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 2 {
return errServerKeyExchange
}
peerKeyLen := int(skx.key[0])<<8 + int(skx.key[1])
// Save the peer key for later.
if len(skx.key) < 2+peerKeyLen {
return errServerKeyExchange
}
ka.peerKey = skx.key[2 : 2+peerKeyLen]
if peerKeyLen != len(ka.peerKey) {
return errServerKeyExchange
}
// Check the signature.
params := skx.key[:2+peerKeyLen]
sig := skx.key[2+peerKeyLen:]
return ka.auth.verifyParameters(config, clientHello, serverHello, cert, params, sig)
}
func (ka *cecpq1KeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
curve := &cecpq1Curve{}
publicKey, preMasterSecret, err := curve.accept(config.rand(), ka.peerKey)
if err != nil {
return nil, nil, err
}
if config.Bugs.CECPQ1BadX25519Part {
publicKey[0] ^= 1
}
if config.Bugs.CECPQ1BadNewhopePart {
publicKey[32] ^= 1
publicKey[33] ^= 1
publicKey[34] ^= 1
publicKey[35] ^= 1
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = append(ckx.ciphertext, byte(len(publicKey)>>8))
ckx.ciphertext = append(ckx.ciphertext, byte(len(publicKey)&0xff))
ckx.ciphertext = append(ckx.ciphertext, publicKey[:]...)
return preMasterSecret, ckx, nil
}
func (ka *cecpq1KeyAgreement) peerSignatureAlgorithm() signatureAlgorithm {
if auth, ok := ka.auth.(*signedKeyAgreement); ok {
return auth.peerSignatureAlgorithm
}
return 0
}
// dheRSAKeyAgreement implements a TLS key agreement where the server generates
// an ephemeral Diffie-Hellman public/private key pair and signs it. The
// pre-master secret is then calculated using Diffie-Hellman.
type dheKeyAgreement struct {
auth keyAgreementAuthentication
p, g *big.Int
yTheirs *big.Int
xOurs *big.Int
}
func (ka *dheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
var q *big.Int
if p := config.Bugs.DHGroupPrime; p != nil {
ka.p = p
ka.g = big.NewInt(2)
q = p
} else {
// 2048-bit MODP Group with 256-bit Prime Order Subgroup (RFC
// 5114, Section 2.3)
ka.p, _ = new(big.Int).SetString("87A8E61DB4B6663CFFBBD19C651959998CEEF608660DD0F25D2CEED4435E3B00E00DF8F1D61957D4FAF7DF4561B2AA3016C3D91134096FAA3BF4296D830E9A7C209E0C6497517ABD5A8A9D306BCF67ED91F9E6725B4758C022E0B1EF4275BF7B6C5BFC11D45F9088B941F54EB1E59BB8BC39A0BF12307F5C4FDB70C581B23F76B63ACAE1CAA6B7902D52526735488A0EF13C6D9A51BFA4AB3AD8347796524D8EF6A167B5A41825D967E144E5140564251CCACB83E6B486F6B3CA3F7971506026C0B857F689962856DED4010ABD0BE621C3A3960A54E710C375F26375D7014103A4B54330C198AF126116D2276E11715F693877FAD7EF09CADB094AE91E1A1597", 16)
ka.g, _ = new(big.Int).SetString("3FB32C9B73134D0B2E77506660EDBD484CA7B18F21EF205407F4793A1A0BA12510DBC15077BE463FFF4FED4AAC0BB555BE3A6C1B0C6B47B1BC3773BF7E8C6F62901228F8C28CBB18A55AE31341000A650196F931C77A57F2DDF463E5E9EC144B777DE62AAAB8A8628AC376D282D6ED3864E67982428EBC831D14348F6F2F9193B5045AF2767164E1DFC967C1FB3F2E55A4BD1BFFE83B9C80D052B985D182EA0ADB2A3B7313D3FE14C8484B1E052588B9B7D2BBD2DF016199ECD06E1557CD0915B3353BBB64E0EC377FD028370DF92B52C7891428CDC67EB6184B523D1DB246C32F63078490F00EF8D647D148D47954515E2327CFEF98C582664B4C0F6CC41659", 16)
q, _ = new(big.Int).SetString("8CF83642A709A097B447997640129DA299B1A47D1EB3750BA308B0FE64F5FBD3", 16)
}
var err error
ka.xOurs, err = rand.Int(config.rand(), q)
if err != nil {
return nil, err
}
yOurs := new(big.Int).Exp(ka.g, ka.xOurs, ka.p)
// http://tools.ietf.org/html/rfc5246#section-7.4.3
pBytes := ka.p.Bytes()
gBytes := ka.g.Bytes()
yBytes := yOurs.Bytes()
serverDHParams := make([]byte, 0, 2+len(pBytes)+2+len(gBytes)+2+len(yBytes))
serverDHParams = append(serverDHParams, byte(len(pBytes)>>8), byte(len(pBytes)))
serverDHParams = append(serverDHParams, pBytes...)
serverDHParams = append(serverDHParams, byte(len(gBytes)>>8), byte(len(gBytes)))
serverDHParams = append(serverDHParams, gBytes...)
serverDHParams = append(serverDHParams, byte(len(yBytes)>>8), byte(len(yBytes)))
serverDHParams = append(serverDHParams, yBytes...)
return ka.auth.signParameters(config, cert, clientHello, hello, serverDHParams)
}
func (ka *dheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
yLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1])
if yLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
yTheirs := new(big.Int).SetBytes(ckx.ciphertext[2:])
if yTheirs.Sign() <= 0 || yTheirs.Cmp(ka.p) >= 0 {
return nil, errClientKeyExchange
}
return new(big.Int).Exp(yTheirs, ka.xOurs, ka.p).Bytes(), nil
}
func (ka *dheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
// Read dh_p
k := skx.key
if len(k) < 2 {
return errServerKeyExchange
}
pLen := (int(k[0]) << 8) | int(k[1])
k = k[2:]
if len(k) < pLen {
return errServerKeyExchange
}
ka.p = new(big.Int).SetBytes(k[:pLen])
k = k[pLen:]
// Read dh_g
if len(k) < 2 {
return errServerKeyExchange
}
gLen := (int(k[0]) << 8) | int(k[1])
k = k[2:]
if len(k) < gLen {
return errServerKeyExchange
}
ka.g = new(big.Int).SetBytes(k[:gLen])
k = k[gLen:]
// Read dh_Ys
if len(k) < 2 {
return errServerKeyExchange
}
yLen := (int(k[0]) << 8) | int(k[1])
k = k[2:]
if len(k) < yLen {
return errServerKeyExchange
}
ka.yTheirs = new(big.Int).SetBytes(k[:yLen])
k = k[yLen:]
if ka.yTheirs.Sign() <= 0 || ka.yTheirs.Cmp(ka.p) >= 0 {
return errServerKeyExchange
}
if l := config.Bugs.RequireDHPublicValueLen; l != 0 && l != yLen {
return fmt.Errorf("RequireDHPublicValueLen set to %d, but server's public value was %d bytes on the wire and %d bytes if minimal", l, yLen, (ka.yTheirs.BitLen()+7)/8)
}
sig := k
serverDHParams := skx.key[:len(skx.key)-len(sig)]
return ka.auth.verifyParameters(config, clientHello, serverHello, cert, serverDHParams, sig)
}
func (ka *dheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
if ka.p == nil || ka.g == nil || ka.yTheirs == nil {
return nil, nil, errors.New("missing ServerKeyExchange message")
}
xOurs, err := rand.Int(config.rand(), ka.p)
if err != nil {
return nil, nil, err
}
preMasterSecret := new(big.Int).Exp(ka.yTheirs, xOurs, ka.p).Bytes()
yOurs := new(big.Int).Exp(ka.g, xOurs, ka.p)
yBytes := yOurs.Bytes()
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, 2+len(yBytes))
ckx.ciphertext[0] = byte(len(yBytes) >> 8)
ckx.ciphertext[1] = byte(len(yBytes))
copy(ckx.ciphertext[2:], yBytes)
return preMasterSecret, ckx, nil
}
func (ka *dheKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm {
if auth, ok := ka.auth.(*signedKeyAgreement); ok {
return auth.peerSignatureAlgorithm
}
return 0
}
// nilKeyAgreement is a fake key agreement used to implement the plain PSK key
// exchange.
type nilKeyAgreement struct{}
func (ka *nilKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
return nil, nil
}
func (ka *nilKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) != 0 {
return nil, errClientKeyExchange
}
// Although in plain PSK, otherSecret is all zeros, the base key
// agreement does not access to the length of the pre-shared
// key. pskKeyAgreement instead interprets nil to mean to use all zeros
// of the appropriate length.
return nil, nil
}
func (ka *nilKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) != 0 {
return errServerKeyExchange
}
return nil
}
func (ka *nilKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
// Although in plain PSK, otherSecret is all zeros, the base key
// agreement does not access to the length of the pre-shared
// key. pskKeyAgreement instead interprets nil to mean to use all zeros
// of the appropriate length.
return nil, &clientKeyExchangeMsg{}, nil
}
func (ka *nilKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm {
return 0
}
// makePSKPremaster formats a PSK pre-master secret based on otherSecret from
// the base key exchange and psk.
func makePSKPremaster(otherSecret, psk []byte) []byte {
out := make([]byte, 0, 2+len(otherSecret)+2+len(psk))
out = append(out, byte(len(otherSecret)>>8), byte(len(otherSecret)))
out = append(out, otherSecret...)
out = append(out, byte(len(psk)>>8), byte(len(psk)))
out = append(out, psk...)
return out
}
// pskKeyAgreement implements the PSK key agreement.
type pskKeyAgreement struct {
base keyAgreement
identityHint string
}
func (ka *pskKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
// Assemble the identity hint.
bytes := make([]byte, 2+len(config.PreSharedKeyIdentity))
bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8)
bytes[1] = byte(len(config.PreSharedKeyIdentity))
copy(bytes[2:], []byte(config.PreSharedKeyIdentity))
// If there is one, append the base key agreement's
// ServerKeyExchange.
baseSkx, err := ka.base.generateServerKeyExchange(config, cert, clientHello, hello)
if err != nil {
return nil, err
}
if baseSkx != nil {
bytes = append(bytes, baseSkx.key...)
} else if config.PreSharedKeyIdentity == "" && !config.Bugs.AlwaysSendPreSharedKeyIdentityHint {
// ServerKeyExchange is optional if the identity hint is empty
// and there would otherwise be no ServerKeyExchange.
return nil, nil
}
skx := new(serverKeyExchangeMsg)
skx.key = bytes
return skx, nil
}
func (ka *pskKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
// First, process the PSK identity.
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
identityLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1])
if 2+identityLen > len(ckx.ciphertext) {
return nil, errClientKeyExchange
}
identity := string(ckx.ciphertext[2 : 2+identityLen])
if identity != config.PreSharedKeyIdentity {
return nil, errors.New("tls: unexpected identity")
}
if config.PreSharedKey == nil {
return nil, errors.New("tls: pre-shared key not configured")
}
// Process the remainder of the ClientKeyExchange to compute the base
// pre-master secret.
newCkx := new(clientKeyExchangeMsg)
newCkx.ciphertext = ckx.ciphertext[2+identityLen:]
otherSecret, err := ka.base.processClientKeyExchange(config, cert, newCkx, version)
if err != nil {
return nil, err
}
if otherSecret == nil {
// Special-case for the plain PSK key exchanges.
otherSecret = make([]byte, len(config.PreSharedKey))
}
return makePSKPremaster(otherSecret, config.PreSharedKey), nil
}
func (ka *pskKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 2 {
return errServerKeyExchange
}
identityLen := (int(skx.key[0]) << 8) | int(skx.key[1])
if 2+identityLen > len(skx.key) {
return errServerKeyExchange
}
ka.identityHint = string(skx.key[2 : 2+identityLen])
// Process the remainder of the ServerKeyExchange.
newSkx := new(serverKeyExchangeMsg)
newSkx.key = skx.key[2+identityLen:]
return ka.base.processServerKeyExchange(config, clientHello, serverHello, cert, newSkx)
}
func (ka *pskKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
// The server only sends an identity hint but, for purposes of
// test code, the server always sends the hint and it is
// required to match.
if ka.identityHint != config.PreSharedKeyIdentity {
return nil, nil, errors.New("tls: unexpected identity")
}
// Serialize the identity.
bytes := make([]byte, 2+len(config.PreSharedKeyIdentity))
bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8)
bytes[1] = byte(len(config.PreSharedKeyIdentity))
copy(bytes[2:], []byte(config.PreSharedKeyIdentity))
// Append the base key exchange's ClientKeyExchange.
otherSecret, baseCkx, err := ka.base.generateClientKeyExchange(config, clientHello, cert)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = append(bytes, baseCkx.ciphertext...)
if config.PreSharedKey == nil {
return nil, nil, errors.New("tls: pre-shared key not configured")
}
if otherSecret == nil {
otherSecret = make([]byte, len(config.PreSharedKey))
}
return makePSKPremaster(otherSecret, config.PreSharedKey), ckx, nil
}
func (ka *pskKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm {
return 0
}