boringssl/ssl/test/test_config.cc
Adam Langley 859679518d Drop C++ from certificate compression API.
It's 2018, but passing STL objects across the API boundary turns out to
still be more bother than it's worth. Since we're dropping UniquePtr in
the API anyway, go the whole way and make it a plain-C API.

Change-Id: Ic0202012e5d81afe62d71b3fb57e6a27a8f63c65
Update-note: this will need corresponding changes to the internal use of SSL_CTX_add_cert_compression_alg.
Reviewed-on: https://boringssl-review.googlesource.com/29564
Reviewed-by: David Benjamin <davidben@google.com>
2018-07-04 16:39:14 +00:00

1694 lines
55 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "test_config.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include <openssl/base64.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include "../../crypto/internal.h"
#include "../internal.h"
#include "test_state.h"
namespace {
template <typename T>
struct Flag {
const char *flag;
T TestConfig::*member;
};
// FindField looks for the flag in |flags| that matches |flag|. If one is found,
// it returns a pointer to the corresponding field in |config|. Otherwise, it
// returns NULL.
template<typename T, size_t N>
T *FindField(TestConfig *config, const Flag<T> (&flags)[N], const char *flag) {
for (size_t i = 0; i < N; i++) {
if (strcmp(flag, flags[i].flag) == 0) {
return &(config->*(flags[i].member));
}
}
return NULL;
}
const Flag<bool> kBoolFlags[] = {
{ "-server", &TestConfig::is_server },
{ "-dtls", &TestConfig::is_dtls },
{ "-fallback-scsv", &TestConfig::fallback_scsv },
{ "-require-any-client-certificate",
&TestConfig::require_any_client_certificate },
{ "-false-start", &TestConfig::false_start },
{ "-async", &TestConfig::async },
{ "-write-different-record-sizes",
&TestConfig::write_different_record_sizes },
{ "-cbc-record-splitting", &TestConfig::cbc_record_splitting },
{ "-partial-write", &TestConfig::partial_write },
{ "-no-tls13", &TestConfig::no_tls13 },
{ "-no-tls12", &TestConfig::no_tls12 },
{ "-no-tls11", &TestConfig::no_tls11 },
{ "-no-tls1", &TestConfig::no_tls1 },
{ "-enable-channel-id", &TestConfig::enable_channel_id },
{ "-shim-writes-first", &TestConfig::shim_writes_first },
{ "-expect-session-miss", &TestConfig::expect_session_miss },
{ "-decline-alpn", &TestConfig::decline_alpn },
{ "-select-empty-alpn", &TestConfig::select_empty_alpn },
{ "-expect-extended-master-secret",
&TestConfig::expect_extended_master_secret },
{ "-enable-ocsp-stapling", &TestConfig::enable_ocsp_stapling },
{ "-enable-signed-cert-timestamps",
&TestConfig::enable_signed_cert_timestamps },
{ "-implicit-handshake", &TestConfig::implicit_handshake },
{ "-use-early-callback", &TestConfig::use_early_callback },
{ "-fail-early-callback", &TestConfig::fail_early_callback },
{ "-install-ddos-callback", &TestConfig::install_ddos_callback },
{ "-fail-ddos-callback", &TestConfig::fail_ddos_callback },
{ "-fail-cert-callback", &TestConfig::fail_cert_callback },
{ "-handshake-never-done", &TestConfig::handshake_never_done },
{ "-use-export-context", &TestConfig::use_export_context },
{ "-tls-unique", &TestConfig::tls_unique },
{ "-expect-ticket-renewal", &TestConfig::expect_ticket_renewal },
{ "-expect-no-session", &TestConfig::expect_no_session },
{ "-expect-ticket-supports-early-data",
&TestConfig::expect_ticket_supports_early_data },
{ "-use-ticket-callback", &TestConfig::use_ticket_callback },
{ "-renew-ticket", &TestConfig::renew_ticket },
{ "-enable-early-data", &TestConfig::enable_early_data },
{ "-enable-client-custom-extension",
&TestConfig::enable_client_custom_extension },
{ "-enable-server-custom-extension",
&TestConfig::enable_server_custom_extension },
{ "-custom-extension-skip", &TestConfig::custom_extension_skip },
{ "-custom-extension-fail-add", &TestConfig::custom_extension_fail_add },
{ "-check-close-notify", &TestConfig::check_close_notify },
{ "-shim-shuts-down", &TestConfig::shim_shuts_down },
{ "-verify-fail", &TestConfig::verify_fail },
{ "-verify-peer", &TestConfig::verify_peer },
{ "-verify-peer-if-no-obc", &TestConfig::verify_peer_if_no_obc },
{ "-expect-verify-result", &TestConfig::expect_verify_result },
{ "-renegotiate-once", &TestConfig::renegotiate_once },
{ "-renegotiate-freely", &TestConfig::renegotiate_freely },
{ "-renegotiate-ignore", &TestConfig::renegotiate_ignore },
{ "-forbid-renegotiation-after-handshake",
&TestConfig::forbid_renegotiation_after_handshake },
{ "-p384-only", &TestConfig::p384_only },
{ "-enable-all-curves", &TestConfig::enable_all_curves },
{ "-use-old-client-cert-callback",
&TestConfig::use_old_client_cert_callback },
{ "-send-alert", &TestConfig::send_alert },
{ "-peek-then-read", &TestConfig::peek_then_read },
{ "-enable-grease", &TestConfig::enable_grease },
{ "-use-exporter-between-reads", &TestConfig::use_exporter_between_reads },
{ "-retain-only-sha256-client-cert",
&TestConfig::retain_only_sha256_client_cert },
{ "-expect-sha256-client-cert",
&TestConfig::expect_sha256_client_cert },
{ "-read-with-unfinished-write", &TestConfig::read_with_unfinished_write },
{ "-expect-secure-renegotiation",
&TestConfig::expect_secure_renegotiation },
{ "-expect-no-secure-renegotiation",
&TestConfig::expect_no_secure_renegotiation },
{ "-expect-session-id", &TestConfig::expect_session_id },
{ "-expect-no-session-id", &TestConfig::expect_no_session_id },
{ "-expect-accept-early-data", &TestConfig::expect_accept_early_data },
{ "-expect-reject-early-data", &TestConfig::expect_reject_early_data },
{ "-expect-no-offer-early-data", &TestConfig::expect_no_offer_early_data },
{ "-no-op-extra-handshake", &TestConfig::no_op_extra_handshake },
{ "-handshake-twice", &TestConfig::handshake_twice },
{ "-allow-unknown-alpn-protos", &TestConfig::allow_unknown_alpn_protos },
{ "-enable-ed25519", &TestConfig::enable_ed25519 },
{ "-use-custom-verify-callback", &TestConfig::use_custom_verify_callback },
{ "-allow-false-start-without-alpn",
&TestConfig::allow_false_start_without_alpn },
{ "-expect-draft-downgrade", &TestConfig::expect_draft_downgrade },
{ "-handoff", &TestConfig::handoff },
{ "-expect-dummy-pq-padding", &TestConfig::expect_dummy_pq_padding },
{ "-no-rsa-pss-rsae-certs", &TestConfig::no_rsa_pss_rsae_certs },
{ "-use-ocsp-callback", &TestConfig::use_ocsp_callback },
{ "-set-ocsp-in-callback", &TestConfig::set_ocsp_in_callback },
{ "-decline-ocsp-callback", &TestConfig::decline_ocsp_callback },
{ "-fail-ocsp-callback", &TestConfig::fail_ocsp_callback },
{ "-install-cert-compression-algs",
&TestConfig::install_cert_compression_algs },
};
const Flag<std::string> kStringFlags[] = {
{ "-write-settings", &TestConfig::write_settings },
{ "-key-file", &TestConfig::key_file },
{ "-cert-file", &TestConfig::cert_file },
{ "-expect-server-name", &TestConfig::expected_server_name },
{ "-advertise-npn", &TestConfig::advertise_npn },
{ "-expect-next-proto", &TestConfig::expected_next_proto },
{ "-select-next-proto", &TestConfig::select_next_proto },
{ "-send-channel-id", &TestConfig::send_channel_id },
{ "-host-name", &TestConfig::host_name },
{ "-advertise-alpn", &TestConfig::advertise_alpn },
{ "-expect-alpn", &TestConfig::expected_alpn },
{ "-expect-late-alpn", &TestConfig::expected_late_alpn },
{ "-expect-advertised-alpn", &TestConfig::expected_advertised_alpn },
{ "-select-alpn", &TestConfig::select_alpn },
{ "-psk", &TestConfig::psk },
{ "-psk-identity", &TestConfig::psk_identity },
{ "-srtp-profiles", &TestConfig::srtp_profiles },
{ "-cipher", &TestConfig::cipher },
{ "-export-label", &TestConfig::export_label },
{ "-export-context", &TestConfig::export_context },
{ "-expect-peer-cert-file", &TestConfig::expect_peer_cert_file },
{ "-use-client-ca-list", &TestConfig::use_client_ca_list },
{ "-expect-client-ca-list", &TestConfig::expected_client_ca_list },
{ "-expect-msg-callback", &TestConfig::expect_msg_callback },
};
const Flag<std::string> kBase64Flags[] = {
{ "-expect-certificate-types", &TestConfig::expected_certificate_types },
{ "-expect-channel-id", &TestConfig::expected_channel_id },
{ "-token-binding-params", &TestConfig::send_token_binding_params },
{ "-expect-ocsp-response", &TestConfig::expected_ocsp_response },
{ "-expect-signed-cert-timestamps",
&TestConfig::expected_signed_cert_timestamps },
{ "-ocsp-response", &TestConfig::ocsp_response },
{ "-signed-cert-timestamps", &TestConfig::signed_cert_timestamps },
{ "-ticket-key", &TestConfig::ticket_key },
{ "-quic-transport-params", &TestConfig::quic_transport_params },
{ "-expected-quic-transport-params",
&TestConfig::expected_quic_transport_params },
};
const Flag<int> kIntFlags[] = {
{ "-port", &TestConfig::port },
{ "-resume-count", &TestConfig::resume_count },
{ "-expected-token-binding-param",
&TestConfig::expected_token_binding_param },
{ "-min-version", &TestConfig::min_version },
{ "-max-version", &TestConfig::max_version },
{ "-expect-version", &TestConfig::expect_version },
{ "-mtu", &TestConfig::mtu },
{ "-export-early-keying-material",
&TestConfig::export_early_keying_material },
{ "-export-keying-material", &TestConfig::export_keying_material },
{ "-expect-total-renegotiations", &TestConfig::expect_total_renegotiations },
{ "-expect-peer-signature-algorithm",
&TestConfig::expect_peer_signature_algorithm },
{ "-expect-curve-id", &TestConfig::expect_curve_id },
{ "-initial-timeout-duration-ms", &TestConfig::initial_timeout_duration_ms },
{ "-max-cert-list", &TestConfig::max_cert_list },
{ "-expect-cipher-aes", &TestConfig::expect_cipher_aes },
{ "-expect-cipher-no-aes", &TestConfig::expect_cipher_no_aes },
{ "-resumption-delay", &TestConfig::resumption_delay },
{ "-max-send-fragment", &TestConfig::max_send_fragment },
{ "-read-size", &TestConfig::read_size },
{ "-expect-ticket-age-skew", &TestConfig::expect_ticket_age_skew },
{ "-tls13-variant", &TestConfig::tls13_variant },
{ "-dummy-pq-padding-len", &TestConfig::dummy_pq_padding_len },
};
const Flag<std::vector<int>> kIntVectorFlags[] = {
{ "-signing-prefs", &TestConfig::signing_prefs },
{ "-verify-prefs", &TestConfig::verify_prefs },
};
bool ParseFlag(char *flag, int argc, char **argv, int *i,
bool skip, TestConfig *out_config) {
bool *bool_field = FindField(out_config, kBoolFlags, flag);
if (bool_field != NULL) {
if (!skip) {
*bool_field = true;
}
return true;
}
std::string *string_field = FindField(out_config, kStringFlags, flag);
if (string_field != NULL) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter\n");
return false;
}
if (!skip) {
string_field->assign(argv[*i]);
}
return true;
}
std::string *base64_field = FindField(out_config, kBase64Flags, flag);
if (base64_field != NULL) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter\n");
return false;
}
size_t len;
if (!EVP_DecodedLength(&len, strlen(argv[*i]))) {
fprintf(stderr, "Invalid base64: %s\n", argv[*i]);
return false;
}
std::unique_ptr<uint8_t[]> decoded(new uint8_t[len]);
if (!EVP_DecodeBase64(decoded.get(), &len, len,
reinterpret_cast<const uint8_t *>(argv[*i]),
strlen(argv[*i]))) {
fprintf(stderr, "Invalid base64: %s\n", argv[*i]);
return false;
}
if (!skip) {
base64_field->assign(reinterpret_cast<const char *>(decoded.get()),
len);
}
return true;
}
int *int_field = FindField(out_config, kIntFlags, flag);
if (int_field) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter\n");
return false;
}
if (!skip) {
*int_field = atoi(argv[*i]);
}
return true;
}
std::vector<int> *int_vector_field =
FindField(out_config, kIntVectorFlags, flag);
if (int_vector_field) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter\n");
return false;
}
// Each instance of the flag adds to the list.
if (!skip) {
int_vector_field->push_back(atoi(argv[*i]));
}
return true;
}
fprintf(stderr, "Unknown argument: %s\n", flag);
return false;
}
const char kInit[] = "-on-initial";
const char kResume[] = "-on-resume";
const char kRetry[] = "-on-retry";
} // namespace
bool ParseConfig(int argc, char **argv,
TestConfig *out_initial,
TestConfig *out_resume,
TestConfig *out_retry) {
for (int i = 0; i < argc; i++) {
bool skip = false;
char *flag = argv[i];
if (strncmp(flag, kInit, strlen(kInit)) == 0) {
if (!ParseFlag(flag + strlen(kInit), argc, argv, &i, skip, out_initial)) {
return false;
}
} else if (strncmp(flag, kResume, strlen(kResume)) == 0) {
if (!ParseFlag(flag + strlen(kResume), argc, argv, &i, skip,
out_resume)) {
return false;
}
} else if (strncmp(flag, kRetry, strlen(kRetry)) == 0) {
if (!ParseFlag(flag + strlen(kRetry), argc, argv, &i, skip, out_retry)) {
return false;
}
} else {
int i_init = i;
int i_resume = i;
if (!ParseFlag(flag, argc, argv, &i_init, skip, out_initial) ||
!ParseFlag(flag, argc, argv, &i_resume, skip, out_resume) ||
!ParseFlag(flag, argc, argv, &i, skip, out_retry)) {
return false;
}
}
}
return true;
}
static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
static int g_config_index = 0;
static CRYPTO_BUFFER_POOL *g_pool = nullptr;
static void init_once() {
g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
if (g_config_index < 0) {
abort();
}
g_pool = CRYPTO_BUFFER_POOL_new();
if (!g_pool) {
abort();
}
}
bool SetTestConfig(SSL *ssl, const TestConfig *config) {
CRYPTO_once(&once, init_once);
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}
const TestConfig *GetTestConfig(const SSL *ssl) {
CRYPTO_once(&once, init_once);
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}
bool MoveTestConfig(SSL *dest, SSL *src) {
const TestConfig *config = GetTestConfig(src);
if (!SSL_set_ex_data(src, g_config_index, nullptr) ||
!SSL_set_ex_data(dest, g_config_index, (void *)config)) {
return false;
}
return true;
}
static int LegacyOCSPCallback(SSL *ssl, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
if (!SSL_is_server(ssl)) {
return !config->fail_ocsp_callback;
}
if (!config->ocsp_response.empty() && config->set_ocsp_in_callback &&
!SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(),
config->ocsp_response.size())) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
if (config->fail_ocsp_callback) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
if (config->decline_ocsp_callback) {
return SSL_TLSEXT_ERR_NOACK;
}
return SSL_TLSEXT_ERR_OK;
}
// kCustomExtensionValue is the extension value that the custom extension
// callbacks will add.
static const uint16_t kCustomExtensionValue = 1234;
static void *const kCustomExtensionAddArg =
reinterpret_cast<void *>(kCustomExtensionValue);
static void *const kCustomExtensionParseArg =
reinterpret_cast<void *>(kCustomExtensionValue + 1);
static const char kCustomExtensionContents[] = "custom extension";
static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
const uint8_t **out, size_t *out_len,
int *out_alert_value, void *add_arg) {
if (extension_value != kCustomExtensionValue ||
add_arg != kCustomExtensionAddArg) {
abort();
}
if (GetTestConfig(ssl)->custom_extension_skip) {
return 0;
}
if (GetTestConfig(ssl)->custom_extension_fail_add) {
return -1;
}
*out = reinterpret_cast<const uint8_t *>(kCustomExtensionContents);
*out_len = sizeof(kCustomExtensionContents) - 1;
return 1;
}
static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
const uint8_t *out, void *add_arg) {
if (extension_value != kCustomExtensionValue ||
add_arg != kCustomExtensionAddArg ||
out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
abort();
}
}
static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
const uint8_t *contents,
size_t contents_len,
int *out_alert_value, void *parse_arg) {
if (extension_value != kCustomExtensionValue ||
parse_arg != kCustomExtensionParseArg) {
abort();
}
if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
OPENSSL_memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
*out_alert_value = SSL_AD_DECODE_ERROR;
return 0;
}
return 1;
}
static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) {
// SNI must be accessible from the SNI callback.
const TestConfig *config = GetTestConfig(ssl);
const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (server_name == nullptr ||
std::string(server_name) != config->expected_server_name) {
fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name,
config->expected_server_name.c_str());
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
return SSL_TLSEXT_ERR_OK;
}
static int NextProtoSelectCallback(SSL *ssl, uint8_t **out, uint8_t *outlen,
const uint8_t *in, unsigned inlen,
void *arg) {
const TestConfig *config = GetTestConfig(ssl);
if (config->select_next_proto.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (uint8_t *)config->select_next_proto.data();
*outlen = config->select_next_proto.size();
return SSL_TLSEXT_ERR_OK;
}
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
unsigned int *out_len, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
if (config->advertise_npn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (const uint8_t *)config->advertise_npn.data();
*out_len = config->advertise_npn.size();
return SSL_TLSEXT_ERR_OK;
}
static void MessageCallback(int is_write, int version, int content_type,
const void *buf, size_t len, SSL *ssl, void *arg) {
const uint8_t *buf_u8 = reinterpret_cast<const uint8_t *>(buf);
const TestConfig *config = GetTestConfig(ssl);
TestState *state = GetTestState(ssl);
if (!state->msg_callback_ok) {
return;
}
if (content_type == SSL3_RT_HEADER) {
if (len !=
(config->is_dtls ? DTLS1_RT_HEADER_LENGTH : SSL3_RT_HEADER_LENGTH)) {
fprintf(stderr, "Incorrect length for record header: %zu\n", len);
state->msg_callback_ok = false;
}
return;
}
state->msg_callback_text += is_write ? "write " : "read ";
switch (content_type) {
case 0:
if (version != SSL2_VERSION) {
fprintf(stderr, "Incorrect version for V2ClientHello: %x\n", version);
state->msg_callback_ok = false;
return;
}
state->msg_callback_text += "v2clienthello\n";
return;
case SSL3_RT_HANDSHAKE: {
CBS cbs;
CBS_init(&cbs, buf_u8, len);
uint8_t type;
uint32_t msg_len;
if (!CBS_get_u8(&cbs, &type) ||
// TODO(davidben): Reporting on entire messages would be more
// consistent than fragments.
(config->is_dtls &&
!CBS_skip(&cbs, 3 /* total */ + 2 /* seq */ + 3 /* frag_off */)) ||
!CBS_get_u24(&cbs, &msg_len) || !CBS_skip(&cbs, msg_len) ||
CBS_len(&cbs) != 0) {
fprintf(stderr, "Could not parse handshake message.\n");
state->msg_callback_ok = false;
return;
}
char text[16];
snprintf(text, sizeof(text), "hs %d\n", type);
state->msg_callback_text += text;
return;
}
case SSL3_RT_CHANGE_CIPHER_SPEC:
if (len != 1 || buf_u8[0] != 1) {
fprintf(stderr, "Invalid ChangeCipherSpec.\n");
state->msg_callback_ok = false;
return;
}
state->msg_callback_text += "ccs\n";
return;
case SSL3_RT_ALERT:
if (len != 2) {
fprintf(stderr, "Invalid alert.\n");
state->msg_callback_ok = false;
return;
}
char text[16];
snprintf(text, sizeof(text), "alert %d %d\n", buf_u8[0], buf_u8[1]);
state->msg_callback_text += text;
return;
default:
fprintf(stderr, "Invalid content_type: %d\n", content_type);
state->msg_callback_ok = false;
}
}
static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
if (!encrypt) {
if (GetTestState(ssl)->ticket_decrypt_done) {
fprintf(stderr, "TicketKeyCallback called after completion.\n");
return -1;
}
GetTestState(ssl)->ticket_decrypt_done = true;
}
// This is just test code, so use the all-zeros key.
static const uint8_t kZeros[16] = {0};
if (encrypt) {
OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
RAND_bytes(iv, 16);
} else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
return 0;
}
if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
!EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
return -1;
}
if (!encrypt) {
return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
}
return 1;
}
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
// This callback is called as the handshake completes. |SSL_get_session|
// must continue to work and, historically, |SSL_in_init| returned false at
// this point.
if (SSL_in_init(ssl) || SSL_get_session(ssl) == nullptr) {
fprintf(stderr, "Invalid state for NewSessionCallback.\n");
abort();
}
GetTestState(ssl)->got_new_session = true;
GetTestState(ssl)->new_session.reset(session);
return 1;
}
static void InfoCallback(const SSL *ssl, int type, int val) {
if (type == SSL_CB_HANDSHAKE_DONE) {
if (GetTestConfig(ssl)->handshake_never_done) {
fprintf(stderr, "Handshake unexpectedly completed.\n");
// Abort before any expected error code is printed, to ensure the overall
// test fails.
abort();
}
// This callback is called when the handshake completes. |SSL_get_session|
// must continue to work and |SSL_in_init| must return false.
if (SSL_in_init(ssl) || SSL_get_session(ssl) == nullptr) {
fprintf(stderr, "Invalid state for SSL_CB_HANDSHAKE_DONE.\n");
abort();
}
GetTestState(ssl)->handshake_done = true;
// Callbacks may be called again on a new handshake.
GetTestState(ssl)->ticket_decrypt_done = false;
GetTestState(ssl)->alpn_select_done = false;
}
}
static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) {
*out_pkey = GetTestState(ssl)->channel_id.release();
}
static SSL_SESSION *GetSessionCallback(SSL *ssl, const uint8_t *data, int len,
int *copy) {
TestState *async_state = GetTestState(ssl);
if (async_state->session) {
*copy = 0;
return async_state->session.release();
} else if (async_state->pending_session) {
return SSL_magic_pending_session_ptr();
} else {
return NULL;
}
}
static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
*out_clock = *GetClock();
}
static int AlpnSelectCallback(SSL *ssl, const uint8_t **out, uint8_t *outlen,
const uint8_t *in, unsigned inlen, void *arg) {
if (GetTestState(ssl)->alpn_select_done) {
fprintf(stderr, "AlpnSelectCallback called after completion.\n");
exit(1);
}
GetTestState(ssl)->alpn_select_done = true;
const TestConfig *config = GetTestConfig(ssl);
if (config->decline_alpn) {
return SSL_TLSEXT_ERR_NOACK;
}
if (!config->expected_advertised_alpn.empty() &&
(config->expected_advertised_alpn.size() != inlen ||
OPENSSL_memcmp(config->expected_advertised_alpn.data(), in, inlen) !=
0)) {
fprintf(stderr, "bad ALPN select callback inputs\n");
exit(1);
}
assert(config->select_alpn.empty() || !config->select_empty_alpn);
*out = (const uint8_t *)config->select_alpn.data();
*outlen = config->select_alpn.size();
return SSL_TLSEXT_ERR_OK;
}
static bool CheckVerifyCallback(SSL *ssl) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->expected_ocsp_response.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_ocsp_response(ssl, &data, &len);
if (len == 0) {
fprintf(stderr, "OCSP response not available in verify callback\n");
return false;
}
}
if (GetTestState(ssl)->cert_verified) {
fprintf(stderr, "Certificate verified twice.\n");
return false;
}
return true;
}
static int CertVerifyCallback(X509_STORE_CTX *store_ctx, void *arg) {
SSL *ssl = (SSL *)X509_STORE_CTX_get_ex_data(
store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
const TestConfig *config = GetTestConfig(ssl);
if (!CheckVerifyCallback(ssl)) {
return 0;
}
GetTestState(ssl)->cert_verified = true;
if (config->verify_fail) {
store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION;
return 0;
}
return 1;
}
bool LoadCertificate(bssl::UniquePtr<X509> *out_x509,
bssl::UniquePtr<STACK_OF(X509)> *out_chain,
const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return false;
}
out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
if (!*out_x509) {
return false;
}
out_chain->reset(sk_X509_new_null());
if (!*out_chain) {
return false;
}
// Keep reading the certificate chain.
for (;;) {
bssl::UniquePtr<X509> cert(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
if (!cert) {
break;
}
if (!bssl::PushToStack(out_chain->get(), std::move(cert))) {
return false;
}
}
uint32_t err = ERR_peek_last_error();
if (ERR_GET_LIB(err) != ERR_LIB_PEM ||
ERR_GET_REASON(err) != PEM_R_NO_START_LINE) {
return false;
}
ERR_clear_error();
return true;
}
bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
}
static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
bssl::UniquePtr<STACK_OF(X509)> *out_chain,
bssl::UniquePtr<EVP_PKEY> *out_pkey) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->signing_prefs.empty()) {
std::vector<uint16_t> u16s(config->signing_prefs.begin(),
config->signing_prefs.end());
if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) {
return false;
}
}
if (!config->key_file.empty()) {
*out_pkey = LoadPrivateKey(config->key_file.c_str());
if (!*out_pkey) {
return false;
}
}
if (!config->cert_file.empty() &&
!LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) {
return false;
}
if (!config->ocsp_response.empty() && !config->set_ocsp_in_callback &&
!SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(),
config->ocsp_response.size())) {
return false;
}
return true;
}
static bool FromHexDigit(uint8_t *out, char c) {
if ('0' <= c && c <= '9') {
*out = c - '0';
return true;
}
if ('a' <= c && c <= 'f') {
*out = c - 'a' + 10;
return true;
}
if ('A' <= c && c <= 'F') {
*out = c - 'A' + 10;
return true;
}
return false;
}
static bool HexDecode(std::string *out, const std::string &in) {
if ((in.size() & 1) != 0) {
return false;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[in.size() / 2]);
for (size_t i = 0; i < in.size() / 2; i++) {
uint8_t high, low;
if (!FromHexDigit(&high, in[i * 2]) || !FromHexDigit(&low, in[i * 2 + 1])) {
return false;
}
buf[i] = (high << 4) | low;
}
out->assign(reinterpret_cast<const char *>(buf.get()), in.size() / 2);
return true;
}
static std::vector<std::string> SplitParts(const std::string &in,
const char delim) {
std::vector<std::string> ret;
size_t start = 0;
for (size_t i = 0; i < in.size(); i++) {
if (in[i] == delim) {
ret.push_back(in.substr(start, i - start));
start = i + 1;
}
}
ret.push_back(in.substr(start, std::string::npos));
return ret;
}
static std::vector<std::string> DecodeHexStrings(
const std::string &hex_strings) {
std::vector<std::string> ret;
const std::vector<std::string> parts = SplitParts(hex_strings, ',');
for (const auto &part : parts) {
std::string binary;
if (!HexDecode(&binary, part)) {
fprintf(stderr, "Bad hex string: %s\n", part.c_str());
return ret;
}
ret.push_back(binary);
}
return ret;
}
static bssl::UniquePtr<STACK_OF(X509_NAME)> DecodeHexX509Names(
const std::string &hex_names) {
const std::vector<std::string> der_names = DecodeHexStrings(hex_names);
bssl::UniquePtr<STACK_OF(X509_NAME)> ret(sk_X509_NAME_new_null());
if (!ret) {
return nullptr;
}
for (const auto &der_name : der_names) {
const uint8_t *const data =
reinterpret_cast<const uint8_t *>(der_name.data());
const uint8_t *derp = data;
bssl::UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &derp, der_name.size()));
if (!name || derp != data + der_name.size()) {
fprintf(stderr, "Failed to parse X509_NAME.\n");
return nullptr;
}
if (!bssl::PushToStack(ret.get(), std::move(name))) {
return nullptr;
}
}
return ret;
}
static bool CheckCertificateRequest(SSL *ssl) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->expected_certificate_types.empty()) {
const uint8_t *certificate_types;
size_t certificate_types_len =
SSL_get0_certificate_types(ssl, &certificate_types);
if (certificate_types_len != config->expected_certificate_types.size() ||
OPENSSL_memcmp(certificate_types,
config->expected_certificate_types.data(),
certificate_types_len) != 0) {
fprintf(stderr, "certificate types mismatch\n");
return false;
}
}
if (!config->expected_client_ca_list.empty()) {
bssl::UniquePtr<STACK_OF(X509_NAME)> expected =
DecodeHexX509Names(config->expected_client_ca_list);
const size_t num_expected = sk_X509_NAME_num(expected.get());
const STACK_OF(X509_NAME) *received = SSL_get_client_CA_list(ssl);
const size_t num_received = sk_X509_NAME_num(received);
if (num_received != num_expected) {
fprintf(stderr, "expected %u names in CertificateRequest but got %u\n",
static_cast<unsigned>(num_expected),
static_cast<unsigned>(num_received));
return false;
}
for (size_t i = 0; i < num_received; i++) {
if (X509_NAME_cmp(sk_X509_NAME_value(received, i),
sk_X509_NAME_value(expected.get(), i)) != 0) {
fprintf(stderr, "names in CertificateRequest differ at index #%d\n",
static_cast<unsigned>(i));
return false;
}
}
const STACK_OF(CRYPTO_BUFFER) *buffers = SSL_get0_server_requested_CAs(ssl);
if (sk_CRYPTO_BUFFER_num(buffers) != num_received) {
fprintf(stderr,
"Mismatch between SSL_get_server_requested_CAs and "
"SSL_get_client_CA_list.\n");
return false;
}
}
return true;
}
static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
if (!CheckCertificateRequest(ssl)) {
return -1;
}
if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
return -1;
}
bssl::UniquePtr<X509> x509;
bssl::UniquePtr<STACK_OF(X509)> chain;
bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
return -1;
}
// Return zero for no certificate.
if (!x509) {
return 0;
}
// Chains and asynchronous private keys are not supported with client_cert_cb.
*out_x509 = x509.release();
*out_pkey = pkey.release();
return 1;
}
static ssl_private_key_result_t AsyncPrivateKeySign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t signature_algorithm, const uint8_t *in, size_t in_len) {
TestState *test_state = GetTestState(ssl);
if (!test_state->private_key_result.empty()) {
fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n");
abort();
}
if (EVP_PKEY_id(test_state->private_key.get()) !=
SSL_get_signature_algorithm_key_type(signature_algorithm)) {
fprintf(stderr, "Key type does not match signature algorithm.\n");
abort();
}
// Determine the hash.
const EVP_MD *md = SSL_get_signature_algorithm_digest(signature_algorithm);
bssl::ScopedEVP_MD_CTX ctx;
EVP_PKEY_CTX *pctx;
if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr,
test_state->private_key.get())) {
return ssl_private_key_failure;
}
// Configure additional signature parameters.
if (SSL_is_signature_algorithm_rsa_pss(signature_algorithm)) {
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
return ssl_private_key_failure;
}
}
// Write the signature into |test_state|.
size_t len = 0;
if (!EVP_DigestSign(ctx.get(), nullptr, &len, in, in_len)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(len);
if (!EVP_DigestSign(ctx.get(), test_state->private_key_result.data(), &len,
in, in_len)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(len);
// The signature will be released asynchronously in |AsyncPrivateKeyComplete|.
return ssl_private_key_retry;
}
static ssl_private_key_result_t AsyncPrivateKeyDecrypt(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out,
const uint8_t *in,
size_t in_len) {
TestState *test_state = GetTestState(ssl);
if (!test_state->private_key_result.empty()) {
fprintf(stderr, "AsyncPrivateKeyDecrypt called with operation pending.\n");
abort();
}
RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get());
if (rsa == NULL) {
fprintf(stderr, "AsyncPrivateKeyDecrypt called with incorrect key type.\n");
abort();
}
test_state->private_key_result.resize(RSA_size(rsa));
if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(),
RSA_size(rsa), in, in_len, RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(*out_len);
// The decryption will be released asynchronously in |AsyncPrivateComplete|.
return ssl_private_key_retry;
}
static ssl_private_key_result_t AsyncPrivateKeyComplete(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out) {
TestState *test_state = GetTestState(ssl);
if (test_state->private_key_result.empty()) {
fprintf(stderr,
"AsyncPrivateKeyComplete called without operation pending.\n");
abort();
}
if (test_state->private_key_retries < 2) {
// Only return the decryption on the second attempt, to test both incomplete
// |decrypt| and |decrypt_complete|.
return ssl_private_key_retry;
}
if (max_out < test_state->private_key_result.size()) {
fprintf(stderr, "Output buffer too small.\n");
return ssl_private_key_failure;
}
OPENSSL_memcpy(out, test_state->private_key_result.data(),
test_state->private_key_result.size());
*out_len = test_state->private_key_result.size();
test_state->private_key_result.clear();
test_state->private_key_retries = 0;
return ssl_private_key_success;
}
static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = {
AsyncPrivateKeySign,
AsyncPrivateKeyDecrypt,
AsyncPrivateKeyComplete,
};
static bool InstallCertificate(SSL *ssl) {
bssl::UniquePtr<X509> x509;
bssl::UniquePtr<STACK_OF(X509)> chain;
bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
return false;
}
if (pkey) {
TestState *test_state = GetTestState(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (config->async) {
test_state->private_key = std::move(pkey);
SSL_set_private_key_method(ssl, &g_async_private_key_method);
} else if (!SSL_use_PrivateKey(ssl, pkey.get())) {
return false;
}
}
if (x509 && !SSL_use_certificate(ssl, x509.get())) {
return false;
}
if (sk_X509_num(chain.get()) > 0 && !SSL_set1_chain(ssl, chain.get())) {
return false;
}
return true;
}
static enum ssl_select_cert_result_t SelectCertificateCallback(
const SSL_CLIENT_HELLO *client_hello) {
const TestConfig *config = GetTestConfig(client_hello->ssl);
GetTestState(client_hello->ssl)->early_callback_called = true;
if (!config->expected_server_name.empty()) {
const uint8_t *extension_data;
size_t extension_len;
CBS extension, server_name_list, host_name;
uint8_t name_type;
if (!SSL_early_callback_ctx_extension_get(
client_hello, TLSEXT_TYPE_server_name, &extension_data,
&extension_len)) {
fprintf(stderr, "Could not find server_name extension.\n");
return ssl_select_cert_error;
}
CBS_init(&extension, extension_data, extension_len);
if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
CBS_len(&extension) != 0 ||
!CBS_get_u8(&server_name_list, &name_type) ||
name_type != TLSEXT_NAMETYPE_host_name ||
!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
CBS_len(&server_name_list) != 0) {
fprintf(stderr, "Could not decode server_name extension.\n");
return ssl_select_cert_error;
}
if (!CBS_mem_equal(&host_name,
(const uint8_t *)config->expected_server_name.data(),
config->expected_server_name.size())) {
fprintf(stderr, "Server name mismatch.\n");
}
}
if (config->fail_early_callback) {
return ssl_select_cert_error;
}
// Install the certificate in the early callback.
if (config->use_early_callback) {
bool early_callback_ready =
GetTestState(client_hello->ssl)->early_callback_ready;
if (config->async && !early_callback_ready) {
// Install the certificate asynchronously.
return ssl_select_cert_retry;
}
if (!InstallCertificate(client_hello->ssl)) {
return ssl_select_cert_error;
}
}
return ssl_select_cert_success;
}
bssl::UniquePtr<SSL_CTX> TestConfig::SetupCtx(SSL_CTX *old_ctx) const {
bssl::UniquePtr<SSL_CTX> ssl_ctx(
SSL_CTX_new(is_dtls ? DTLS_method() : TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
CRYPTO_once(&once, init_once);
SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool);
// Enable TLS 1.3 for tests.
if (!is_dtls &&
!SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
return nullptr;
}
std::string cipher_list = "ALL";
if (!cipher.empty()) {
cipher_list = cipher;
SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
}
if (!SSL_CTX_set_strict_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
return nullptr;
}
if (async && is_server) {
// Disable the internal session cache. To test asynchronous session lookup,
// we use an external session cache.
SSL_CTX_set_session_cache_mode(
ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
} else {
SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
}
SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback);
if (use_old_client_cert_callback) {
SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback);
}
SSL_CTX_set_next_protos_advertised_cb(ssl_ctx.get(),
NextProtosAdvertisedCallback, NULL);
if (!select_next_proto.empty()) {
SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
NULL);
}
if (!select_alpn.empty() || decline_alpn || select_empty_alpn) {
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
}
SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback);
SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback);
SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);
if (use_ticket_callback) {
SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
}
if (enable_client_custom_extension &&
!SSL_CTX_add_client_custom_ext(
ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
CustomExtensionFreeCallback, kCustomExtensionAddArg,
CustomExtensionParseCallback, kCustomExtensionParseArg)) {
return nullptr;
}
if (enable_server_custom_extension &&
!SSL_CTX_add_server_custom_ext(
ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
CustomExtensionFreeCallback, kCustomExtensionAddArg,
CustomExtensionParseCallback, kCustomExtensionParseArg)) {
return nullptr;
}
if (!use_custom_verify_callback) {
SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), CertVerifyCallback, NULL);
}
if (!signed_cert_timestamps.empty() &&
!SSL_CTX_set_signed_cert_timestamp_list(
ssl_ctx.get(), (const uint8_t *)signed_cert_timestamps.data(),
signed_cert_timestamps.size())) {
return nullptr;
}
if (!use_client_ca_list.empty()) {
if (use_client_ca_list == "<NULL>") {
SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
} else if (use_client_ca_list == "<EMPTY>") {
bssl::UniquePtr<STACK_OF(X509_NAME)> names;
SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release());
} else {
bssl::UniquePtr<STACK_OF(X509_NAME)> names =
DecodeHexX509Names(use_client_ca_list);
SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release());
}
}
if (enable_grease) {
SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1);
}
if (!expected_server_name.empty()) {
SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback);
}
if (!ticket_key.empty() &&
!SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), ticket_key.data(),
ticket_key.size())) {
return nullptr;
}
if (enable_early_data) {
SSL_CTX_set_early_data_enabled(ssl_ctx.get(), 1);
}
SSL_CTX_set_tls13_variant(ssl_ctx.get(),
static_cast<enum tls13_variant_t>(tls13_variant));
if (allow_unknown_alpn_protos) {
SSL_CTX_set_allow_unknown_alpn_protos(ssl_ctx.get(), 1);
}
if (enable_ed25519) {
SSL_CTX_set_ed25519_enabled(ssl_ctx.get(), 1);
}
if (no_rsa_pss_rsae_certs) {
SSL_CTX_set_rsa_pss_rsae_certs_enabled(ssl_ctx.get(), 0);
}
if (!verify_prefs.empty()) {
std::vector<uint16_t> u16s(verify_prefs.begin(), verify_prefs.end());
if (!SSL_CTX_set_verify_algorithm_prefs(ssl_ctx.get(), u16s.data(),
u16s.size())) {
return nullptr;
}
}
SSL_CTX_set_msg_callback(ssl_ctx.get(), MessageCallback);
if (allow_false_start_without_alpn) {
SSL_CTX_set_false_start_allowed_without_alpn(ssl_ctx.get(), 1);
}
if (use_ocsp_callback) {
SSL_CTX_set_tlsext_status_cb(ssl_ctx.get(), LegacyOCSPCallback);
}
if (old_ctx) {
uint8_t keys[48];
if (!SSL_CTX_get_tlsext_ticket_keys(old_ctx, &keys, sizeof(keys)) ||
!SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), keys, sizeof(keys))) {
return nullptr;
}
CopySessions(ssl_ctx.get(), old_ctx);
}
if (install_cert_compression_algs &&
(!SSL_CTX_add_cert_compression_alg(
ssl_ctx.get(), 0xff02,
[](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int {
if (!CBB_add_u8(out, 1) || !CBB_add_u8(out, 2) ||
!CBB_add_u8(out, 3) || !CBB_add_u8(out, 4) ||
!CBB_add_bytes(out, in, in_len)) {
return 0;
}
return 1;
},
[](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len,
const uint8_t *in, size_t in_len) -> int {
if (in_len < 4 || in[0] != 1 || in[1] != 2 || in[2] != 3 ||
in[3] != 4 || uncompressed_len != in_len - 4) {
return 0;
}
const bssl::Span<const uint8_t> uncompressed(in + 4, in_len - 4);
*out = CRYPTO_BUFFER_new(uncompressed.data(), uncompressed.size(),
nullptr);
return 1;
}) ||
!SSL_CTX_add_cert_compression_alg(
ssl_ctx.get(), 0xff01,
[](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int {
if (in_len < 2 || in[0] != 0 || in[1] != 0) {
return 0;
}
return CBB_add_bytes(out, in + 2, in_len - 2);
},
[](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len,
const uint8_t *in, size_t in_len) -> int {
if (uncompressed_len != 2 + in_len) {
return 0;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[2 + in_len]);
buf[0] = 0;
buf[1] = 0;
OPENSSL_memcpy(&buf[2], in, in_len);
*out = CRYPTO_BUFFER_new(buf.get(), 2 + in_len, nullptr);
return 1;
}))) {
fprintf(stderr, "SSL_CTX_add_cert_compression_alg failed.\n");
abort();
}
return ssl_ctx;
}
static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) {
const TestConfig *config = GetTestConfig(client_hello->ssl);
return config->fail_ddos_callback ? 0 : 1;
}
static unsigned PskClientCallback(SSL *ssl, const char *hint,
char *out_identity, unsigned max_identity_len,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetTestConfig(ssl);
if (config->psk_identity.empty()) {
if (hint != nullptr) {
fprintf(stderr, "Server PSK hint was non-null.\n");
return 0;
}
} else if (hint == nullptr ||
strcmp(hint, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Server PSK hint did not match.\n");
return 0;
}
// Account for the trailing '\0' for the identity.
if (config->psk_identity.size() >= max_identity_len ||
config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small\n");
return 0;
}
BUF_strlcpy(out_identity, config->psk_identity.c_str(), max_identity_len);
OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static unsigned PskServerCallback(SSL *ssl, const char *identity,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetTestConfig(ssl);
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Client PSK identity did not match.\n");
return 0;
}
if (config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small\n");
return 0;
}
OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static ssl_verify_result_t CustomVerifyCallback(SSL *ssl, uint8_t *out_alert) {
const TestConfig *config = GetTestConfig(ssl);
if (!CheckVerifyCallback(ssl)) {
return ssl_verify_invalid;
}
if (config->async && !GetTestState(ssl)->custom_verify_ready) {
return ssl_verify_retry;
}
GetTestState(ssl)->cert_verified = true;
if (config->verify_fail) {
return ssl_verify_invalid;
}
return ssl_verify_ok;
}
static int CertCallback(SSL *ssl, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
// Check the CertificateRequest metadata is as expected.
if (!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) {
return -1;
}
if (config->fail_cert_callback) {
return 0;
}
// The certificate will be installed via other means.
if (!config->async || config->use_early_callback) {
return 1;
}
if (!GetTestState(ssl)->cert_ready) {
return -1;
}
if (!InstallCertificate(ssl)) {
return 0;
}
return 1;
}
bssl::UniquePtr<SSL> TestConfig::NewSSL(
SSL_CTX *ssl_ctx, SSL_SESSION *session, bool is_resume,
std::unique_ptr<TestState> test_state) const {
bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
if (!ssl) {
return nullptr;
}
if (!SetTestConfig(ssl.get(), this)) {
return nullptr;
}
if (test_state != nullptr) {
if (!SetTestState(ssl.get(), std::move(test_state))) {
return nullptr;
}
GetTestState(ssl.get())->is_resume = is_resume;
}
if (fallback_scsv && !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
return nullptr;
}
// Install the certificate synchronously if nothing else will handle it.
if (!use_early_callback && !use_old_client_cert_callback && !async &&
!InstallCertificate(ssl.get())) {
return nullptr;
}
if (!use_old_client_cert_callback) {
SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
}
int mode = SSL_VERIFY_NONE;
if (require_any_client_certificate) {
mode = SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (verify_peer) {
mode = SSL_VERIFY_PEER;
}
if (verify_peer_if_no_obc) {
// Set SSL_VERIFY_FAIL_IF_NO_PEER_CERT so testing whether client
// certificates were requested is easy.
mode = SSL_VERIFY_PEER | SSL_VERIFY_PEER_IF_NO_OBC |
SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (use_custom_verify_callback) {
SSL_set_custom_verify(ssl.get(), mode, CustomVerifyCallback);
} else if (mode != SSL_VERIFY_NONE) {
SSL_set_verify(ssl.get(), mode, NULL);
}
if (false_start) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
}
if (cbc_record_splitting) {
SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
}
if (partial_write) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
if (no_tls13) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
}
if (no_tls12) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
}
if (no_tls11) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
}
if (no_tls1) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
}
if (!expected_channel_id.empty() || enable_channel_id) {
SSL_set_tls_channel_id_enabled(ssl.get(), 1);
}
if (!send_channel_id.empty()) {
SSL_set_tls_channel_id_enabled(ssl.get(), 1);
if (!async) {
// The async case will be supplied by |ChannelIdCallback|.
bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(send_channel_id);
if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
return nullptr;
}
}
}
if (!send_token_binding_params.empty()) {
SSL_set_token_binding_params(
ssl.get(),
reinterpret_cast<const uint8_t *>(send_token_binding_params.data()),
send_token_binding_params.length());
}
if (!host_name.empty() &&
!SSL_set_tlsext_host_name(ssl.get(), host_name.c_str())) {
return nullptr;
}
if (!advertise_alpn.empty() &&
SSL_set_alpn_protos(ssl.get(), (const uint8_t *)advertise_alpn.data(),
advertise_alpn.size()) != 0) {
return nullptr;
}
if (!psk.empty()) {
SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
}
if (!psk_identity.empty() &&
!SSL_use_psk_identity_hint(ssl.get(), psk_identity.c_str())) {
return nullptr;
}
if (!srtp_profiles.empty() &&
!SSL_set_srtp_profiles(ssl.get(), srtp_profiles.c_str())) {
return nullptr;
}
if (enable_ocsp_stapling) {
SSL_enable_ocsp_stapling(ssl.get());
}
if (enable_signed_cert_timestamps) {
SSL_enable_signed_cert_timestamps(ssl.get());
}
if (min_version != 0 &&
!SSL_set_min_proto_version(ssl.get(), (uint16_t)min_version)) {
return nullptr;
}
if (max_version != 0 &&
!SSL_set_max_proto_version(ssl.get(), (uint16_t)max_version)) {
return nullptr;
}
if (mtu != 0) {
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
SSL_set_mtu(ssl.get(), mtu);
}
if (install_ddos_callback) {
SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback);
}
SSL_set_shed_handshake_config(ssl.get(), true);
if (renegotiate_once) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once);
}
if (renegotiate_freely || forbid_renegotiation_after_handshake) {
// |forbid_renegotiation_after_handshake| will disable renegotiation later.
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
}
if (renegotiate_ignore) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore);
}
if (!check_close_notify) {
SSL_set_quiet_shutdown(ssl.get(), 1);
}
if (p384_only) {
int nid = NID_secp384r1;
if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
return nullptr;
}
}
if (enable_all_curves) {
static const int kAllCurves[] = {
NID_secp224r1, NID_X9_62_prime256v1, NID_secp384r1,
NID_secp521r1, NID_X25519,
};
if (!SSL_set1_curves(ssl.get(), kAllCurves,
OPENSSL_ARRAY_SIZE(kAllCurves))) {
return nullptr;
}
}
if (initial_timeout_duration_ms > 0) {
DTLSv1_set_initial_timeout_duration(ssl.get(), initial_timeout_duration_ms);
}
if (max_cert_list > 0) {
SSL_set_max_cert_list(ssl.get(), max_cert_list);
}
if (retain_only_sha256_client_cert) {
SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1);
}
if (max_send_fragment > 0) {
SSL_set_max_send_fragment(ssl.get(), max_send_fragment);
}
if (dummy_pq_padding_len > 0 &&
!SSL_set_dummy_pq_padding_size(ssl.get(), dummy_pq_padding_len)) {
return nullptr;
}
if (!quic_transport_params.empty()) {
if (!SSL_set_quic_transport_params(
ssl.get(),
reinterpret_cast<const uint8_t *>(quic_transport_params.data()),
quic_transport_params.size())) {
return nullptr;
}
}
if (session != NULL) {
if (!is_server) {
if (SSL_set_session(ssl.get(), session) != 1) {
return nullptr;
}
} else if (async) {
// The internal session cache is disabled, so install the session
// manually.
SSL_SESSION_up_ref(session);
GetTestState(ssl.get())->pending_session.reset(session);
}
}
if (SSL_get_current_cipher(ssl.get()) != nullptr) {
fprintf(stderr, "non-null cipher before handshake\n");
return nullptr;
}
return ssl;
}