Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.
 
 
 
 
 
 

965 řádky
22 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. *
  57. * The DSS routines are based on patches supplied by
  58. * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
  59. #include <openssl/dsa.h>
  60. #include <string.h>
  61. #include <openssl/bn.h>
  62. #include <openssl/dh.h>
  63. #include <openssl/digest.h>
  64. #include <openssl/engine.h>
  65. #include <openssl/err.h>
  66. #include <openssl/ex_data.h>
  67. #include <openssl/mem.h>
  68. #include <openssl/rand.h>
  69. #include <openssl/sha.h>
  70. #include <openssl/thread.h>
  71. #include "../internal.h"
  72. #define OPENSSL_DSA_MAX_MODULUS_BITS 10000
  73. /* Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of
  74. * Rabin-Miller */
  75. #define DSS_prime_checks 50
  76. static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
  77. DSA *DSA_new(void) {
  78. DSA *dsa = OPENSSL_malloc(sizeof(DSA));
  79. if (dsa == NULL) {
  80. OPENSSL_PUT_ERROR(DSA, ERR_R_MALLOC_FAILURE);
  81. return NULL;
  82. }
  83. memset(dsa, 0, sizeof(DSA));
  84. dsa->references = 1;
  85. CRYPTO_MUTEX_init(&dsa->method_mont_lock);
  86. CRYPTO_new_ex_data(&dsa->ex_data);
  87. return dsa;
  88. }
  89. void DSA_free(DSA *dsa) {
  90. if (dsa == NULL) {
  91. return;
  92. }
  93. if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) {
  94. return;
  95. }
  96. CRYPTO_free_ex_data(&g_ex_data_class, dsa, &dsa->ex_data);
  97. BN_clear_free(dsa->p);
  98. BN_clear_free(dsa->q);
  99. BN_clear_free(dsa->g);
  100. BN_clear_free(dsa->pub_key);
  101. BN_clear_free(dsa->priv_key);
  102. BN_clear_free(dsa->kinv);
  103. BN_clear_free(dsa->r);
  104. BN_MONT_CTX_free(dsa->method_mont_p);
  105. BN_MONT_CTX_free(dsa->method_mont_q);
  106. CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock);
  107. OPENSSL_free(dsa);
  108. }
  109. int DSA_up_ref(DSA *dsa) {
  110. CRYPTO_refcount_inc(&dsa->references);
  111. return 1;
  112. }
  113. void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
  114. const BIGNUM **out_priv_key) {
  115. if (out_pub_key != NULL) {
  116. *out_pub_key = dsa->pub_key;
  117. }
  118. if (out_priv_key != NULL) {
  119. *out_priv_key = dsa->priv_key;
  120. }
  121. }
  122. void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q,
  123. const BIGNUM **out_g) {
  124. if (out_p != NULL) {
  125. *out_p = dsa->p;
  126. }
  127. if (out_q != NULL) {
  128. *out_q = dsa->q;
  129. }
  130. if (out_g != NULL) {
  131. *out_g = dsa->g;
  132. }
  133. }
  134. int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in,
  135. size_t seed_len, int *out_counter,
  136. unsigned long *out_h, BN_GENCB *cb) {
  137. int ok = 0;
  138. unsigned char seed[SHA256_DIGEST_LENGTH];
  139. unsigned char md[SHA256_DIGEST_LENGTH];
  140. unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH];
  141. BIGNUM *r0, *W, *X, *c, *test;
  142. BIGNUM *g = NULL, *q = NULL, *p = NULL;
  143. BN_MONT_CTX *mont = NULL;
  144. int k, n = 0, m = 0;
  145. unsigned i;
  146. int counter = 0;
  147. int r = 0;
  148. BN_CTX *ctx = NULL;
  149. unsigned int h = 2;
  150. unsigned qsize;
  151. const EVP_MD *evpmd;
  152. evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1();
  153. qsize = EVP_MD_size(evpmd);
  154. if (bits < 512) {
  155. bits = 512;
  156. }
  157. bits = (bits + 63) / 64 * 64;
  158. if (seed_in != NULL) {
  159. if (seed_len < (size_t)qsize) {
  160. return 0;
  161. }
  162. if (seed_len > (size_t)qsize) {
  163. /* Only consume as much seed as is expected. */
  164. seed_len = qsize;
  165. }
  166. memcpy(seed, seed_in, seed_len);
  167. }
  168. ctx = BN_CTX_new();
  169. if (ctx == NULL) {
  170. goto err;
  171. }
  172. BN_CTX_start(ctx);
  173. mont = BN_MONT_CTX_new();
  174. if (mont == NULL) {
  175. goto err;
  176. }
  177. r0 = BN_CTX_get(ctx);
  178. g = BN_CTX_get(ctx);
  179. W = BN_CTX_get(ctx);
  180. q = BN_CTX_get(ctx);
  181. X = BN_CTX_get(ctx);
  182. c = BN_CTX_get(ctx);
  183. p = BN_CTX_get(ctx);
  184. test = BN_CTX_get(ctx);
  185. if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) {
  186. goto err;
  187. }
  188. for (;;) {
  189. /* Find q. */
  190. for (;;) {
  191. /* step 1 */
  192. if (!BN_GENCB_call(cb, 0, m++)) {
  193. goto err;
  194. }
  195. int use_random_seed = (seed_in == NULL);
  196. if (use_random_seed) {
  197. if (!RAND_bytes(seed, qsize)) {
  198. goto err;
  199. }
  200. } else {
  201. /* If we come back through, use random seed next time. */
  202. seed_in = NULL;
  203. }
  204. memcpy(buf, seed, qsize);
  205. memcpy(buf2, seed, qsize);
  206. /* precompute "SEED + 1" for step 7: */
  207. for (i = qsize - 1; i < qsize; i--) {
  208. buf[i]++;
  209. if (buf[i] != 0) {
  210. break;
  211. }
  212. }
  213. /* step 2 */
  214. if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) ||
  215. !EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) {
  216. goto err;
  217. }
  218. for (i = 0; i < qsize; i++) {
  219. md[i] ^= buf2[i];
  220. }
  221. /* step 3 */
  222. md[0] |= 0x80;
  223. md[qsize - 1] |= 0x01;
  224. if (!BN_bin2bn(md, qsize, q)) {
  225. goto err;
  226. }
  227. /* step 4 */
  228. r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb);
  229. if (r > 0) {
  230. break;
  231. }
  232. if (r != 0) {
  233. goto err;
  234. }
  235. /* do a callback call */
  236. /* step 5 */
  237. }
  238. if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) {
  239. goto err;
  240. }
  241. /* step 6 */
  242. counter = 0;
  243. /* "offset = 2" */
  244. n = (bits - 1) / 160;
  245. for (;;) {
  246. if ((counter != 0) && !BN_GENCB_call(cb, 0, counter)) {
  247. goto err;
  248. }
  249. /* step 7 */
  250. BN_zero(W);
  251. /* now 'buf' contains "SEED + offset - 1" */
  252. for (k = 0; k <= n; k++) {
  253. /* obtain "SEED + offset + k" by incrementing: */
  254. for (i = qsize - 1; i < qsize; i--) {
  255. buf[i]++;
  256. if (buf[i] != 0) {
  257. break;
  258. }
  259. }
  260. if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) {
  261. goto err;
  262. }
  263. /* step 8 */
  264. if (!BN_bin2bn(md, qsize, r0) ||
  265. !BN_lshift(r0, r0, (qsize << 3) * k) ||
  266. !BN_add(W, W, r0)) {
  267. goto err;
  268. }
  269. }
  270. /* more of step 8 */
  271. if (!BN_mask_bits(W, bits - 1) ||
  272. !BN_copy(X, W) ||
  273. !BN_add(X, X, test)) {
  274. goto err;
  275. }
  276. /* step 9 */
  277. if (!BN_lshift1(r0, q) ||
  278. !BN_mod(c, X, r0, ctx) ||
  279. !BN_sub(r0, c, BN_value_one()) ||
  280. !BN_sub(p, X, r0)) {
  281. goto err;
  282. }
  283. /* step 10 */
  284. if (BN_cmp(p, test) >= 0) {
  285. /* step 11 */
  286. r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
  287. if (r > 0) {
  288. goto end; /* found it */
  289. }
  290. if (r != 0) {
  291. goto err;
  292. }
  293. }
  294. /* step 13 */
  295. counter++;
  296. /* "offset = offset + n + 1" */
  297. /* step 14 */
  298. if (counter >= 4096) {
  299. break;
  300. }
  301. }
  302. }
  303. end:
  304. if (!BN_GENCB_call(cb, 2, 1)) {
  305. goto err;
  306. }
  307. /* We now need to generate g */
  308. /* Set r0=(p-1)/q */
  309. if (!BN_sub(test, p, BN_value_one()) ||
  310. !BN_div(r0, NULL, test, q, ctx)) {
  311. goto err;
  312. }
  313. if (!BN_set_word(test, h) ||
  314. !BN_MONT_CTX_set(mont, p, ctx)) {
  315. goto err;
  316. }
  317. for (;;) {
  318. /* g=test^r0%p */
  319. if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) {
  320. goto err;
  321. }
  322. if (!BN_is_one(g)) {
  323. break;
  324. }
  325. if (!BN_add(test, test, BN_value_one())) {
  326. goto err;
  327. }
  328. h++;
  329. }
  330. if (!BN_GENCB_call(cb, 3, 1)) {
  331. goto err;
  332. }
  333. ok = 1;
  334. err:
  335. if (ok) {
  336. BN_free(dsa->p);
  337. BN_free(dsa->q);
  338. BN_free(dsa->g);
  339. dsa->p = BN_dup(p);
  340. dsa->q = BN_dup(q);
  341. dsa->g = BN_dup(g);
  342. if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
  343. ok = 0;
  344. goto err;
  345. }
  346. if (out_counter != NULL) {
  347. *out_counter = counter;
  348. }
  349. if (out_h != NULL) {
  350. *out_h = h;
  351. }
  352. }
  353. if (ctx) {
  354. BN_CTX_end(ctx);
  355. BN_CTX_free(ctx);
  356. }
  357. BN_MONT_CTX_free(mont);
  358. return ok;
  359. }
  360. DSA *DSAparams_dup(const DSA *dsa) {
  361. DSA *ret = DSA_new();
  362. if (ret == NULL) {
  363. return NULL;
  364. }
  365. ret->p = BN_dup(dsa->p);
  366. ret->q = BN_dup(dsa->q);
  367. ret->g = BN_dup(dsa->g);
  368. if (ret->p == NULL || ret->q == NULL || ret->g == NULL) {
  369. DSA_free(ret);
  370. return NULL;
  371. }
  372. return ret;
  373. }
  374. int DSA_generate_key(DSA *dsa) {
  375. int ok = 0;
  376. BN_CTX *ctx = NULL;
  377. BIGNUM *pub_key = NULL, *priv_key = NULL;
  378. BIGNUM prk;
  379. ctx = BN_CTX_new();
  380. if (ctx == NULL) {
  381. goto err;
  382. }
  383. priv_key = dsa->priv_key;
  384. if (priv_key == NULL) {
  385. priv_key = BN_new();
  386. if (priv_key == NULL) {
  387. goto err;
  388. }
  389. }
  390. if (!BN_rand_range_ex(priv_key, 1, dsa->q)) {
  391. goto err;
  392. }
  393. pub_key = dsa->pub_key;
  394. if (pub_key == NULL) {
  395. pub_key = BN_new();
  396. if (pub_key == NULL) {
  397. goto err;
  398. }
  399. }
  400. BN_init(&prk);
  401. BN_with_flags(&prk, priv_key, BN_FLG_CONSTTIME);
  402. if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock,
  403. dsa->p, ctx) ||
  404. !BN_mod_exp_mont_consttime(pub_key, dsa->g, &prk, dsa->p, ctx,
  405. dsa->method_mont_p)) {
  406. goto err;
  407. }
  408. dsa->priv_key = priv_key;
  409. dsa->pub_key = pub_key;
  410. ok = 1;
  411. err:
  412. if (dsa->pub_key == NULL) {
  413. BN_free(pub_key);
  414. }
  415. if (dsa->priv_key == NULL) {
  416. BN_free(priv_key);
  417. }
  418. BN_CTX_free(ctx);
  419. return ok;
  420. }
  421. DSA_SIG *DSA_SIG_new(void) {
  422. DSA_SIG *sig;
  423. sig = OPENSSL_malloc(sizeof(DSA_SIG));
  424. if (!sig) {
  425. return NULL;
  426. }
  427. sig->r = NULL;
  428. sig->s = NULL;
  429. return sig;
  430. }
  431. void DSA_SIG_free(DSA_SIG *sig) {
  432. if (!sig) {
  433. return;
  434. }
  435. BN_free(sig->r);
  436. BN_free(sig->s);
  437. OPENSSL_free(sig);
  438. }
  439. DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, DSA *dsa) {
  440. BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
  441. BIGNUM m;
  442. BIGNUM xr;
  443. BN_CTX *ctx = NULL;
  444. int reason = ERR_R_BN_LIB;
  445. DSA_SIG *ret = NULL;
  446. int noredo = 0;
  447. BN_init(&m);
  448. BN_init(&xr);
  449. if (!dsa->p || !dsa->q || !dsa->g) {
  450. reason = DSA_R_MISSING_PARAMETERS;
  451. goto err;
  452. }
  453. s = BN_new();
  454. if (s == NULL) {
  455. goto err;
  456. }
  457. ctx = BN_CTX_new();
  458. if (ctx == NULL) {
  459. goto err;
  460. }
  461. redo:
  462. if (dsa->kinv == NULL || dsa->r == NULL) {
  463. if (!DSA_sign_setup(dsa, ctx, &kinv, &r)) {
  464. goto err;
  465. }
  466. } else {
  467. kinv = dsa->kinv;
  468. dsa->kinv = NULL;
  469. r = dsa->r;
  470. dsa->r = NULL;
  471. noredo = 1;
  472. }
  473. if (digest_len > BN_num_bytes(dsa->q)) {
  474. /* if the digest length is greater than the size of q use the
  475. * BN_num_bits(dsa->q) leftmost bits of the digest, see
  476. * fips 186-3, 4.2 */
  477. digest_len = BN_num_bytes(dsa->q);
  478. }
  479. if (BN_bin2bn(digest, digest_len, &m) == NULL) {
  480. goto err;
  481. }
  482. /* Compute s = inv(k) (m + xr) mod q */
  483. if (!BN_mod_mul(&xr, dsa->priv_key, r, dsa->q, ctx)) {
  484. goto err; /* s = xr */
  485. }
  486. if (!BN_add(s, &xr, &m)) {
  487. goto err; /* s = m + xr */
  488. }
  489. if (BN_cmp(s, dsa->q) > 0) {
  490. if (!BN_sub(s, s, dsa->q)) {
  491. goto err;
  492. }
  493. }
  494. if (!BN_mod_mul(s, s, kinv, dsa->q, ctx)) {
  495. goto err;
  496. }
  497. /* Redo if r or s is zero as required by FIPS 186-3: this is
  498. * very unlikely. */
  499. if (BN_is_zero(r) || BN_is_zero(s)) {
  500. if (noredo) {
  501. reason = DSA_R_NEED_NEW_SETUP_VALUES;
  502. goto err;
  503. }
  504. goto redo;
  505. }
  506. ret = DSA_SIG_new();
  507. if (ret == NULL) {
  508. goto err;
  509. }
  510. ret->r = r;
  511. ret->s = s;
  512. err:
  513. if (ret == NULL) {
  514. OPENSSL_PUT_ERROR(DSA, reason);
  515. BN_free(r);
  516. BN_free(s);
  517. }
  518. BN_CTX_free(ctx);
  519. BN_clear_free(&m);
  520. BN_clear_free(&xr);
  521. BN_clear_free(kinv);
  522. return ret;
  523. }
  524. int DSA_do_verify(const uint8_t *digest, size_t digest_len, DSA_SIG *sig,
  525. const DSA *dsa) {
  526. int valid;
  527. if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) {
  528. return -1;
  529. }
  530. return valid;
  531. }
  532. int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
  533. size_t digest_len, DSA_SIG *sig, const DSA *dsa) {
  534. BN_CTX *ctx;
  535. BIGNUM u1, u2, t1;
  536. int ret = 0;
  537. unsigned i;
  538. *out_valid = 0;
  539. if (!dsa->p || !dsa->q || !dsa->g) {
  540. OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
  541. return 0;
  542. }
  543. i = BN_num_bits(dsa->q);
  544. /* fips 186-3 allows only different sizes for q */
  545. if (i != 160 && i != 224 && i != 256) {
  546. OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE);
  547. return 0;
  548. }
  549. if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
  550. OPENSSL_PUT_ERROR(DSA, DSA_R_MODULUS_TOO_LARGE);
  551. return 0;
  552. }
  553. BN_init(&u1);
  554. BN_init(&u2);
  555. BN_init(&t1);
  556. ctx = BN_CTX_new();
  557. if (ctx == NULL) {
  558. goto err;
  559. }
  560. if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
  561. BN_ucmp(sig->r, dsa->q) >= 0) {
  562. ret = 1;
  563. goto err;
  564. }
  565. if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
  566. BN_ucmp(sig->s, dsa->q) >= 0) {
  567. ret = 1;
  568. goto err;
  569. }
  570. /* Calculate W = inv(S) mod Q
  571. * save W in u2 */
  572. if (BN_mod_inverse(&u2, sig->s, dsa->q, ctx) == NULL) {
  573. goto err;
  574. }
  575. /* save M in u1 */
  576. if (digest_len > (i >> 3)) {
  577. /* if the digest length is greater than the size of q use the
  578. * BN_num_bits(dsa->q) leftmost bits of the digest, see
  579. * fips 186-3, 4.2 */
  580. digest_len = (i >> 3);
  581. }
  582. if (BN_bin2bn(digest, digest_len, &u1) == NULL) {
  583. goto err;
  584. }
  585. /* u1 = M * w mod q */
  586. if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx)) {
  587. goto err;
  588. }
  589. /* u2 = r * w mod q */
  590. if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx)) {
  591. goto err;
  592. }
  593. if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
  594. (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
  595. ctx)) {
  596. goto err;
  597. }
  598. if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx,
  599. dsa->method_mont_p)) {
  600. goto err;
  601. }
  602. /* BN_copy(&u1,&t1); */
  603. /* let u1 = u1 mod q */
  604. if (!BN_mod(&u1, &t1, dsa->q, ctx)) {
  605. goto err;
  606. }
  607. /* V is now in u1. If the signature is correct, it will be
  608. * equal to R. */
  609. *out_valid = BN_ucmp(&u1, sig->r) == 0;
  610. ret = 1;
  611. err:
  612. if (ret != 1) {
  613. OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
  614. }
  615. BN_CTX_free(ctx);
  616. BN_free(&u1);
  617. BN_free(&u2);
  618. BN_free(&t1);
  619. return ret;
  620. }
  621. int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
  622. uint8_t *out_sig, unsigned int *out_siglen, DSA *dsa) {
  623. DSA_SIG *s;
  624. s = DSA_do_sign(digest, digest_len, dsa);
  625. if (s == NULL) {
  626. *out_siglen = 0;
  627. return 0;
  628. }
  629. *out_siglen = i2d_DSA_SIG(s, &out_sig);
  630. DSA_SIG_free(s);
  631. return 1;
  632. }
  633. int DSA_verify(int type, const uint8_t *digest, size_t digest_len,
  634. const uint8_t *sig, size_t sig_len, const DSA *dsa) {
  635. int valid;
  636. if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) {
  637. return -1;
  638. }
  639. return valid;
  640. }
  641. int DSA_check_signature(int *out_valid, const uint8_t *digest,
  642. size_t digest_len, const uint8_t *sig, size_t sig_len,
  643. const DSA *dsa) {
  644. DSA_SIG *s = NULL;
  645. int ret = 0;
  646. uint8_t *der = NULL;
  647. s = DSA_SIG_new();
  648. if (s == NULL) {
  649. goto err;
  650. }
  651. const uint8_t *sigp = sig;
  652. if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) {
  653. goto err;
  654. }
  655. /* Ensure that the signature uses DER and doesn't have trailing garbage. */
  656. int der_len = i2d_DSA_SIG(s, &der);
  657. if (der_len < 0 || (size_t)der_len != sig_len || memcmp(sig, der, sig_len)) {
  658. goto err;
  659. }
  660. ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa);
  661. err:
  662. OPENSSL_free(der);
  663. DSA_SIG_free(s);
  664. return ret;
  665. }
  666. /* der_len_len returns the number of bytes needed to represent a length of |len|
  667. * in DER. */
  668. static size_t der_len_len(size_t len) {
  669. if (len < 0x80) {
  670. return 1;
  671. }
  672. size_t ret = 1;
  673. while (len > 0) {
  674. ret++;
  675. len >>= 8;
  676. }
  677. return ret;
  678. }
  679. int DSA_size(const DSA *dsa) {
  680. size_t order_len = BN_num_bytes(dsa->q);
  681. /* Compute the maximum length of an |order_len| byte integer. Defensively
  682. * assume that the leading 0x00 is included. */
  683. size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len;
  684. if (integer_len < order_len) {
  685. return 0;
  686. }
  687. /* A DSA signature is two INTEGERs. */
  688. size_t value_len = 2 * integer_len;
  689. if (value_len < integer_len) {
  690. return 0;
  691. }
  692. /* Add the header. */
  693. size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len;
  694. if (ret < value_len) {
  695. return 0;
  696. }
  697. return ret;
  698. }
  699. int DSA_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,
  700. BIGNUM **out_r) {
  701. BN_CTX *ctx;
  702. BIGNUM k, kq, qm2, *kinv = NULL, *r = NULL;
  703. int ret = 0;
  704. if (!dsa->p || !dsa->q || !dsa->g) {
  705. OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
  706. return 0;
  707. }
  708. BN_init(&k);
  709. BN_init(&kq);
  710. BN_init(&qm2);
  711. ctx = ctx_in;
  712. if (ctx == NULL) {
  713. ctx = BN_CTX_new();
  714. if (ctx == NULL) {
  715. goto err;
  716. }
  717. }
  718. r = BN_new();
  719. if (r == NULL) {
  720. goto err;
  721. }
  722. /* Get random k */
  723. if (!BN_rand_range_ex(&k, 1, dsa->q)) {
  724. goto err;
  725. }
  726. BN_set_flags(&k, BN_FLG_CONSTTIME);
  727. if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
  728. (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
  729. ctx) ||
  730. !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q,
  731. (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q,
  732. ctx)) {
  733. goto err;
  734. }
  735. /* Compute r = (g^k mod p) mod q */
  736. if (!BN_copy(&kq, &k)) {
  737. goto err;
  738. }
  739. /* We do not want timing information to leak the length of k,
  740. * so we compute g^k using an equivalent exponent of fixed length.
  741. *
  742. * (This is a kludge that we need because the BN_mod_exp_mont()
  743. * does not let us specify the desired timing behaviour.) */
  744. if (!BN_add(&kq, &kq, dsa->q)) {
  745. goto err;
  746. }
  747. if (BN_num_bits(&kq) <= BN_num_bits(dsa->q) && !BN_add(&kq, &kq, dsa->q)) {
  748. goto err;
  749. }
  750. BN_set_flags(&kq, BN_FLG_CONSTTIME);
  751. if (!BN_mod_exp_mont_consttime(r, dsa->g, &kq, dsa->p, ctx,
  752. dsa->method_mont_p)) {
  753. goto err;
  754. }
  755. if (!BN_mod(r, r, dsa->q, ctx)) {
  756. goto err;
  757. }
  758. /* Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little
  759. * Theorem. */
  760. kinv = BN_new();
  761. if (kinv == NULL ||
  762. !BN_set_word(&qm2, 2) ||
  763. !BN_sub(&qm2, dsa->q, &qm2) ||
  764. !BN_mod_exp_mont(kinv, &k, &qm2, dsa->q, ctx, dsa->method_mont_q)) {
  765. goto err;
  766. }
  767. BN_clear_free(*out_kinv);
  768. *out_kinv = kinv;
  769. kinv = NULL;
  770. BN_clear_free(*out_r);
  771. *out_r = r;
  772. ret = 1;
  773. err:
  774. if (!ret) {
  775. OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
  776. if (r != NULL) {
  777. BN_clear_free(r);
  778. }
  779. }
  780. if (ctx_in == NULL) {
  781. BN_CTX_free(ctx);
  782. }
  783. BN_clear_free(&k);
  784. BN_clear_free(&kq);
  785. BN_free(&qm2);
  786. return ret;
  787. }
  788. int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
  789. CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
  790. int index;
  791. if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, dup_func,
  792. free_func)) {
  793. return -1;
  794. }
  795. return index;
  796. }
  797. int DSA_set_ex_data(DSA *d, int idx, void *arg) {
  798. return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
  799. }
  800. void *DSA_get_ex_data(const DSA *d, int idx) {
  801. return CRYPTO_get_ex_data(&d->ex_data, idx);
  802. }
  803. DH *DSA_dup_DH(const DSA *r) {
  804. DH *ret = NULL;
  805. if (r == NULL) {
  806. goto err;
  807. }
  808. ret = DH_new();
  809. if (ret == NULL) {
  810. goto err;
  811. }
  812. if (r->q != NULL) {
  813. ret->priv_length = BN_num_bits(r->q);
  814. if ((ret->q = BN_dup(r->q)) == NULL) {
  815. goto err;
  816. }
  817. }
  818. if ((r->p != NULL && (ret->p = BN_dup(r->p)) == NULL) ||
  819. (r->g != NULL && (ret->g = BN_dup(r->g)) == NULL) ||
  820. (r->pub_key != NULL && (ret->pub_key = BN_dup(r->pub_key)) == NULL) ||
  821. (r->priv_key != NULL && (ret->priv_key = BN_dup(r->priv_key)) == NULL)) {
  822. goto err;
  823. }
  824. return ret;
  825. err:
  826. DH_free(ret);
  827. return NULL;
  828. }