boringssl/crypto/ec/ec_asn1.c
David Benjamin 7743c026cb Ensure EC private keys retain leading zeros
RFC 5915 requires the use of the I2OSP primitive as defined in RFC 3447
for encoding ECPrivateKey. Fix this and add a test.

See also upstream's 30cd4ff294252c4b6a4b69cbef6a5b4117705d22, though it mixes
up degree and order.

Change-Id: I81ba14da3c8d69e3799422c669fab7f16956f322
Reviewed-on: https://boringssl-review.googlesource.com/4469
Reviewed-by: Adam Langley <agl@google.com>
2015-04-28 21:03:27 +00:00

593 lines
17 KiB
C

/* Written by Nils Larsch for the OpenSSL project. */
/* ====================================================================
* Copyright (c) 2000-2003 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ec.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include "internal.h"
typedef struct x9_62_fieldid_st {
ASN1_OBJECT *fieldType;
union {
char *ptr;
/* NID_X9_62_prime_field */
ASN1_INTEGER *prime;
/* anything else */
ASN1_TYPE *other;
} p;
} X9_62_FIELDID;
ASN1_ADB_TEMPLATE(fieldID_def) = ASN1_SIMPLE(X9_62_FIELDID, p.other, ASN1_ANY);
ASN1_ADB(X9_62_FIELDID) = {
ADB_ENTRY(NID_X9_62_prime_field, ASN1_SIMPLE(X9_62_FIELDID, p.prime, ASN1_INTEGER)),
} ASN1_ADB_END(X9_62_FIELDID, 0, fieldType, 0, &fieldID_def_tt, NULL);
ASN1_SEQUENCE(X9_62_FIELDID) = {
ASN1_SIMPLE(X9_62_FIELDID, fieldType, ASN1_OBJECT),
ASN1_ADB_OBJECT(X9_62_FIELDID)
} ASN1_SEQUENCE_END(X9_62_FIELDID);
typedef struct x9_62_curve_st {
ASN1_OCTET_STRING *a;
ASN1_OCTET_STRING *b;
ASN1_BIT_STRING *seed;
} X9_62_CURVE;
ASN1_SEQUENCE(X9_62_CURVE) = {
ASN1_SIMPLE(X9_62_CURVE, a, ASN1_OCTET_STRING),
ASN1_SIMPLE(X9_62_CURVE, b, ASN1_OCTET_STRING),
ASN1_OPT(X9_62_CURVE, seed, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(X9_62_CURVE);
typedef struct ec_parameters_st {
long version;
X9_62_FIELDID *fieldID;
X9_62_CURVE *curve;
ASN1_OCTET_STRING *base;
ASN1_INTEGER *order;
ASN1_INTEGER *cofactor;
} ECPARAMETERS;
DECLARE_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS);
ASN1_SEQUENCE(ECPARAMETERS) = {
ASN1_SIMPLE(ECPARAMETERS, version, LONG),
ASN1_SIMPLE(ECPARAMETERS, fieldID, X9_62_FIELDID),
ASN1_SIMPLE(ECPARAMETERS, curve, X9_62_CURVE),
ASN1_SIMPLE(ECPARAMETERS, base, ASN1_OCTET_STRING),
ASN1_SIMPLE(ECPARAMETERS, order, ASN1_INTEGER),
ASN1_OPT(ECPARAMETERS, cofactor, ASN1_INTEGER)
} ASN1_SEQUENCE_END(ECPARAMETERS);
IMPLEMENT_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS);
typedef struct ecpk_parameters_st {
int type;
union {
ASN1_OBJECT *named_curve;
ECPARAMETERS *parameters;
} value;
} ECPKPARAMETERS;
/* SEC1 ECPrivateKey */
typedef struct ec_privatekey_st {
long version;
ASN1_OCTET_STRING *privateKey;
ECPKPARAMETERS *parameters;
ASN1_BIT_STRING *publicKey;
} EC_PRIVATEKEY;
DECLARE_ASN1_FUNCTIONS_const(ECPKPARAMETERS);
DECLARE_ASN1_ENCODE_FUNCTIONS_const(ECPKPARAMETERS, ECPKPARAMETERS);
ASN1_CHOICE(ECPKPARAMETERS) = {
ASN1_SIMPLE(ECPKPARAMETERS, value.named_curve, ASN1_OBJECT),
ASN1_SIMPLE(ECPKPARAMETERS, value.parameters, ECPARAMETERS),
} ASN1_CHOICE_END(ECPKPARAMETERS);
IMPLEMENT_ASN1_FUNCTIONS_const(ECPKPARAMETERS);
DECLARE_ASN1_FUNCTIONS_const(EC_PRIVATEKEY);
DECLARE_ASN1_ENCODE_FUNCTIONS_const(EC_PRIVATEKEY, EC_PRIVATEKEY);
ASN1_SEQUENCE(EC_PRIVATEKEY) = {
ASN1_SIMPLE(EC_PRIVATEKEY, version, LONG),
ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING),
ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0),
ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1),
} ASN1_SEQUENCE_END(EC_PRIVATEKEY);
IMPLEMENT_ASN1_FUNCTIONS_const(EC_PRIVATEKEY);
ECPKPARAMETERS *ec_asn1_group2pkparameters(const EC_GROUP *group,
ECPKPARAMETERS *params) {
int ok = 0, nid;
ECPKPARAMETERS *ret = params;
if (ret == NULL) {
ret = ECPKPARAMETERS_new();
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, ec_asn1_group2pkparameters, ERR_R_MALLOC_FAILURE);
return NULL;
}
} else {
if (ret->value.named_curve) {
ASN1_OBJECT_free(ret->value.named_curve);
}
}
/* use the ASN.1 OID to describe the the elliptic curve parameters. */
nid = EC_GROUP_get_curve_name(group);
if (nid) {
ret->type = 0;
ret->value.named_curve = (ASN1_OBJECT*) OBJ_nid2obj(nid);
ok = ret->value.named_curve != NULL;
}
if (!ok) {
ECPKPARAMETERS_free(ret);
return NULL;
}
return ret;
}
EC_GROUP *ec_asn1_pkparameters2group(const ECPKPARAMETERS *params) {
EC_GROUP *ret = NULL;
int nid = NID_undef;
if (params == NULL) {
OPENSSL_PUT_ERROR(EC, ec_asn1_pkparameters2group, EC_R_MISSING_PARAMETERS);
return NULL;
}
if (params->type == 0) {
nid = OBJ_obj2nid(params->value.named_curve);
} else if (params->type == 1) {
/* We don't support arbitary curves so we attempt to recognise it from the
* group order. */
const ECPARAMETERS *ecparams = params->value.parameters;
unsigned i;
const struct built_in_curve *curve;
for (i = 0; OPENSSL_built_in_curves[i].nid != NID_undef; i++) {
curve = &OPENSSL_built_in_curves[i];
const unsigned param_len = curve->data->param_len;
if (ecparams->order->length == param_len &&
memcmp(ecparams->order->data, &curve->data->data[param_len * 5],
param_len) == 0) {
nid = curve->nid;
break;
}
}
}
if (nid == NID_undef) {
OPENSSL_PUT_ERROR(EC, ec_asn1_pkparameters2group, EC_R_NON_NAMED_CURVE);
return NULL;
}
ret = EC_GROUP_new_by_curve_name(nid);
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, ec_asn1_pkparameters2group,
EC_R_EC_GROUP_NEW_BY_NAME_FAILURE);
return NULL;
}
return ret;
}
static EC_GROUP *d2i_ECPKParameters(EC_GROUP **groupp, const uint8_t **inp,
long len) {
EC_GROUP *group = NULL;
ECPKPARAMETERS *params = NULL;
params = d2i_ECPKPARAMETERS(NULL, inp, len);
if (params == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPKParameters, EC_R_D2I_ECPKPARAMETERS_FAILURE);
ECPKPARAMETERS_free(params);
return NULL;
}
group = ec_asn1_pkparameters2group(params);
if (group == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPKParameters, EC_R_PKPARAMETERS2GROUP_FAILURE);
ECPKPARAMETERS_free(params);
return NULL;
}
if (groupp && *groupp) {
EC_GROUP_free(*groupp);
}
if (groupp) {
*groupp = group;
}
ECPKPARAMETERS_free(params);
return group;
}
static int i2d_ECPKParameters(const EC_GROUP *group, uint8_t **outp) {
int ret = 0;
ECPKPARAMETERS *tmp = ec_asn1_group2pkparameters(group, NULL);
if (tmp == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPKParameters, EC_R_GROUP2PKPARAMETERS_FAILURE);
return 0;
}
ret = i2d_ECPKPARAMETERS(tmp, outp);
if (ret == 0) {
OPENSSL_PUT_ERROR(EC, i2d_ECPKParameters, EC_R_I2D_ECPKPARAMETERS_FAILURE);
ECPKPARAMETERS_free(tmp);
return 0;
}
ECPKPARAMETERS_free(tmp);
return ret;
}
EC_KEY *d2i_ECPrivateKey(EC_KEY **a, const uint8_t **in, long len) {
int ok = 0;
EC_KEY *ret = NULL;
EC_PRIVATEKEY *priv_key = NULL;
priv_key = d2i_EC_PRIVATEKEY(NULL, in, len);
if (priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
return NULL;
}
if (a == NULL || *a == NULL) {
ret = EC_KEY_new();
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
} else {
ret = *a;
}
if (priv_key->parameters) {
if (ret->group) {
EC_GROUP_free(ret->group);
}
ret->group = ec_asn1_pkparameters2group(priv_key->parameters);
}
if (ret->group == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
ret->version = priv_key->version;
if (priv_key->privateKey) {
ret->priv_key =
BN_bin2bn(M_ASN1_STRING_data(priv_key->privateKey),
M_ASN1_STRING_length(priv_key->privateKey), ret->priv_key);
if (ret->priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_BN_LIB);
goto err;
}
} else {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, EC_R_MISSING_PRIVATE_KEY);
goto err;
}
if (ret->pub_key) {
EC_POINT_free(ret->pub_key);
}
ret->pub_key = EC_POINT_new(ret->group);
if (ret->pub_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
if (priv_key->publicKey) {
const uint8_t *pub_oct;
int pub_oct_len;
pub_oct = M_ASN1_STRING_data(priv_key->publicKey);
pub_oct_len = M_ASN1_STRING_length(priv_key->publicKey);
/* The first byte (the point conversion form) must be present. */
if (pub_oct_len <= 0) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, EC_R_BUFFER_TOO_SMALL);
goto err;
}
/* Save the point conversion form. */
ret->conv_form = (point_conversion_form_t)(pub_oct[0] & ~0x01);
if (!EC_POINT_oct2point(ret->group, ret->pub_key, pub_oct, pub_oct_len,
NULL)) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
} else {
if (!EC_POINT_mul(ret->group, ret->pub_key, ret->priv_key, NULL, NULL,
NULL)) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
/* Remember the original private-key-only encoding. */
ret->enc_flag |= EC_PKEY_NO_PUBKEY;
}
if (a) {
*a = ret;
}
ok = 1;
err:
if (!ok) {
if (ret && (a == NULL || *a != ret)) {
EC_KEY_free(ret);
}
ret = NULL;
}
if (priv_key) {
EC_PRIVATEKEY_free(priv_key);
}
return ret;
}
int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp) {
int ret = 0, ok = 0;
uint8_t *buffer = NULL;
size_t buf_len = 0, tmp_len;
EC_PRIVATEKEY *priv_key = NULL;
if (key == NULL || key->group == NULL || key->priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_PASSED_NULL_PARAMETER);
goto err;
}
priv_key = EC_PRIVATEKEY_new();
if (priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
priv_key->version = key->version;
buf_len = BN_num_bytes(&key->group->order);
buffer = OPENSSL_malloc(buf_len);
if (buffer == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!BN_bn2bin_padded(buffer, buf_len, key->priv_key)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_BN_LIB);
goto err;
}
if (!M_ASN1_OCTET_STRING_set(priv_key->privateKey, buffer, buf_len)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_ASN1_LIB);
goto err;
}
/* TODO(fork): replace this flexibility with key sensible default? */
if (!(key->enc_flag & EC_PKEY_NO_PARAMETERS)) {
if ((priv_key->parameters = ec_asn1_group2pkparameters(
key->group, priv_key->parameters)) == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
}
/* TODO(fork): replace this flexibility with key sensible default? */
if (!(key->enc_flag & EC_PKEY_NO_PUBKEY) && key->pub_key != NULL) {
priv_key->publicKey = M_ASN1_BIT_STRING_new();
if (priv_key->publicKey == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
tmp_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL,
0, NULL);
if (tmp_len > buf_len) {
uint8_t *tmp_buffer = OPENSSL_realloc(buffer, tmp_len);
if (!tmp_buffer) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
buffer = tmp_buffer;
buf_len = tmp_len;
}
if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, buffer,
buf_len, NULL)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
priv_key->publicKey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
priv_key->publicKey->flags |= ASN1_STRING_FLAG_BITS_LEFT;
if (!M_ASN1_BIT_STRING_set(priv_key->publicKey, buffer, buf_len)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_ASN1_LIB);
goto err;
}
}
ret = i2d_EC_PRIVATEKEY(priv_key, outp);
if (ret == 0) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
ok = 1;
err:
if (buffer) {
OPENSSL_free(buffer);
}
if (priv_key) {
EC_PRIVATEKEY_free(priv_key);
}
return (ok ? ret : 0);
}
int i2d_ECParameters(const EC_KEY *key, uint8_t **outp) {
if (key == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECParameters, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return i2d_ECPKParameters(key->group, outp);
}
EC_KEY *d2i_ECParameters(EC_KEY **key, const uint8_t **inp, long len) {
EC_KEY *ret;
if (inp == NULL || *inp == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECParameters, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
if (key == NULL || *key == NULL) {
ret = EC_KEY_new();
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECParameters, ERR_R_MALLOC_FAILURE);
return NULL;
}
} else {
ret = *key;
}
if (!d2i_ECPKParameters(&ret->group, inp, len)) {
OPENSSL_PUT_ERROR(EC, d2i_ECParameters, ERR_R_EC_LIB);
if (key == NULL || *key == NULL) {
EC_KEY_free(ret);
}
return NULL;
}
if (key) {
*key = ret;
}
return ret;
}
EC_KEY *o2i_ECPublicKey(EC_KEY **keyp, const uint8_t **inp, long len) {
EC_KEY *ret = NULL;
if (keyp == NULL || *keyp == NULL || (*keyp)->group == NULL) {
OPENSSL_PUT_ERROR(EC, o2i_ECPublicKey, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
ret = *keyp;
if (ret->pub_key == NULL &&
(ret->pub_key = EC_POINT_new(ret->group)) == NULL) {
OPENSSL_PUT_ERROR(EC, o2i_ECPublicKey, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!EC_POINT_oct2point(ret->group, ret->pub_key, *inp, len, NULL)) {
OPENSSL_PUT_ERROR(EC, o2i_ECPublicKey, ERR_R_EC_LIB);
return 0;
}
/* save the point conversion form */
ret->conv_form = (point_conversion_form_t)(*inp[0] & ~0x01);
*inp += len;
return ret;
}
int i2o_ECPublicKey(const EC_KEY *key, uint8_t **outp) {
size_t buf_len = 0;
int new_buffer = 0;
if (key == NULL) {
OPENSSL_PUT_ERROR(EC, i2o_ECPublicKey, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
buf_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL,
0, NULL);
if (outp == NULL || buf_len == 0) {
/* out == NULL => just return the length of the octet string */
return buf_len;
}
if (*outp == NULL) {
*outp = OPENSSL_malloc(buf_len);
if (*outp == NULL) {
OPENSSL_PUT_ERROR(EC, i2o_ECPublicKey, ERR_R_MALLOC_FAILURE);
return 0;
}
new_buffer = 1;
}
if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, *outp,
buf_len, NULL)) {
OPENSSL_PUT_ERROR(EC, i2o_ECPublicKey, ERR_R_EC_LIB);
if (new_buffer) {
OPENSSL_free(*outp);
*outp = NULL;
}
return 0;
}
if (!new_buffer) {
*outp += buf_len;
}
return buf_len;
}