boringssl/ssl/t1_enc.cc
David Benjamin f88242d1c1 SSL_export_keying_material should work in half-RTT.
QUIC will need to derive keys at this point. This also smooths over a
part of the server 0-RTT abstraction. Like with False Start, the SSL
object is largely in a functional state at this point.

Bug: 221
Change-Id: I4207d8cb1273a1156e728a7bff3943cc2c69e288
Reviewed-on: https://boringssl-review.googlesource.com/24224
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-12-18 16:53:13 +00:00

539 lines
20 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <utility>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include "../crypto/internal.h"
#include "internal.h"
namespace bssl {
// tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246,
// section 5. It XORs |out.size()| bytes to |out|, using |md| as the hash and
// |secret| as the secret. |label|, |seed1|, and |seed2| are concatenated to
// form the seed parameter. It returns true on success and false on failure.
static bool tls1_P_hash(Span<uint8_t> out, const EVP_MD *md,
Span<const uint8_t> secret, Span<const char> label,
Span<const uint8_t> seed1, Span<const uint8_t> seed2) {
ScopedHMAC_CTX ctx, ctx_tmp, ctx_init;
uint8_t A1[EVP_MAX_MD_SIZE];
unsigned A1_len;
bool ret = false;
size_t chunk = EVP_MD_size(md);
if (!HMAC_Init_ex(ctx_init.get(), secret.data(), secret.size(), md,
nullptr) ||
!HMAC_CTX_copy_ex(ctx.get(), ctx_init.get()) ||
!HMAC_Update(ctx.get(), reinterpret_cast<const uint8_t *>(label.data()),
label.size()) ||
!HMAC_Update(ctx.get(), seed1.data(), seed1.size()) ||
!HMAC_Update(ctx.get(), seed2.data(), seed2.size()) ||
!HMAC_Final(ctx.get(), A1, &A1_len)) {
goto err;
}
for (;;) {
unsigned len;
uint8_t hmac[EVP_MAX_MD_SIZE];
if (!HMAC_CTX_copy_ex(ctx.get(), ctx_init.get()) ||
!HMAC_Update(ctx.get(), A1, A1_len) ||
// Save a copy of |ctx| to compute the next A1 value below.
(out.size() > chunk && !HMAC_CTX_copy_ex(ctx_tmp.get(), ctx.get())) ||
!HMAC_Update(ctx.get(), reinterpret_cast<const uint8_t *>(label.data()),
label.size()) ||
!HMAC_Update(ctx.get(), seed1.data(), seed1.size()) ||
!HMAC_Update(ctx.get(), seed2.data(), seed2.size()) ||
!HMAC_Final(ctx.get(), hmac, &len)) {
goto err;
}
assert(len == chunk);
// XOR the result into |out|.
if (len > out.size()) {
len = out.size();
}
for (unsigned i = 0; i < len; i++) {
out[i] ^= hmac[i];
}
out = out.subspan(len);
if (out.empty()) {
break;
}
// Calculate the next A1 value.
if (!HMAC_Final(ctx_tmp.get(), A1, &A1_len)) {
goto err;
}
}
ret = true;
err:
OPENSSL_cleanse(A1, sizeof(A1));
return ret;
}
bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
Span<const uint8_t> secret, Span<const char> label,
Span<const uint8_t> seed1, Span<const uint8_t> seed2) {
if (out.empty()) {
return true;
}
OPENSSL_memset(out.data(), 0, out.size());
if (digest == EVP_md5_sha1()) {
// If using the MD5/SHA1 PRF, |secret| is partitioned between MD5 and SHA-1.
size_t secret_half = secret.size() - (secret.size() / 2);
if (!tls1_P_hash(out, EVP_md5(), secret.subspan(0, secret_half), label,
seed1, seed2)) {
return false;
}
// Note that, if |secret.size()| is odd, the two halves share a byte.
secret = secret.subspan(secret.size() - secret_half);
digest = EVP_sha1();
}
return tls1_P_hash(out, digest, secret, label, seed1, seed2);
}
static bool ssl3_prf(Span<uint8_t> out, Span<const uint8_t> secret,
Span<const char> label, Span<const uint8_t> seed1,
Span<const uint8_t> seed2) {
ScopedEVP_MD_CTX md5;
ScopedEVP_MD_CTX sha1;
uint8_t buf[16], smd[SHA_DIGEST_LENGTH];
uint8_t c = 'A';
size_t k = 0;
while (!out.empty()) {
k++;
if (k > sizeof(buf)) {
// bug: 'buf' is too small for this ciphersuite
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
for (size_t j = 0; j < k; j++) {
buf[j] = c;
}
c++;
if (!EVP_DigestInit_ex(sha1.get(), EVP_sha1(), NULL)) {
OPENSSL_PUT_ERROR(SSL, ERR_LIB_EVP);
return false;
}
EVP_DigestUpdate(sha1.get(), buf, k);
EVP_DigestUpdate(sha1.get(), secret.data(), secret.size());
// |label| is ignored for SSLv3.
EVP_DigestUpdate(sha1.get(), seed1.data(), seed1.size());
EVP_DigestUpdate(sha1.get(), seed2.data(), seed2.size());
EVP_DigestFinal_ex(sha1.get(), smd, NULL);
if (!EVP_DigestInit_ex(md5.get(), EVP_md5(), NULL)) {
OPENSSL_PUT_ERROR(SSL, ERR_LIB_EVP);
return false;
}
EVP_DigestUpdate(md5.get(), secret.data(), secret.size());
EVP_DigestUpdate(md5.get(), smd, SHA_DIGEST_LENGTH);
if (out.size() < MD5_DIGEST_LENGTH) {
EVP_DigestFinal_ex(md5.get(), smd, NULL);
OPENSSL_memcpy(out.data(), smd, out.size());
break;
}
EVP_DigestFinal_ex(md5.get(), out.data(), NULL);
out = out.subspan(MD5_DIGEST_LENGTH);
}
OPENSSL_cleanse(smd, SHA_DIGEST_LENGTH);
return true;
}
static bool get_key_block_lengths(const SSL *ssl, size_t *out_mac_secret_len,
size_t *out_key_len, size_t *out_iv_len,
const SSL_CIPHER *cipher) {
const EVP_AEAD *aead = NULL;
if (!ssl_cipher_get_evp_aead(&aead, out_mac_secret_len, out_iv_len, cipher,
ssl_protocol_version(ssl), SSL_is_dtls(ssl))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return false;
}
*out_key_len = EVP_AEAD_key_length(aead);
if (*out_mac_secret_len > 0) {
// For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the
// key length reported by |EVP_AEAD_key_length| will include the MAC key
// bytes and initial implicit IV.
if (*out_key_len < *out_mac_secret_len + *out_iv_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
*out_key_len -= *out_mac_secret_len + *out_iv_len;
}
return true;
}
static bool setup_key_block(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!hs->key_block.empty()) {
return true;
}
size_t mac_secret_len, key_len, fixed_iv_len;
Array<uint8_t> key_block;
if (!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &fixed_iv_len,
hs->new_cipher) ||
!key_block.Init(2 * (mac_secret_len + key_len + fixed_iv_len)) ||
!SSL_generate_key_block(ssl, key_block.data(), key_block.size())) {
return false;
}
hs->key_block = std::move(key_block);
return true;
}
int tls1_change_cipher_state(SSL_HANDSHAKE *hs,
evp_aead_direction_t direction) {
SSL *const ssl = hs->ssl;
// Ensure the key block is set up.
size_t mac_secret_len, key_len, iv_len;
if (!setup_key_block(hs) ||
!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &iv_len,
hs->new_cipher)) {
return 0;
}
if ((mac_secret_len + key_len + iv_len) * 2 != hs->key_block.size()) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
Span<const uint8_t> key_block = hs->key_block;
Span<const uint8_t> mac_secret, key, iv;
if (direction == (ssl->server ? evp_aead_open : evp_aead_seal)) {
// Use the client write (server read) keys.
mac_secret = key_block.subspan(0, mac_secret_len);
key = key_block.subspan(2 * mac_secret_len, key_len);
iv = key_block.subspan(2 * mac_secret_len + 2 * key_len, iv_len);
} else {
// Use the server write (client read) keys.
mac_secret = key_block.subspan(mac_secret_len, mac_secret_len);
key = key_block.subspan(2 * mac_secret_len + key_len, key_len);
iv = key_block.subspan(2 * mac_secret_len + 2 * key_len + iv_len, iv_len);
}
UniquePtr<SSLAEADContext> aead_ctx =
SSLAEADContext::Create(direction, ssl->version, SSL_is_dtls(ssl),
hs->new_cipher, key, mac_secret, iv);
if (!aead_ctx) {
return 0;
}
if (direction == evp_aead_open) {
return ssl->method->set_read_state(ssl, std::move(aead_ctx));
}
return ssl->method->set_write_state(ssl, std::move(aead_ctx));
}
int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
Span<const uint8_t> premaster) {
static const char kMasterSecretLabel[] = "master secret";
static const char kExtendedMasterSecretLabel[] = "extended master secret";
const SSL *ssl = hs->ssl;
auto out_span = MakeSpan(out, SSL3_MASTER_SECRET_SIZE);
if (hs->extended_master_secret) {
auto label = MakeConstSpan(kExtendedMasterSecretLabel,
sizeof(kExtendedMasterSecretLabel) - 1);
uint8_t digests[EVP_MAX_MD_SIZE];
size_t digests_len;
if (!hs->transcript.GetHash(digests, &digests_len) ||
!tls1_prf(hs->transcript.Digest(), out_span, premaster, label,
MakeConstSpan(digests, digests_len), {})) {
return 0;
}
} else {
auto label =
MakeConstSpan(kMasterSecretLabel, sizeof(kMasterSecretLabel) - 1);
if (ssl_protocol_version(ssl) == SSL3_VERSION) {
if (!ssl3_prf(out_span, premaster, label, ssl->s3->client_random,
ssl->s3->server_random)) {
return 0;
}
} else {
if (!tls1_prf(hs->transcript.Digest(), out_span, premaster, label,
ssl->s3->client_random, ssl->s3->server_random)) {
return 0;
}
}
}
return SSL3_MASTER_SECRET_SIZE;
}
} // namespace bssl
using namespace bssl;
size_t SSL_get_key_block_len(const SSL *ssl) {
size_t mac_secret_len, key_len, fixed_iv_len;
if (!get_key_block_lengths(ssl, &mac_secret_len, &key_len, &fixed_iv_len,
SSL_get_current_cipher(ssl))) {
ERR_clear_error();
return 0;
}
return 2 * (mac_secret_len + key_len + fixed_iv_len);
}
int SSL_generate_key_block(const SSL *ssl, uint8_t *out, size_t out_len) {
const SSL_SESSION *session = SSL_get_session(ssl);
auto out_span = MakeSpan(out, out_len);
auto master_key =
MakeConstSpan(session->master_key, session->master_key_length);
static const char kLabel[] = "key expansion";
auto label = MakeConstSpan(kLabel, sizeof(kLabel) - 1);
if (ssl_protocol_version(ssl) == SSL3_VERSION) {
return ssl3_prf(out_span, master_key, label, ssl->s3->server_random,
ssl->s3->client_random);
}
const EVP_MD *digest = ssl_session_get_digest(session);
return tls1_prf(digest, out_span, master_key, label, ssl->s3->server_random,
ssl->s3->client_random);
}
int SSL_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context) {
if (!ssl->s3->have_version || ssl->version == SSL3_VERSION) {
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
// Exporters may be used in False Start and server 0-RTT, where the handshake
// has progressed enough. Otherwise, they may not be used during a handshake.
if (SSL_in_init(ssl) &&
!SSL_in_false_start(ssl) &&
!(SSL_is_server(ssl) && SSL_in_early_data(ssl))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
if (!use_context) {
context = nullptr;
context_len = 0;
}
return tls13_export_keying_material(
ssl, MakeSpan(out, out_len),
MakeConstSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len),
MakeConstSpan(label, label_len), MakeConstSpan(context, context_len));
}
size_t seed_len = 2 * SSL3_RANDOM_SIZE;
if (use_context) {
if (context_len >= 1u << 16) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
seed_len += 2 + context_len;
}
Array<uint8_t> seed;
if (!seed.Init(seed_len)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
OPENSSL_memcpy(seed.data(), ssl->s3->client_random, SSL3_RANDOM_SIZE);
OPENSSL_memcpy(seed.data() + SSL3_RANDOM_SIZE, ssl->s3->server_random,
SSL3_RANDOM_SIZE);
if (use_context) {
seed[2 * SSL3_RANDOM_SIZE] = static_cast<uint8_t>(context_len >> 8);
seed[2 * SSL3_RANDOM_SIZE + 1] = static_cast<uint8_t>(context_len);
OPENSSL_memcpy(seed.data() + 2 * SSL3_RANDOM_SIZE + 2, context, context_len);
}
const SSL_SESSION *session = SSL_get_session(ssl);
const EVP_MD *digest = ssl_session_get_digest(session);
return tls1_prf(
digest, MakeSpan(out, out_len),
MakeConstSpan(session->master_key, session->master_key_length),
MakeConstSpan(label, label_len), seed, {});
}
int SSL_export_early_keying_material(
SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len,
const uint8_t *context, size_t context_len) {
if (!SSL_in_early_data(ssl) &&
(!ssl->s3->have_version ||
ssl_protocol_version(ssl) < TLS1_3_VERSION)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
return 0;
}
// The early exporter only exists if we accepted early data or offered it as
// a client.
if (!SSL_in_early_data(ssl) && !SSL_early_data_accepted(ssl)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_EARLY_DATA_NOT_IN_USE);
return 0;
}
return tls13_export_keying_material(
ssl, MakeSpan(out, out_len),
MakeConstSpan(ssl->s3->early_exporter_secret,
ssl->s3->early_exporter_secret_len),
MakeConstSpan(label, label_len), MakeConstSpan(context, context_len));
}