boringssl/crypto/rc4/asm/rc4-x86_64.pl
David Benjamin fdd8e9c8c7 Switch perlasm calling convention.
Depending on architecture, perlasm differed on which one or both of:

  perl foo.pl flavor output.S
  perl foo.pl flavor > output.S

Upstream has now unified on the first form after making a number of
changes to their files (the second does not even work for their x86
files anymore). Sync those portions of our perlasm scripts with upstream
and update CMakeLists.txt and generate_build_files.py per the new
convention.

This imports various commits like this one:
184bc45f683c76531d7e065b6553ca9086564576 (this was done by taking a
diff, so I don't have the full list)

Confirmed that generate_build_files.py sees no change.

BUG=14

Change-Id: Id2fb5b8bc2a7369d077221b5df9a6947d41f50d2
Reviewed-on: https://boringssl-review.googlesource.com/8518
Reviewed-by: Adam Langley <agl@google.com>
2016-06-27 21:59:26 +00:00

654 lines
15 KiB
Perl

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# July 2004
#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
# line results in ~40% improvement (yes, even for C implementation).
# Presumably it has everything to do with AMD cache architecture and
# RAW or whatever penalties. Once again! The module *requires* config
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
# I simply 'inc %r8b'. Even though optimization manual discourages
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
# November 2004
#
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
# Latter means that if you want to *estimate* what to expect from
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
# November 2004
#
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 was to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
# compose blended code, which would perform even within 30% marginal
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
# April 2005
#
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
# those with add/sub results in 50% performance improvement of folded
# loop...
# May 2005
#
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
# performance by >30% [unlike P4 32-bit case that is]. But this is
# provided that loads are reordered even more aggressively! Both code
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
# as my IA-64 implementation. On Opteron this resulted in modest 5%
# improvement [I had to test it], while final Intel P4 performance
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
# RC4_INT code-path. While if executed on Opteron, it's only 25%
# slower than the RC4_INT one [meaning that if CPU µ-arch detection
# is not implemented, then this final RC4_CHAR code-path should be
# preferred, as it provides better *all-round* performance].
# March 2007
#
# Intel Core2 was observed to perform poorly on both code paths:-( It
# apparently suffers from some kind of partial register stall, which
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
# cloop1 boosts its performance by 80%! This loop appears to be optimal
# fit for Core2 and therefore the code was modified to skip cloop8 on
# this CPU.
# May 2010
#
# Intel Westmere was observed to perform suboptimally. Adding yet
# another movzb to cloop1 improved performance by almost 50%! Core2
# performance is improved too, but nominally...
# May 2011
#
# The only code path that was not modified is P4-specific one. Non-P4
# Intel code path optimization is heavily based on submission by Maxim
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
# some of the ideas even in attempt to optmize the original RC4_INT
# code path... Current performance in cycles per processed byte (less
# is better) and improvement coefficients relative to previous
# version of this module are:
#
# Opteron 5.3/+0%(*)
# P4 6.5
# Core2 6.2/+15%(**)
# Westmere 4.2/+60%
# Sandy Bridge 4.2/+120%
# Atom 9.3/+80%
#
# (*) But corresponding loop has less instructions, which should have
# positive effect on upcoming Bulldozer, which has one less ALU.
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
# (**) Note that Core2 result is ~15% lower than corresponding result
# for 32-bit code, meaning that it's possible to improve it,
# but more than likely at the cost of the others (see rc4-586.pl
# to get the idea)...
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
$dat="%rdi"; # arg1
$len="%rsi"; # arg2
$inp="%rdx"; # arg3
$out="%rcx"; # arg4
{
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl asm_RC4
.type asm_RC4,\@function,4
.align 16
asm_RC4:
or $len,$len
jne .Lentry
ret
.Lentry:
push %rbx
push %r12
push %r13
.Lprologue:
mov $len,%r11
mov $inp,%r12
mov $out,%r13
___
my $len="%r11"; # reassign input arguments
my $inp="%r12";
my $out="%r13";
my @XX=("%r10","%rsi");
my @TX=("%rax","%rbx");
my $YY="%rcx";
my $TY="%rdx";
$code.=<<___;
xor $XX[0],$XX[0]
xor $YY,$YY
lea 8($dat),$dat
mov -8($dat),$XX[0]#b
mov -4($dat),$YY#b
cmpl \$-1,256($dat)
je .LRC4_CHAR
mov OPENSSL_ia32cap_P(%rip),%r8d
xor $TX[1],$TX[1]
inc $XX[0]#b
sub $XX[0],$TX[1]
sub $inp,$out
movl ($dat,$XX[0],4),$TX[0]#d
test \$-16,$len
jz .Lloop1
bt \$30,%r8d # Intel CPU?
jc .Lintel
and \$7,$TX[1]
lea 1($XX[0]),$XX[1]
jz .Loop8
sub $TX[1],$len
.Loop8_warmup:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $TX[1]
jnz .Loop8_warmup
lea 1($XX[0]),$XX[1]
jmp .Loop8
.align 16
.Loop8:
___
for ($i=0;$i<8;$i++) {
$code.=<<___ if ($i==7);
add \$8,$XX[1]#b
___
$code.=<<___;
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
ror \$8,%r8 # ror is redundant when $i=0
movl $TY#d,4*$i($dat,$XX[0],4)
add $TX[0]#b,$TY#b
movb ($dat,$TY,4),%r8b
___
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
add \$8,$XX[0]#b
ror \$8,%r8
sub \$8,$len
xor ($inp),%r8
mov %r8,($out,$inp)
lea 8($inp),$inp
test \$-8,$len
jnz .Loop8
cmp \$0,$len
jne .Lloop1
jmp .Lexit
.align 16
.Lintel:
test \$-32,$len
jz .Lloop1
and \$15,$TX[1]
jz .Loop16_is_hot
sub $TX[1],$len
.Loop16_warmup:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $TX[1]
jnz .Loop16_warmup
mov $YY,$TX[1]
xor $YY,$YY
mov $TX[1]#b,$YY#b
.Loop16_is_hot:
lea ($dat,$XX[0],4),$XX[1]
___
sub RC4_loop {
my $i=shift;
my $j=$i<0?0:$i;
my $xmm="%xmm".($j&1);
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
$code.=" movl ($dat,$YY,4),$TY#d\n";
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
$code.=" psllq \$8,%xmm1\n" if ($i==0);
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
$code.=" add $TY#b,$TX[0]#b\n";
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
$code.=" movz $TX[0]#b,$TX[0]#d\n";
$code.=" movl $TY#d,4*$j($XX[1])\n";
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
$code.=" lea 16($inp),$inp\n" if ($i==0);
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
}
RC4_loop(-1);
$code.=<<___;
jmp .Loop16_enter
.align 16
.Loop16:
___
for ($i=0;$i<16;$i++) {
$code.=".Loop16_enter:\n" if ($i==1);
RC4_loop($i);
push(@TX,shift(@TX)); # "rotate" registers
}
$code.=<<___;
mov $YY,$TX[1]
xor $YY,$YY # keyword to partial register
sub \$16,$len
mov $TX[1]#b,$YY#b
test \$-16,$len
jnz .Loop16
psllq \$8,%xmm1
pxor %xmm0,%xmm2
pxor %xmm1,%xmm2
movdqu %xmm2,($out,$inp)
lea 16($inp),$inp
cmp \$0,$len
jne .Lloop1
jmp .Lexit
.align 16
.Lloop1:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $len
jnz .Lloop1
jmp .Lexit
.align 16
.LRC4_CHAR:
add \$1,$XX[0]#b
movzb ($dat,$XX[0]),$TX[0]#d
test \$-8,$len
jz .Lcloop1
jmp .Lcloop8
.align 16
.Lcloop8:
mov ($inp),%r8d
mov 4($inp),%r9d
___
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
for ($i=0;$i<4;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%r8b
ror \$8,%r8d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
for ($i=4;$i<8;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%r9b
ror \$8,%r9d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
lea -8($len),$len
mov %r8d,($out)
lea 8($inp),$inp
mov %r9d,4($out)
lea 8($out),$out
test \$-8,$len
jnz .Lcloop8
cmp \$0,$len
jne .Lcloop1
jmp .Lexit
___
$code.=<<___;
.align 16
.Lcloop1:
add $TX[0]#b,$YY#b
movzb $YY#b,$YY#d
movzb ($dat,$YY),$TY#d
movb $TX[0]#b,($dat,$YY)
movb $TY#b,($dat,$XX[0])
add $TX[0]#b,$TY#b
add \$1,$XX[0]#b
movzb $TY#b,$TY#d
movzb $XX[0]#b,$XX[0]#d
movzb ($dat,$TY),$TY#d
movzb ($dat,$XX[0]),$TX[0]#d
xorb ($inp),$TY#b
lea 1($inp),$inp
movb $TY#b,($out)
lea 1($out),$out
sub \$1,$len
jnz .Lcloop1
jmp .Lexit
.align 16
.Lexit:
sub \$1,$XX[0]#b
movl $XX[0]#d,-8($dat)
movl $YY#d,-4($dat)
mov (%rsp),%r13
mov 8(%rsp),%r12
mov 16(%rsp),%rbx
add \$24,%rsp
.Lepilogue:
ret
.size asm_RC4,.-asm_RC4
___
}
$idx="%r8";
$ido="%r9";
$code.=<<___;
.globl asm_RC4_set_key
.type asm_RC4_set_key,\@function,3
.align 16
asm_RC4_set_key:
lea 8($dat),$dat
lea ($inp,$len),$inp
neg $len
mov $len,%rcx
xor %eax,%eax
xor $ido,$ido
xor %r10,%r10
xor %r11,%r11
mov OPENSSL_ia32cap_P(%rip),$idx#d
bt \$20,$idx#d # RC4_CHAR?
jc .Lc1stloop
jmp .Lw1stloop
.align 16
.Lw1stloop:
mov %eax,($dat,%rax,4)
add \$1,%al
jnc .Lw1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lw2ndloop:
mov ($dat,$ido,4),%r10d
add ($inp,$len,1),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx,4),%r11d
cmovz %rcx,$len
mov %r10d,($dat,$idx,4)
mov %r11d,($dat,$ido,4)
add \$1,$ido#b
jnc .Lw2ndloop
jmp .Lexit_key
.align 16
.Lc1stloop:
mov %al,($dat,%rax)
add \$1,%al
jnc .Lc1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lc2ndloop:
mov ($dat,$ido),%r10b
add ($inp,$len),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx),%r11b
jnz .Lcnowrap
mov %rcx,$len
.Lcnowrap:
mov %r10b,($dat,$idx)
mov %r11b,($dat,$ido)
add \$1,$ido#b
jnc .Lc2ndloop
movl \$-1,256($dat)
.align 16
.Lexit_key:
xor %eax,%eax
mov %eax,-8($dat)
mov %eax,-4($dat)
ret
.size asm_RC4_set_key,.-asm_RC4_set_key
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type stream_se_handler,\@abi-omnipotent
.align 16
stream_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lprologue(%rip),%r10
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
lea .Lepilogue(%rip),%r10
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
lea 24(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%r12
mov -24(%rax),%r13
mov %rbx,144($context) # restore context->Rbx
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
jmp .Lcommon_seh_exit
.size stream_se_handler,.-stream_se_handler
.type key_se_handler,\@abi-omnipotent
.align 16
key_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 152($context),%rax # pull context->Rsp
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
.Lcommon_seh_exit:
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size key_se_handler,.-key_se_handler
.section .pdata
.align 4
.rva .LSEH_begin_asm_RC4
.rva .LSEH_end_asm_RC4
.rva .LSEH_info_asm_RC4
.rva .LSEH_begin_asm_RC4_set_key
.rva .LSEH_end_asm_RC4_set_key
.rva .LSEH_info_asm_RC4_set_key
.section .xdata
.align 8
.LSEH_info_asm_RC4:
.byte 9,0,0,0
.rva stream_se_handler
.LSEH_info_asm_RC4_set_key:
.byte 9,0,0,0
.rva key_se_handler
___
}
sub reg_part {
my ($reg,$conv)=@_;
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
return $reg;
}
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;