You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4163 lines
154 KiB

  1. /* Copyright (c) 2014, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. #include <stdio.h>
  15. #include <string.h>
  16. #include <time.h>
  17. #include <algorithm>
  18. #include <string>
  19. #include <utility>
  20. #include <vector>
  21. #include <gtest/gtest.h>
  22. #include <openssl/base64.h>
  23. #include <openssl/bio.h>
  24. #include <openssl/cipher.h>
  25. #include <openssl/crypto.h>
  26. #include <openssl/err.h>
  27. #include <openssl/hmac.h>
  28. #include <openssl/pem.h>
  29. #include <openssl/sha.h>
  30. #include <openssl/ssl.h>
  31. #include <openssl/rand.h>
  32. #include <openssl/x509.h>
  33. #include "internal.h"
  34. #include "../crypto/internal.h"
  35. #include "../crypto/test/test_util.h"
  36. #if defined(OPENSSL_WINDOWS)
  37. // Windows defines struct timeval in winsock2.h.
  38. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  39. #include <winsock2.h>
  40. OPENSSL_MSVC_PRAGMA(warning(pop))
  41. #else
  42. #include <sys/time.h>
  43. #endif
  44. namespace bssl {
  45. namespace {
  46. #define TRACED_CALL(code) \
  47. do { \
  48. SCOPED_TRACE("<- called from here"); \
  49. code; \
  50. if (::testing::Test::HasFatalFailure()) { \
  51. return; \
  52. } \
  53. } while (false)
  54. struct VersionParam {
  55. uint16_t version;
  56. enum { is_tls, is_dtls } ssl_method;
  57. const char name[8];
  58. };
  59. static const size_t kTicketKeyLen = 48;
  60. static const VersionParam kAllVersions[] = {
  61. {TLS1_VERSION, VersionParam::is_tls, "TLS1"},
  62. {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"},
  63. {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"},
  64. {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"},
  65. {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"},
  66. {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"},
  67. };
  68. struct ExpectedCipher {
  69. unsigned long id;
  70. int in_group_flag;
  71. };
  72. struct CipherTest {
  73. // The rule string to apply.
  74. const char *rule;
  75. // The list of expected ciphers, in order.
  76. std::vector<ExpectedCipher> expected;
  77. // True if this cipher list should fail in strict mode.
  78. bool strict_fail;
  79. };
  80. struct CurveTest {
  81. // The rule string to apply.
  82. const char *rule;
  83. // The list of expected curves, in order.
  84. std::vector<uint16_t> expected;
  85. };
  86. static const CipherTest kCipherTests[] = {
  87. // Selecting individual ciphers should work.
  88. {
  89. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  90. "ECDHE-RSA-CHACHA20-POLY1305:"
  91. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  92. "ECDHE-RSA-AES128-GCM-SHA256",
  93. {
  94. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  95. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  96. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  97. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  98. },
  99. false,
  100. },
  101. // + reorders selected ciphers to the end, keeping their relative order.
  102. {
  103. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  104. "ECDHE-RSA-CHACHA20-POLY1305:"
  105. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  106. "ECDHE-RSA-AES128-GCM-SHA256:"
  107. "+aRSA",
  108. {
  109. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  110. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  111. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  112. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  113. },
  114. false,
  115. },
  116. // ! banishes ciphers from future selections.
  117. {
  118. "!aRSA:"
  119. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  120. "ECDHE-RSA-CHACHA20-POLY1305:"
  121. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  122. "ECDHE-RSA-AES128-GCM-SHA256",
  123. {
  124. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  125. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  126. },
  127. false,
  128. },
  129. // Multiple masks can be ANDed in a single rule.
  130. {
  131. "kRSA+AESGCM+AES128",
  132. {
  133. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  134. },
  135. false,
  136. },
  137. // - removes selected ciphers, but preserves their order for future
  138. // selections. Select AES_128_GCM, but order the key exchanges RSA,
  139. // ECDHE_RSA.
  140. {
  141. "ALL:-kECDHE:"
  142. "-kRSA:-ALL:"
  143. "AESGCM+AES128+aRSA",
  144. {
  145. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  146. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  147. },
  148. false,
  149. },
  150. // Unknown selectors are no-ops, except in strict mode.
  151. {
  152. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  153. "ECDHE-RSA-CHACHA20-POLY1305:"
  154. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  155. "ECDHE-RSA-AES128-GCM-SHA256:"
  156. "BOGUS1",
  157. {
  158. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  159. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  160. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  161. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  162. },
  163. true,
  164. },
  165. // Unknown selectors are no-ops, except in strict mode.
  166. {
  167. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  168. "ECDHE-RSA-CHACHA20-POLY1305:"
  169. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  170. "ECDHE-RSA-AES128-GCM-SHA256:"
  171. "-BOGUS2:+BOGUS3:!BOGUS4",
  172. {
  173. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  174. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  175. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  176. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  177. },
  178. true,
  179. },
  180. // Square brackets specify equi-preference groups.
  181. {
  182. "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:"
  183. "[ECDHE-RSA-CHACHA20-POLY1305]:"
  184. "ECDHE-RSA-AES128-GCM-SHA256",
  185. {
  186. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  187. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  188. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  189. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  190. },
  191. false,
  192. },
  193. // Standard names may be used instead of OpenSSL names.
  194. {
  195. "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|"
  196. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:"
  197. "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:"
  198. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  199. {
  200. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  201. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  202. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  203. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  204. },
  205. false,
  206. },
  207. // @STRENGTH performs a stable strength-sort of the selected ciphers and
  208. // only the selected ciphers.
  209. {
  210. // To simplify things, banish all but {ECDHE_RSA,RSA} x
  211. // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1.
  212. "!AESGCM:!3DES:"
  213. // Order some ciphers backwards by strength.
  214. "ALL:-CHACHA20:-AES256:-AES128:-ALL:"
  215. // Select ECDHE ones and sort them by strength. Ties should resolve
  216. // based on the order above.
  217. "kECDHE:@STRENGTH:-ALL:"
  218. // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted
  219. // by strength. Then RSA, backwards by strength.
  220. "aRSA",
  221. {
  222. {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0},
  223. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  224. {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0},
  225. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  226. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  227. },
  228. false,
  229. },
  230. // Additional masks after @STRENGTH get silently discarded.
  231. //
  232. // TODO(davidben): Make this an error. If not silently discarded, they get
  233. // interpreted as + opcodes which are very different.
  234. {
  235. "ECDHE-RSA-AES128-GCM-SHA256:"
  236. "ECDHE-RSA-AES256-GCM-SHA384:"
  237. "@STRENGTH+AES256",
  238. {
  239. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  240. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  241. },
  242. false,
  243. },
  244. {
  245. "ECDHE-RSA-AES128-GCM-SHA256:"
  246. "ECDHE-RSA-AES256-GCM-SHA384:"
  247. "@STRENGTH+AES256:"
  248. "ECDHE-RSA-CHACHA20-POLY1305",
  249. {
  250. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  251. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  252. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  253. },
  254. false,
  255. },
  256. // Exact ciphers may not be used in multi-part rules; they are treated
  257. // as unknown aliases.
  258. {
  259. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  260. "ECDHE-RSA-AES128-GCM-SHA256:"
  261. "!ECDHE-RSA-AES128-GCM-SHA256+RSA:"
  262. "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256",
  263. {
  264. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  265. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  266. },
  267. true,
  268. },
  269. // SSLv3 matches everything that existed before TLS 1.2.
  270. {
  271. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3",
  272. {
  273. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  274. },
  275. false,
  276. },
  277. // TLSv1.2 matches everything added in TLS 1.2.
  278. {
  279. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2",
  280. {
  281. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  282. },
  283. false,
  284. },
  285. // The two directives have no intersection. But each component is valid, so
  286. // even in strict mode it is accepted.
  287. {
  288. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3",
  289. {
  290. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  291. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  292. },
  293. false,
  294. },
  295. // Spaces, semi-colons and commas are separators.
  296. {
  297. "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256",
  298. {
  299. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  300. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  301. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  302. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  303. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  304. },
  305. // …but not in strict mode.
  306. true,
  307. },
  308. };
  309. static const char *kBadRules[] = {
  310. // Invalid brackets.
  311. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256",
  312. "RSA]",
  313. "[[RSA]]",
  314. // Operators inside brackets.
  315. "[+RSA]",
  316. // Unknown directive.
  317. "@BOGUS",
  318. // Empty cipher lists error at SSL_CTX_set_cipher_list.
  319. "",
  320. "BOGUS",
  321. // COMPLEMENTOFDEFAULT is empty.
  322. "COMPLEMENTOFDEFAULT",
  323. // Invalid command.
  324. "?BAR",
  325. // Special operators are not allowed if groups are used.
  326. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO",
  327. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO",
  328. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO",
  329. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH",
  330. // Opcode supplied, but missing selector.
  331. "+",
  332. // Spaces are forbidden in equal-preference groups.
  333. "[AES128-SHA | AES128-SHA256]",
  334. };
  335. static const char *kMustNotIncludeNull[] = {
  336. "ALL",
  337. "DEFAULT",
  338. "HIGH",
  339. "FIPS",
  340. "SHA",
  341. "SHA1",
  342. "RSA",
  343. "SSLv3",
  344. "TLSv1",
  345. "TLSv1.2",
  346. };
  347. static const CurveTest kCurveTests[] = {
  348. {
  349. "P-256",
  350. { SSL_CURVE_SECP256R1 },
  351. },
  352. {
  353. "P-256:P-384:P-521:X25519",
  354. {
  355. SSL_CURVE_SECP256R1,
  356. SSL_CURVE_SECP384R1,
  357. SSL_CURVE_SECP521R1,
  358. SSL_CURVE_X25519,
  359. },
  360. },
  361. {
  362. "prime256v1:secp384r1:secp521r1:x25519",
  363. {
  364. SSL_CURVE_SECP256R1,
  365. SSL_CURVE_SECP384R1,
  366. SSL_CURVE_SECP521R1,
  367. SSL_CURVE_X25519,
  368. },
  369. },
  370. };
  371. static const char *kBadCurvesLists[] = {
  372. "",
  373. ":",
  374. "::",
  375. "P-256::X25519",
  376. "RSA:P-256",
  377. "P-256:RSA",
  378. "X25519:P-256:",
  379. ":X25519:P-256",
  380. };
  381. static std::string CipherListToString(SSL_CTX *ctx) {
  382. bool in_group = false;
  383. std::string ret;
  384. const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
  385. for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
  386. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
  387. if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) {
  388. ret += "\t[\n";
  389. in_group = true;
  390. }
  391. ret += "\t";
  392. if (in_group) {
  393. ret += " ";
  394. }
  395. ret += SSL_CIPHER_get_name(cipher);
  396. ret += "\n";
  397. if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) {
  398. ret += "\t]\n";
  399. in_group = false;
  400. }
  401. }
  402. return ret;
  403. }
  404. static bool CipherListsEqual(SSL_CTX *ctx,
  405. const std::vector<ExpectedCipher> &expected) {
  406. const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
  407. if (sk_SSL_CIPHER_num(ciphers) != expected.size()) {
  408. return false;
  409. }
  410. for (size_t i = 0; i < expected.size(); i++) {
  411. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
  412. if (expected[i].id != SSL_CIPHER_get_id(cipher) ||
  413. expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) {
  414. return false;
  415. }
  416. }
  417. return true;
  418. }
  419. TEST(SSLTest, CipherRules) {
  420. for (const CipherTest &t : kCipherTests) {
  421. SCOPED_TRACE(t.rule);
  422. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  423. ASSERT_TRUE(ctx);
  424. // Test lax mode.
  425. ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule));
  426. EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
  427. << "Cipher rule evaluated to:\n"
  428. << CipherListToString(ctx.get());
  429. // Test strict mode.
  430. if (t.strict_fail) {
  431. EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  432. } else {
  433. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  434. EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
  435. << "Cipher rule evaluated to:\n"
  436. << CipherListToString(ctx.get());
  437. }
  438. }
  439. for (const char *rule : kBadRules) {
  440. SCOPED_TRACE(rule);
  441. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  442. ASSERT_TRUE(ctx);
  443. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule));
  444. ERR_clear_error();
  445. }
  446. for (const char *rule : kMustNotIncludeNull) {
  447. SCOPED_TRACE(rule);
  448. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  449. ASSERT_TRUE(ctx);
  450. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule));
  451. for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) {
  452. EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher));
  453. }
  454. }
  455. }
  456. TEST(SSLTest, CurveRules) {
  457. for (const CurveTest &t : kCurveTests) {
  458. SCOPED_TRACE(t.rule);
  459. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  460. ASSERT_TRUE(ctx);
  461. ASSERT_TRUE(SSL_CTX_set1_curves_list(ctx.get(), t.rule));
  462. ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size());
  463. for (size_t i = 0; i < t.expected.size(); i++) {
  464. EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]);
  465. }
  466. }
  467. for (const char *rule : kBadCurvesLists) {
  468. SCOPED_TRACE(rule);
  469. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  470. ASSERT_TRUE(ctx);
  471. EXPECT_FALSE(SSL_CTX_set1_curves_list(ctx.get(), rule));
  472. ERR_clear_error();
  473. }
  474. }
  475. // kOpenSSLSession is a serialized SSL_SESSION.
  476. static const char kOpenSSLSession[] =
  477. "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  478. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  479. "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ"
  480. "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  481. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4"
  482. "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  483. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  484. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  485. "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6"
  486. "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e"
  487. "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu"
  488. "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh"
  489. "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg"
  490. "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd"
  491. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  492. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  493. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  494. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ"
  495. "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  496. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  497. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa"
  498. "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal"
  499. "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf"
  500. "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St"
  501. "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z"
  502. "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm"
  503. "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S"
  504. "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B"
  505. "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE"
  506. "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA"
  507. "i4gv7Y5oliyntgMBAQA=";
  508. // kCustomSession is a custom serialized SSL_SESSION generated by
  509. // filling in missing fields from |kOpenSSLSession|. This includes
  510. // providing |peer_sha256|, so |peer| is not serialized.
  511. static const char kCustomSession[] =
  512. "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  513. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  514. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB"
  515. "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38"
  516. "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd"
  517. "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg"
  518. "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG"
  519. "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  520. // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client.
  521. static const char kBoringSSLSession[] =
  522. "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R"
  523. "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf"
  524. "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ"
  525. "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  526. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy"
  527. "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  528. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  529. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  530. "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo"
  531. "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU"
  532. "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce"
  533. "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/"
  534. "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL"
  535. "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd"
  536. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  537. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  538. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  539. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG"
  540. "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  541. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  542. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb"
  543. "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE"
  544. "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd"
  545. "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+"
  546. "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a"
  547. "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y"
  548. "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH"
  549. "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH"
  550. "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s"
  551. "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE"
  552. "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC"
  553. "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL"
  554. "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds"
  555. "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw"
  556. "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG"
  557. "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE"
  558. "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB"
  559. "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np"
  560. "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If"
  561. "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S"
  562. "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531"
  563. "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn"
  564. "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF"
  565. "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB"
  566. "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB"
  567. "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v"
  568. "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA"
  569. "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK"
  570. "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j"
  571. "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S"
  572. "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+"
  573. "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl"
  574. "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi"
  575. "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95"
  576. "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh"
  577. "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT"
  578. "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i"
  579. "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG"
  580. "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy"
  581. "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB"
  582. "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP"
  583. "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv"
  584. "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE"
  585. "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ"
  586. "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC"
  587. "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7"
  588. "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD"
  589. "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov"
  590. "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig"
  591. "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ"
  592. "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+"
  593. "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI"
  594. "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI"
  595. "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X"
  596. "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm"
  597. "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40"
  598. "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG"
  599. "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg"
  600. "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0"
  601. "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ"
  602. "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP"
  603. "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI"
  604. "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t"
  605. "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN"
  606. "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3"
  607. "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE"
  608. "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW"
  609. "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9"
  610. "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw"
  611. "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j"
  612. "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3"
  613. "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF"
  614. "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV"
  615. "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D"
  616. "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg==";
  617. // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing
  618. // the final (optional) element of |kCustomSession| with tag number 30.
  619. static const char kBadSessionExtraField[] =
  620. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  621. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  622. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  623. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  624. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  625. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  626. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  627. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBL4DBAEF";
  628. // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing
  629. // the version of |kCustomSession| with 2.
  630. static const char kBadSessionVersion[] =
  631. "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  632. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  633. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  634. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  635. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  636. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  637. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  638. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  639. // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data
  640. // appended.
  641. static const char kBadSessionTrailingData[] =
  642. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  643. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  644. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  645. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  646. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  647. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  648. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  649. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA";
  650. static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) {
  651. size_t len;
  652. if (!EVP_DecodedLength(&len, strlen(in))) {
  653. fprintf(stderr, "EVP_DecodedLength failed\n");
  654. return false;
  655. }
  656. out->resize(len);
  657. if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in,
  658. strlen(in))) {
  659. fprintf(stderr, "EVP_DecodeBase64 failed\n");
  660. return false;
  661. }
  662. out->resize(len);
  663. return true;
  664. }
  665. static bool TestSSL_SESSIONEncoding(const char *input_b64) {
  666. const uint8_t *cptr;
  667. uint8_t *ptr;
  668. // Decode the input.
  669. std::vector<uint8_t> input;
  670. if (!DecodeBase64(&input, input_b64)) {
  671. return false;
  672. }
  673. // Verify the SSL_SESSION decodes.
  674. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  675. if (!ssl_ctx) {
  676. return false;
  677. }
  678. bssl::UniquePtr<SSL_SESSION> session(
  679. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  680. if (!session) {
  681. fprintf(stderr, "SSL_SESSION_from_bytes failed\n");
  682. return false;
  683. }
  684. // Verify the SSL_SESSION encoding round-trips.
  685. size_t encoded_len;
  686. bssl::UniquePtr<uint8_t> encoded;
  687. uint8_t *encoded_raw;
  688. if (!SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) {
  689. fprintf(stderr, "SSL_SESSION_to_bytes failed\n");
  690. return false;
  691. }
  692. encoded.reset(encoded_raw);
  693. if (encoded_len != input.size() ||
  694. OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  695. fprintf(stderr, "SSL_SESSION_to_bytes did not round-trip\n");
  696. hexdump(stderr, "Before: ", input.data(), input.size());
  697. hexdump(stderr, "After: ", encoded_raw, encoded_len);
  698. return false;
  699. }
  700. // Verify the SSL_SESSION also decodes with the legacy API.
  701. cptr = input.data();
  702. session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size()));
  703. if (!session || cptr != input.data() + input.size()) {
  704. fprintf(stderr, "d2i_SSL_SESSION failed\n");
  705. return false;
  706. }
  707. // Verify the SSL_SESSION encoding round-trips via the legacy API.
  708. int len = i2d_SSL_SESSION(session.get(), NULL);
  709. if (len < 0 || (size_t)len != input.size()) {
  710. fprintf(stderr, "i2d_SSL_SESSION(NULL) returned invalid length\n");
  711. return false;
  712. }
  713. encoded.reset((uint8_t *)OPENSSL_malloc(input.size()));
  714. if (!encoded) {
  715. fprintf(stderr, "malloc failed\n");
  716. return false;
  717. }
  718. ptr = encoded.get();
  719. len = i2d_SSL_SESSION(session.get(), &ptr);
  720. if (len < 0 || (size_t)len != input.size()) {
  721. fprintf(stderr, "i2d_SSL_SESSION returned invalid length\n");
  722. return false;
  723. }
  724. if (ptr != encoded.get() + input.size()) {
  725. fprintf(stderr, "i2d_SSL_SESSION did not advance ptr correctly\n");
  726. return false;
  727. }
  728. if (OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  729. fprintf(stderr, "i2d_SSL_SESSION did not round-trip\n");
  730. return false;
  731. }
  732. return true;
  733. }
  734. static bool TestBadSSL_SESSIONEncoding(const char *input_b64) {
  735. std::vector<uint8_t> input;
  736. if (!DecodeBase64(&input, input_b64)) {
  737. return false;
  738. }
  739. // Verify that the SSL_SESSION fails to decode.
  740. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  741. if (!ssl_ctx) {
  742. return false;
  743. }
  744. bssl::UniquePtr<SSL_SESSION> session(
  745. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  746. if (session) {
  747. fprintf(stderr, "SSL_SESSION_from_bytes unexpectedly succeeded\n");
  748. return false;
  749. }
  750. ERR_clear_error();
  751. return true;
  752. }
  753. static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version,
  754. const SSL_METHOD *(*method)(void)) {
  755. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method()));
  756. ASSERT_TRUE(ctx);
  757. EXPECT_EQ(min_version, ctx->conf_min_version);
  758. EXPECT_EQ(max_version, ctx->conf_max_version);
  759. }
  760. TEST(SSLTest, DefaultVersion) {
  761. // TODO(svaldez): Update this when TLS 1.3 is enabled by default.
  762. ExpectDefaultVersion(TLS1_VERSION, TLS1_2_VERSION, &TLS_method);
  763. ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method);
  764. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method);
  765. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method);
  766. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_2_VERSION, &DTLS_method);
  767. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &DTLSv1_method);
  768. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &DTLSv1_2_method);
  769. }
  770. TEST(SSLTest, CipherProperties) {
  771. static const struct {
  772. int id;
  773. const char *standard_name;
  774. int cipher_nid;
  775. int digest_nid;
  776. int kx_nid;
  777. int auth_nid;
  778. int prf_nid;
  779. } kTests[] = {
  780. {
  781. SSL3_CK_RSA_DES_192_CBC3_SHA,
  782. "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
  783. NID_des_ede3_cbc,
  784. NID_sha1,
  785. NID_kx_rsa,
  786. NID_auth_rsa,
  787. NID_md5_sha1,
  788. },
  789. {
  790. TLS1_CK_RSA_WITH_AES_128_SHA,
  791. "TLS_RSA_WITH_AES_128_CBC_SHA",
  792. NID_aes_128_cbc,
  793. NID_sha1,
  794. NID_kx_rsa,
  795. NID_auth_rsa,
  796. NID_md5_sha1,
  797. },
  798. {
  799. TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
  800. "TLS_PSK_WITH_AES_256_CBC_SHA",
  801. NID_aes_256_cbc,
  802. NID_sha1,
  803. NID_kx_psk,
  804. NID_auth_psk,
  805. NID_md5_sha1,
  806. },
  807. {
  808. TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
  809. "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
  810. NID_aes_128_cbc,
  811. NID_sha1,
  812. NID_kx_ecdhe,
  813. NID_auth_rsa,
  814. NID_md5_sha1,
  815. },
  816. {
  817. TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
  818. "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
  819. NID_aes_256_cbc,
  820. NID_sha1,
  821. NID_kx_ecdhe,
  822. NID_auth_rsa,
  823. NID_md5_sha1,
  824. },
  825. {
  826. TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  827. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  828. NID_aes_128_gcm,
  829. NID_undef,
  830. NID_kx_ecdhe,
  831. NID_auth_rsa,
  832. NID_sha256,
  833. },
  834. {
  835. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  836. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
  837. NID_aes_128_gcm,
  838. NID_undef,
  839. NID_kx_ecdhe,
  840. NID_auth_ecdsa,
  841. NID_sha256,
  842. },
  843. {
  844. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  845. "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
  846. NID_aes_256_gcm,
  847. NID_undef,
  848. NID_kx_ecdhe,
  849. NID_auth_ecdsa,
  850. NID_sha384,
  851. },
  852. {
  853. TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
  854. "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
  855. NID_aes_128_cbc,
  856. NID_sha1,
  857. NID_kx_ecdhe,
  858. NID_auth_psk,
  859. NID_md5_sha1,
  860. },
  861. {
  862. TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
  863. "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
  864. NID_chacha20_poly1305,
  865. NID_undef,
  866. NID_kx_ecdhe,
  867. NID_auth_rsa,
  868. NID_sha256,
  869. },
  870. {
  871. TLS1_CK_AES_256_GCM_SHA384,
  872. "TLS_AES_256_GCM_SHA384",
  873. NID_aes_256_gcm,
  874. NID_undef,
  875. NID_kx_any,
  876. NID_auth_any,
  877. NID_sha384,
  878. },
  879. {
  880. TLS1_CK_AES_128_GCM_SHA256,
  881. "TLS_AES_128_GCM_SHA256",
  882. NID_aes_128_gcm,
  883. NID_undef,
  884. NID_kx_any,
  885. NID_auth_any,
  886. NID_sha256,
  887. },
  888. {
  889. TLS1_CK_CHACHA20_POLY1305_SHA256,
  890. "TLS_CHACHA20_POLY1305_SHA256",
  891. NID_chacha20_poly1305,
  892. NID_undef,
  893. NID_kx_any,
  894. NID_auth_any,
  895. NID_sha256,
  896. },
  897. };
  898. for (const auto &t : kTests) {
  899. SCOPED_TRACE(t.standard_name);
  900. const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff);
  901. ASSERT_TRUE(cipher);
  902. EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher));
  903. bssl::UniquePtr<char> rfc_name(SSL_CIPHER_get_rfc_name(cipher));
  904. ASSERT_TRUE(rfc_name);
  905. EXPECT_STREQ(t.standard_name, rfc_name.get());
  906. EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher));
  907. EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher));
  908. EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher));
  909. EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher));
  910. EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher));
  911. }
  912. }
  913. // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified
  914. // version and ticket length or nullptr on failure.
  915. static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version,
  916. size_t ticket_len) {
  917. std::vector<uint8_t> der;
  918. if (!DecodeBase64(&der, kOpenSSLSession)) {
  919. return nullptr;
  920. }
  921. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  922. if (!ssl_ctx) {
  923. return nullptr;
  924. }
  925. // Use a garbage ticket.
  926. std::vector<uint8_t> ticket(ticket_len, 'a');
  927. bssl::UniquePtr<SSL_SESSION> session(
  928. SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get()));
  929. if (!session ||
  930. !SSL_SESSION_set_protocol_version(session.get(), version) ||
  931. !SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) {
  932. return nullptr;
  933. }
  934. // Fix up the timeout.
  935. #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
  936. SSL_SESSION_set_time(session.get(), 1234);
  937. #else
  938. SSL_SESSION_set_time(session.get(), time(nullptr));
  939. #endif
  940. return session;
  941. }
  942. static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) {
  943. bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
  944. if (!bio) {
  945. return false;
  946. }
  947. // Do not configure a reading BIO, but record what's written to a memory BIO.
  948. BIO_up_ref(bio.get());
  949. SSL_set_bio(ssl, nullptr /* rbio */, bio.get());
  950. int ret = SSL_connect(ssl);
  951. if (ret > 0) {
  952. // SSL_connect should fail without a BIO to write to.
  953. return false;
  954. }
  955. ERR_clear_error();
  956. const uint8_t *client_hello;
  957. size_t client_hello_len;
  958. if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) {
  959. return false;
  960. }
  961. *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len);
  962. return true;
  963. }
  964. // GetClientHelloLen creates a client SSL connection with the specified version
  965. // and ticket length. It returns the length of the ClientHello, not including
  966. // the record header, on success and zero on error.
  967. static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version,
  968. size_t ticket_len) {
  969. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  970. bssl::UniquePtr<SSL_SESSION> session =
  971. CreateSessionWithTicket(session_version, ticket_len);
  972. if (!ctx || !session) {
  973. return 0;
  974. }
  975. // Set a one-element cipher list so the baseline ClientHello is unpadded.
  976. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  977. if (!ssl || !SSL_set_session(ssl.get(), session.get()) ||
  978. !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") ||
  979. !SSL_set_max_proto_version(ssl.get(), max_version)) {
  980. return 0;
  981. }
  982. std::vector<uint8_t> client_hello;
  983. if (!GetClientHello(ssl.get(), &client_hello) ||
  984. client_hello.size() <= SSL3_RT_HEADER_LENGTH) {
  985. return 0;
  986. }
  987. return client_hello.size() - SSL3_RT_HEADER_LENGTH;
  988. }
  989. struct PaddingTest {
  990. size_t input_len, padded_len;
  991. };
  992. static const PaddingTest kPaddingTests[] = {
  993. // ClientHellos of length below 0x100 do not require padding.
  994. {0xfe, 0xfe},
  995. {0xff, 0xff},
  996. // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200.
  997. {0x100, 0x200},
  998. {0x123, 0x200},
  999. {0x1fb, 0x200},
  1000. // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The
  1001. // padding extension takes a minimum of four bytes plus one required content
  1002. // byte. (To work around yet more server bugs, we avoid empty final
  1003. // extensions.)
  1004. {0x1fc, 0x201},
  1005. {0x1fd, 0x202},
  1006. {0x1fe, 0x203},
  1007. {0x1ff, 0x204},
  1008. // Finally, larger ClientHellos need no padding.
  1009. {0x200, 0x200},
  1010. {0x201, 0x201},
  1011. };
  1012. static bool TestPaddingExtension(uint16_t max_version,
  1013. uint16_t session_version) {
  1014. // Sample a baseline length.
  1015. size_t base_len = GetClientHelloLen(max_version, session_version, 1);
  1016. if (base_len == 0) {
  1017. return false;
  1018. }
  1019. for (const PaddingTest &test : kPaddingTests) {
  1020. if (base_len > test.input_len) {
  1021. fprintf(stderr,
  1022. "Baseline ClientHello too long (max_version = %04x, "
  1023. "session_version = %04x).\n",
  1024. max_version, session_version);
  1025. return false;
  1026. }
  1027. size_t padded_len = GetClientHelloLen(max_version, session_version,
  1028. 1 + test.input_len - base_len);
  1029. if (padded_len != test.padded_len) {
  1030. fprintf(stderr,
  1031. "%u-byte ClientHello padded to %u bytes, not %u (max_version = "
  1032. "%04x, session_version = %04x).\n",
  1033. static_cast<unsigned>(test.input_len),
  1034. static_cast<unsigned>(padded_len),
  1035. static_cast<unsigned>(test.padded_len), max_version,
  1036. session_version);
  1037. return false;
  1038. }
  1039. }
  1040. return true;
  1041. }
  1042. static bssl::UniquePtr<X509> GetTestCertificate() {
  1043. static const char kCertPEM[] =
  1044. "-----BEGIN CERTIFICATE-----\n"
  1045. "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n"
  1046. "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n"
  1047. "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n"
  1048. "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n"
  1049. "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n"
  1050. "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n"
  1051. "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n"
  1052. "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n"
  1053. "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n"
  1054. "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n"
  1055. "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n"
  1056. "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n"
  1057. "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n"
  1058. "-----END CERTIFICATE-----\n";
  1059. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1060. return bssl::UniquePtr<X509>(
  1061. PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1062. }
  1063. static bssl::UniquePtr<EVP_PKEY> GetTestKey() {
  1064. static const char kKeyPEM[] =
  1065. "-----BEGIN RSA PRIVATE KEY-----\n"
  1066. "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n"
  1067. "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n"
  1068. "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n"
  1069. "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n"
  1070. "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n"
  1071. "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n"
  1072. "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n"
  1073. "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n"
  1074. "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n"
  1075. "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n"
  1076. "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n"
  1077. "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n"
  1078. "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n"
  1079. "-----END RSA PRIVATE KEY-----\n";
  1080. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1081. return bssl::UniquePtr<EVP_PKEY>(
  1082. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1083. }
  1084. static bssl::UniquePtr<X509> GetECDSATestCertificate() {
  1085. static const char kCertPEM[] =
  1086. "-----BEGIN CERTIFICATE-----\n"
  1087. "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n"
  1088. "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n"
  1089. "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n"
  1090. "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n"
  1091. "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n"
  1092. "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n"
  1093. "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n"
  1094. "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n"
  1095. "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n"
  1096. "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n"
  1097. "-----END CERTIFICATE-----\n";
  1098. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1099. return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1100. }
  1101. static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() {
  1102. static const char kKeyPEM[] =
  1103. "-----BEGIN PRIVATE KEY-----\n"
  1104. "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n"
  1105. "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n"
  1106. "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n"
  1107. "-----END PRIVATE KEY-----\n";
  1108. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1109. return bssl::UniquePtr<EVP_PKEY>(
  1110. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1111. }
  1112. static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) {
  1113. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
  1114. char *name, *header;
  1115. uint8_t *data;
  1116. long data_len;
  1117. if (!PEM_read_bio(bio.get(), &name, &header, &data,
  1118. &data_len)) {
  1119. return nullptr;
  1120. }
  1121. OPENSSL_free(name);
  1122. OPENSSL_free(header);
  1123. auto ret = bssl::UniquePtr<CRYPTO_BUFFER>(
  1124. CRYPTO_BUFFER_new(data, data_len, nullptr));
  1125. OPENSSL_free(data);
  1126. return ret;
  1127. }
  1128. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() {
  1129. static const char kCertPEM[] =
  1130. "-----BEGIN CERTIFICATE-----\n"
  1131. "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n"
  1132. "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n"
  1133. "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n"
  1134. "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n"
  1135. "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n"
  1136. "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n"
  1137. "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n"
  1138. "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n"
  1139. "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n"
  1140. "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n"
  1141. "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n"
  1142. "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n"
  1143. "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n"
  1144. "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n"
  1145. "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n"
  1146. "1ngWZ7Ih\n"
  1147. "-----END CERTIFICATE-----\n";
  1148. return BufferFromPEM(kCertPEM);
  1149. }
  1150. static bssl::UniquePtr<X509> X509FromBuffer(
  1151. bssl::UniquePtr<CRYPTO_BUFFER> buffer) {
  1152. if (!buffer) {
  1153. return nullptr;
  1154. }
  1155. const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get());
  1156. return bssl::UniquePtr<X509>(
  1157. d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get())));
  1158. }
  1159. static bssl::UniquePtr<X509> GetChainTestCertificate() {
  1160. return X509FromBuffer(GetChainTestCertificateBuffer());
  1161. }
  1162. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() {
  1163. static const char kCertPEM[] =
  1164. "-----BEGIN CERTIFICATE-----\n"
  1165. "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n"
  1166. "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n"
  1167. "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n"
  1168. "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n"
  1169. "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n"
  1170. "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n"
  1171. "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n"
  1172. "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n"
  1173. "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n"
  1174. "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n"
  1175. "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n"
  1176. "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n"
  1177. "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n"
  1178. "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n"
  1179. "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n"
  1180. "-----END CERTIFICATE-----\n";
  1181. return BufferFromPEM(kCertPEM);
  1182. }
  1183. static bssl::UniquePtr<X509> GetChainTestIntermediate() {
  1184. return X509FromBuffer(GetChainTestIntermediateBuffer());
  1185. }
  1186. static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() {
  1187. static const char kKeyPEM[] =
  1188. "-----BEGIN PRIVATE KEY-----\n"
  1189. "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n"
  1190. "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n"
  1191. "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n"
  1192. "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n"
  1193. "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n"
  1194. "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n"
  1195. "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n"
  1196. "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n"
  1197. "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n"
  1198. "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n"
  1199. "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n"
  1200. "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n"
  1201. "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n"
  1202. "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n"
  1203. "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n"
  1204. "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n"
  1205. "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n"
  1206. "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n"
  1207. "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n"
  1208. "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n"
  1209. "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n"
  1210. "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n"
  1211. "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n"
  1212. "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n"
  1213. "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n"
  1214. "SxpiPQ8d/hmSGwn4ksrWUsJD\n"
  1215. "-----END PRIVATE KEY-----\n";
  1216. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1217. return bssl::UniquePtr<EVP_PKEY>(
  1218. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1219. }
  1220. // Test that |SSL_get_client_CA_list| echoes back the configured parameter even
  1221. // before configuring as a server.
  1222. TEST(SSLTest, ClientCAList) {
  1223. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1224. ASSERT_TRUE(ctx);
  1225. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1226. ASSERT_TRUE(ssl);
  1227. bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
  1228. ASSERT_TRUE(name);
  1229. bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get()));
  1230. ASSERT_TRUE(name_dup);
  1231. bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null());
  1232. ASSERT_TRUE(stack);
  1233. ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup)));
  1234. // |SSL_set_client_CA_list| takes ownership.
  1235. SSL_set_client_CA_list(ssl.get(), stack.release());
  1236. STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get());
  1237. ASSERT_TRUE(result);
  1238. ASSERT_EQ(1u, sk_X509_NAME_num(result));
  1239. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get()));
  1240. }
  1241. TEST(SSLTest, AddClientCA) {
  1242. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1243. ASSERT_TRUE(ctx);
  1244. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1245. ASSERT_TRUE(ssl);
  1246. bssl::UniquePtr<X509> cert1 = GetTestCertificate();
  1247. bssl::UniquePtr<X509> cert2 = GetChainTestCertificate();
  1248. ASSERT_TRUE(cert1 && cert2);
  1249. X509_NAME *name1 = X509_get_subject_name(cert1.get());
  1250. X509_NAME *name2 = X509_get_subject_name(cert2.get());
  1251. EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get())));
  1252. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
  1253. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get()));
  1254. STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get());
  1255. ASSERT_EQ(2u, sk_X509_NAME_num(list));
  1256. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
  1257. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
  1258. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
  1259. list = SSL_get_client_CA_list(ssl.get());
  1260. ASSERT_EQ(3u, sk_X509_NAME_num(list));
  1261. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
  1262. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
  1263. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1));
  1264. }
  1265. static void AppendSession(SSL_SESSION *session, void *arg) {
  1266. std::vector<SSL_SESSION*> *out =
  1267. reinterpret_cast<std::vector<SSL_SESSION*>*>(arg);
  1268. out->push_back(session);
  1269. }
  1270. // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in
  1271. // order.
  1272. static bool CacheEquals(SSL_CTX *ctx,
  1273. const std::vector<SSL_SESSION*> &expected) {
  1274. // Check the linked list.
  1275. SSL_SESSION *ptr = ctx->session_cache_head;
  1276. for (SSL_SESSION *session : expected) {
  1277. if (ptr != session) {
  1278. return false;
  1279. }
  1280. // TODO(davidben): This is an absurd way to denote the end of the list.
  1281. if (ptr->next ==
  1282. reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) {
  1283. ptr = nullptr;
  1284. } else {
  1285. ptr = ptr->next;
  1286. }
  1287. }
  1288. if (ptr != nullptr) {
  1289. return false;
  1290. }
  1291. // Check the hash table.
  1292. std::vector<SSL_SESSION*> actual, expected_copy;
  1293. lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual);
  1294. expected_copy = expected;
  1295. std::sort(actual.begin(), actual.end());
  1296. std::sort(expected_copy.begin(), expected_copy.end());
  1297. return actual == expected_copy;
  1298. }
  1299. static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) {
  1300. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  1301. if (!ssl_ctx) {
  1302. return nullptr;
  1303. }
  1304. bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get()));
  1305. if (!ret) {
  1306. return nullptr;
  1307. }
  1308. uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0};
  1309. OPENSSL_memcpy(id, &number, sizeof(number));
  1310. if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) {
  1311. return nullptr;
  1312. }
  1313. return ret;
  1314. }
  1315. // Test that the internal session cache behaves as expected.
  1316. TEST(SSLTest, InternalSessionCache) {
  1317. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1318. ASSERT_TRUE(ctx);
  1319. // Prepare 10 test sessions.
  1320. std::vector<bssl::UniquePtr<SSL_SESSION>> sessions;
  1321. for (int i = 0; i < 10; i++) {
  1322. bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i);
  1323. ASSERT_TRUE(session);
  1324. sessions.push_back(std::move(session));
  1325. }
  1326. SSL_CTX_sess_set_cache_size(ctx.get(), 5);
  1327. // Insert all the test sessions.
  1328. for (const auto &session : sessions) {
  1329. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get()));
  1330. }
  1331. // Only the last five should be in the list.
  1332. ASSERT_TRUE(CacheEquals(
  1333. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  1334. sessions[6].get(), sessions[5].get()}));
  1335. // Inserting an element already in the cache should fail and leave the cache
  1336. // unchanged.
  1337. ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get()));
  1338. ASSERT_TRUE(CacheEquals(
  1339. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  1340. sessions[6].get(), sessions[5].get()}));
  1341. // Although collisions should be impossible (256-bit session IDs), the cache
  1342. // must handle them gracefully.
  1343. bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7));
  1344. ASSERT_TRUE(collision);
  1345. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get()));
  1346. ASSERT_TRUE(CacheEquals(
  1347. ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(),
  1348. sessions[6].get(), sessions[5].get()}));
  1349. // Removing sessions behaves correctly.
  1350. ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get()));
  1351. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1352. sessions[8].get(), sessions[5].get()}));
  1353. // Removing sessions requires an exact match.
  1354. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get()));
  1355. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get()));
  1356. // The cache remains unchanged.
  1357. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1358. sessions[8].get(), sessions[5].get()}));
  1359. }
  1360. static uint16_t EpochFromSequence(uint64_t seq) {
  1361. return static_cast<uint16_t>(seq >> 48);
  1362. }
  1363. static const uint8_t kTestName[] = {
  1364. 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
  1365. 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08,
  1366. 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65,
  1367. 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49,
  1368. 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67,
  1369. 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64,
  1370. };
  1371. static bool CompleteHandshakes(SSL *client, SSL *server) {
  1372. // Drive both their handshakes to completion.
  1373. for (;;) {
  1374. int client_ret = SSL_do_handshake(client);
  1375. int client_err = SSL_get_error(client, client_ret);
  1376. if (client_err != SSL_ERROR_NONE &&
  1377. client_err != SSL_ERROR_WANT_READ &&
  1378. client_err != SSL_ERROR_WANT_WRITE &&
  1379. client_err != SSL_ERROR_PENDING_TICKET) {
  1380. fprintf(stderr, "Client error: %d\n", client_err);
  1381. return false;
  1382. }
  1383. int server_ret = SSL_do_handshake(server);
  1384. int server_err = SSL_get_error(server, server_ret);
  1385. if (server_err != SSL_ERROR_NONE &&
  1386. server_err != SSL_ERROR_WANT_READ &&
  1387. server_err != SSL_ERROR_WANT_WRITE &&
  1388. server_err != SSL_ERROR_PENDING_TICKET) {
  1389. fprintf(stderr, "Server error: %d\n", server_err);
  1390. return false;
  1391. }
  1392. if (client_ret == 1 && server_ret == 1) {
  1393. break;
  1394. }
  1395. }
  1396. return true;
  1397. }
  1398. struct ClientConfig {
  1399. SSL_SESSION *session = nullptr;
  1400. std::string servername;
  1401. };
  1402. static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client,
  1403. bssl::UniquePtr<SSL> *out_server,
  1404. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1405. const ClientConfig &config = ClientConfig(),
  1406. bool do_handshake = true,
  1407. bool shed_handshake_config = true) {
  1408. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  1409. if (!client || !server) {
  1410. return false;
  1411. }
  1412. SSL_set_connect_state(client.get());
  1413. SSL_set_accept_state(server.get());
  1414. if (config.session) {
  1415. SSL_set_session(client.get(), config.session);
  1416. }
  1417. if (!config.servername.empty() &&
  1418. !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) {
  1419. return false;
  1420. }
  1421. BIO *bio1, *bio2;
  1422. if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) {
  1423. return false;
  1424. }
  1425. // SSL_set_bio takes ownership.
  1426. SSL_set_bio(client.get(), bio1, bio1);
  1427. SSL_set_bio(server.get(), bio2, bio2);
  1428. SSL_set_shed_handshake_config(client.get(), shed_handshake_config);
  1429. SSL_set_shed_handshake_config(server.get(), shed_handshake_config);
  1430. if (do_handshake && !CompleteHandshakes(client.get(), server.get())) {
  1431. return false;
  1432. }
  1433. *out_client = std::move(client);
  1434. *out_server = std::move(server);
  1435. return true;
  1436. }
  1437. // SSLVersionTest executes its test cases under all available protocol versions.
  1438. // Test cases call |Connect| to create a connection using context objects with
  1439. // the protocol version fixed to the current version under test.
  1440. class SSLVersionTest : public ::testing::TestWithParam<VersionParam> {
  1441. protected:
  1442. SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {}
  1443. void SetUp() { ResetContexts(); }
  1444. bssl::UniquePtr<SSL_CTX> CreateContext() const {
  1445. const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method();
  1446. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  1447. if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) ||
  1448. !SSL_CTX_set_max_proto_version(ctx.get(), version())) {
  1449. return nullptr;
  1450. }
  1451. return ctx;
  1452. }
  1453. void ResetContexts() {
  1454. ASSERT_TRUE(cert_);
  1455. ASSERT_TRUE(key_);
  1456. client_ctx_ = CreateContext();
  1457. ASSERT_TRUE(client_ctx_);
  1458. server_ctx_ = CreateContext();
  1459. ASSERT_TRUE(server_ctx_);
  1460. // Set up a server cert. Client certs can be set up explicitly.
  1461. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  1462. }
  1463. bool UseCertAndKey(SSL_CTX *ctx) const {
  1464. return SSL_CTX_use_certificate(ctx, cert_.get()) &&
  1465. SSL_CTX_use_PrivateKey(ctx, key_.get());
  1466. }
  1467. bool Connect(const ClientConfig &config = ClientConfig()) {
  1468. return ConnectClientAndServer(&client_, &server_, client_ctx_.get(),
  1469. server_ctx_.get(), config, true,
  1470. shed_handshake_config_);
  1471. }
  1472. uint16_t version() const { return GetParam().version; }
  1473. bool is_dtls() const {
  1474. return GetParam().ssl_method == VersionParam::is_dtls;
  1475. }
  1476. bool shed_handshake_config_ = true;
  1477. bssl::UniquePtr<SSL> client_, server_;
  1478. bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_;
  1479. bssl::UniquePtr<X509> cert_;
  1480. bssl::UniquePtr<EVP_PKEY> key_;
  1481. };
  1482. INSTANTIATE_TEST_CASE_P(WithVersion, SSLVersionTest,
  1483. testing::ValuesIn(kAllVersions),
  1484. [](const testing::TestParamInfo<VersionParam> &i) {
  1485. return i.param.name;
  1486. });
  1487. TEST_P(SSLVersionTest, SequenceNumber) {
  1488. ASSERT_TRUE(Connect());
  1489. // Drain any post-handshake messages to ensure there are no unread records
  1490. // on either end.
  1491. uint8_t byte = 0;
  1492. ASSERT_LE(SSL_read(client_.get(), &byte, 1), 0);
  1493. ASSERT_LE(SSL_read(server_.get(), &byte, 1), 0);
  1494. uint64_t client_read_seq = SSL_get_read_sequence(client_.get());
  1495. uint64_t client_write_seq = SSL_get_write_sequence(client_.get());
  1496. uint64_t server_read_seq = SSL_get_read_sequence(server_.get());
  1497. uint64_t server_write_seq = SSL_get_write_sequence(server_.get());
  1498. if (is_dtls()) {
  1499. // Both client and server must be at epoch 1.
  1500. EXPECT_EQ(EpochFromSequence(client_read_seq), 1);
  1501. EXPECT_EQ(EpochFromSequence(client_write_seq), 1);
  1502. EXPECT_EQ(EpochFromSequence(server_read_seq), 1);
  1503. EXPECT_EQ(EpochFromSequence(server_write_seq), 1);
  1504. // The next record to be written should exceed the largest received.
  1505. EXPECT_GT(client_write_seq, server_read_seq);
  1506. EXPECT_GT(server_write_seq, client_read_seq);
  1507. } else {
  1508. // The next record to be written should equal the next to be received.
  1509. EXPECT_EQ(client_write_seq, server_read_seq);
  1510. EXPECT_EQ(server_write_seq, client_read_seq);
  1511. }
  1512. // Send a record from client to server.
  1513. EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1);
  1514. EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1);
  1515. // The client write and server read sequence numbers should have
  1516. // incremented.
  1517. EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get()));
  1518. EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get()));
  1519. }
  1520. TEST_P(SSLVersionTest, OneSidedShutdown) {
  1521. // SSL_shutdown is a no-op in DTLS.
  1522. if (is_dtls()) {
  1523. return;
  1524. }
  1525. ASSERT_TRUE(Connect());
  1526. // Shut down half the connection. SSL_shutdown will return 0 to signal only
  1527. // one side has shut down.
  1528. ASSERT_EQ(SSL_shutdown(client_.get()), 0);
  1529. // Reading from the server should consume the EOF.
  1530. uint8_t byte;
  1531. ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0);
  1532. ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN);
  1533. // However, the server may continue to write data and then shut down the
  1534. // connection.
  1535. byte = 42;
  1536. ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1);
  1537. ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1);
  1538. ASSERT_EQ(byte, 42);
  1539. // The server may then shutdown the connection.
  1540. EXPECT_EQ(SSL_shutdown(server_.get()), 1);
  1541. EXPECT_EQ(SSL_shutdown(client_.get()), 1);
  1542. }
  1543. TEST(SSLTest, SessionDuplication) {
  1544. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  1545. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  1546. ASSERT_TRUE(client_ctx);
  1547. ASSERT_TRUE(server_ctx);
  1548. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1549. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1550. ASSERT_TRUE(cert);
  1551. ASSERT_TRUE(key);
  1552. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  1553. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  1554. bssl::UniquePtr<SSL> client, server;
  1555. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  1556. server_ctx.get()));
  1557. SSL_SESSION *session0 = SSL_get_session(client.get());
  1558. bssl::UniquePtr<SSL_SESSION> session1 =
  1559. bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL);
  1560. ASSERT_TRUE(session1);
  1561. session1->not_resumable = false;
  1562. uint8_t *s0_bytes, *s1_bytes;
  1563. size_t s0_len, s1_len;
  1564. ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len));
  1565. bssl::UniquePtr<uint8_t> free_s0(s0_bytes);
  1566. ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len));
  1567. bssl::UniquePtr<uint8_t> free_s1(s1_bytes);
  1568. EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len));
  1569. }
  1570. static void ExpectFDs(const SSL *ssl, int rfd, int wfd) {
  1571. EXPECT_EQ(rfd, SSL_get_fd(ssl));
  1572. EXPECT_EQ(rfd, SSL_get_rfd(ssl));
  1573. EXPECT_EQ(wfd, SSL_get_wfd(ssl));
  1574. // The wrapper BIOs are always equal when fds are equal, even if set
  1575. // individually.
  1576. if (rfd == wfd) {
  1577. EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl));
  1578. }
  1579. }
  1580. TEST(SSLTest, SetFD) {
  1581. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1582. ASSERT_TRUE(ctx);
  1583. // Test setting different read and write FDs.
  1584. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1585. ASSERT_TRUE(ssl);
  1586. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1587. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1588. ExpectFDs(ssl.get(), 1, 2);
  1589. // Test setting the same FD.
  1590. ssl.reset(SSL_new(ctx.get()));
  1591. ASSERT_TRUE(ssl);
  1592. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1593. ExpectFDs(ssl.get(), 1, 1);
  1594. // Test setting the same FD one side at a time.
  1595. ssl.reset(SSL_new(ctx.get()));
  1596. ASSERT_TRUE(ssl);
  1597. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1598. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1599. ExpectFDs(ssl.get(), 1, 1);
  1600. // Test setting the same FD in the other order.
  1601. ssl.reset(SSL_new(ctx.get()));
  1602. ASSERT_TRUE(ssl);
  1603. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1604. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1605. ExpectFDs(ssl.get(), 1, 1);
  1606. // Test changing the read FD partway through.
  1607. ssl.reset(SSL_new(ctx.get()));
  1608. ASSERT_TRUE(ssl);
  1609. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1610. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2));
  1611. ExpectFDs(ssl.get(), 2, 1);
  1612. // Test changing the write FD partway through.
  1613. ssl.reset(SSL_new(ctx.get()));
  1614. ASSERT_TRUE(ssl);
  1615. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1616. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1617. ExpectFDs(ssl.get(), 1, 2);
  1618. // Test a no-op change to the read FD partway through.
  1619. ssl.reset(SSL_new(ctx.get()));
  1620. ASSERT_TRUE(ssl);
  1621. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1622. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1623. ExpectFDs(ssl.get(), 1, 1);
  1624. // Test a no-op change to the write FD partway through.
  1625. ssl.reset(SSL_new(ctx.get()));
  1626. ASSERT_TRUE(ssl);
  1627. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1628. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1629. ExpectFDs(ssl.get(), 1, 1);
  1630. // ASan builds will implicitly test that the internal |BIO| reference-counting
  1631. // is correct.
  1632. }
  1633. TEST(SSLTest, SetBIO) {
  1634. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1635. ASSERT_TRUE(ctx);
  1636. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1637. bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())),
  1638. bio3(BIO_new(BIO_s_mem()));
  1639. ASSERT_TRUE(ssl);
  1640. ASSERT_TRUE(bio1);
  1641. ASSERT_TRUE(bio2);
  1642. ASSERT_TRUE(bio3);
  1643. // SSL_set_bio takes one reference when the parameters are the same.
  1644. BIO_up_ref(bio1.get());
  1645. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1646. // Repeating the call does nothing.
  1647. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1648. // It takes one reference each when the parameters are different.
  1649. BIO_up_ref(bio2.get());
  1650. BIO_up_ref(bio3.get());
  1651. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1652. // Repeating the call does nothing.
  1653. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1654. // It takes one reference when changing only wbio.
  1655. BIO_up_ref(bio1.get());
  1656. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1657. // It takes one reference when changing only rbio and the two are different.
  1658. BIO_up_ref(bio3.get());
  1659. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1660. // If setting wbio to rbio, it takes no additional references.
  1661. SSL_set_bio(ssl.get(), bio3.get(), bio3.get());
  1662. // From there, wbio may be switched to something else.
  1663. BIO_up_ref(bio1.get());
  1664. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1665. // If setting rbio to wbio, it takes no additional references.
  1666. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1667. // From there, rbio may be switched to something else, but, for historical
  1668. // reasons, it takes a reference to both parameters.
  1669. BIO_up_ref(bio1.get());
  1670. BIO_up_ref(bio2.get());
  1671. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1672. // ASAN builds will implicitly test that the internal |BIO| reference-counting
  1673. // is correct.
  1674. }
  1675. static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; }
  1676. TEST_P(SSLVersionTest, GetPeerCertificate) {
  1677. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  1678. // Configure both client and server to accept any certificate.
  1679. SSL_CTX_set_verify(client_ctx_.get(),
  1680. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1681. nullptr);
  1682. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1683. SSL_CTX_set_verify(server_ctx_.get(),
  1684. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1685. nullptr);
  1686. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1687. ASSERT_TRUE(Connect());
  1688. // Client and server should both see the leaf certificate.
  1689. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1690. ASSERT_TRUE(peer);
  1691. ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
  1692. peer.reset(SSL_get_peer_certificate(client_.get()));
  1693. ASSERT_TRUE(peer);
  1694. ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
  1695. // However, for historical reasons, the X509 chain includes the leaf on the
  1696. // client, but does not on the server.
  1697. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u);
  1698. EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())),
  1699. 1u);
  1700. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u);
  1701. EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())),
  1702. 1u);
  1703. }
  1704. TEST_P(SSLVersionTest, NoPeerCertificate) {
  1705. SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr);
  1706. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1707. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1708. ASSERT_TRUE(Connect());
  1709. // Server should not see a peer certificate.
  1710. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1711. ASSERT_FALSE(peer);
  1712. ASSERT_FALSE(SSL_get0_peer_certificates(server_.get()));
  1713. }
  1714. TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) {
  1715. uint8_t *cert_der = NULL;
  1716. int cert_der_len = i2d_X509(cert_.get(), &cert_der);
  1717. ASSERT_GE(cert_der_len, 0);
  1718. bssl::UniquePtr<uint8_t> free_cert_der(cert_der);
  1719. uint8_t cert_sha256[SHA256_DIGEST_LENGTH];
  1720. SHA256(cert_der, cert_der_len, cert_sha256);
  1721. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  1722. // Configure both client and server to accept any certificate, but the
  1723. // server must retain only the SHA-256 of the peer.
  1724. SSL_CTX_set_verify(client_ctx_.get(),
  1725. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1726. nullptr);
  1727. SSL_CTX_set_verify(server_ctx_.get(),
  1728. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1729. nullptr);
  1730. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1731. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1732. SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1);
  1733. ASSERT_TRUE(Connect());
  1734. // The peer certificate has been dropped.
  1735. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1736. EXPECT_FALSE(peer);
  1737. SSL_SESSION *session = SSL_get_session(server_.get());
  1738. EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session));
  1739. const uint8_t *peer_sha256;
  1740. size_t peer_sha256_len;
  1741. SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len);
  1742. EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len));
  1743. }
  1744. // Tests that our ClientHellos do not change unexpectedly. These are purely
  1745. // change detection tests. If they fail as part of an intentional ClientHello
  1746. // change, update the test vector.
  1747. TEST(SSLTest, ClientHello) {
  1748. struct {
  1749. uint16_t max_version;
  1750. std::vector<uint8_t> expected;
  1751. } kTests[] = {
  1752. {TLS1_VERSION,
  1753. {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x01, 0x00,
  1754. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1755. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1756. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
  1757. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
  1758. 0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1759. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1760. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18}},
  1761. {TLS1_1_VERSION,
  1762. {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x02, 0x00,
  1763. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1764. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1765. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
  1766. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
  1767. 0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1768. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1769. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18}},
  1770. {TLS1_2_VERSION,
  1771. {0x16, 0x03, 0x01, 0x00, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x00,
  1772. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1773. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1774. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0xcc, 0xa9,
  1775. 0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09,
  1776. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f,
  1777. 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0xff, 0x01, 0x00, 0x01,
  1778. 0x00, 0x00, 0x17, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
  1779. 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
  1780. 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x00, 0x0b, 0x00,
  1781. 0x02, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00,
  1782. 0x17, 0x00, 0x18}},
  1783. // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our
  1784. // implementation has settled enough that it won't change.
  1785. };
  1786. for (const auto &t : kTests) {
  1787. SCOPED_TRACE(t.max_version);
  1788. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1789. ASSERT_TRUE(ctx);
  1790. // Our default cipher list varies by CPU capabilities, so manually place the
  1791. // ChaCha20 ciphers in front.
  1792. const char *cipher_list = "CHACHA20:ALL";
  1793. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version));
  1794. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list));
  1795. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1796. ASSERT_TRUE(ssl);
  1797. std::vector<uint8_t> client_hello;
  1798. ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello));
  1799. // Zero the client_random.
  1800. constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header
  1801. 1 + 3 + // handshake message header
  1802. 2; // client_version
  1803. ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE);
  1804. OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE);
  1805. if (client_hello != t.expected) {
  1806. ADD_FAILURE() << "ClientHellos did not match.";
  1807. // Print the value manually so it is easier to update the test vector.
  1808. for (size_t i = 0; i < client_hello.size(); i += 12) {
  1809. printf(" %c", i == 0 ? '{' : ' ');
  1810. for (size_t j = i; j < client_hello.size() && j < i + 12; j++) {
  1811. if (j > i) {
  1812. printf(" ");
  1813. }
  1814. printf("0x%02x", client_hello[j]);
  1815. if (j < client_hello.size() - 1) {
  1816. printf(",");
  1817. }
  1818. }
  1819. if (i + 12 >= client_hello.size()) {
  1820. printf("}}");
  1821. }
  1822. printf("\n");
  1823. }
  1824. }
  1825. }
  1826. }
  1827. static bssl::UniquePtr<SSL_SESSION> g_last_session;
  1828. static int SaveLastSession(SSL *ssl, SSL_SESSION *session) {
  1829. // Save the most recent session.
  1830. g_last_session.reset(session);
  1831. return 1;
  1832. }
  1833. static bssl::UniquePtr<SSL_SESSION> CreateClientSession(
  1834. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1835. const ClientConfig &config = ClientConfig()) {
  1836. g_last_session = nullptr;
  1837. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1838. // Connect client and server to get a session.
  1839. bssl::UniquePtr<SSL> client, server;
  1840. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1841. config)) {
  1842. fprintf(stderr, "Failed to connect client and server.\n");
  1843. return nullptr;
  1844. }
  1845. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1846. SSL_read(client.get(), nullptr, 0);
  1847. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1848. if (!g_last_session) {
  1849. fprintf(stderr, "Client did not receive a session.\n");
  1850. return nullptr;
  1851. }
  1852. return std::move(g_last_session);
  1853. }
  1854. static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1855. SSL_SESSION *session, bool want_reused) {
  1856. bssl::UniquePtr<SSL> client, server;
  1857. ClientConfig config;
  1858. config.session = session;
  1859. EXPECT_TRUE(
  1860. ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config));
  1861. EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get()));
  1862. bool was_reused = !!SSL_session_reused(client.get());
  1863. EXPECT_EQ(was_reused, want_reused);
  1864. }
  1865. static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx,
  1866. SSL_CTX *server_ctx,
  1867. SSL_SESSION *session) {
  1868. g_last_session = nullptr;
  1869. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1870. bssl::UniquePtr<SSL> client, server;
  1871. ClientConfig config;
  1872. config.session = session;
  1873. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1874. config)) {
  1875. fprintf(stderr, "Failed to connect client and server.\n");
  1876. return nullptr;
  1877. }
  1878. if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
  1879. fprintf(stderr, "Client and server were inconsistent.\n");
  1880. return nullptr;
  1881. }
  1882. if (!SSL_session_reused(client.get())) {
  1883. fprintf(stderr, "Session was not reused.\n");
  1884. return nullptr;
  1885. }
  1886. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1887. SSL_read(client.get(), nullptr, 0);
  1888. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1889. if (!g_last_session) {
  1890. fprintf(stderr, "Client did not receive a renewed session.\n");
  1891. return nullptr;
  1892. }
  1893. return std::move(g_last_session);
  1894. }
  1895. static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key,
  1896. bool changed) {
  1897. uint8_t new_key[kTicketKeyLen];
  1898. // May return 0, 1 or 48.
  1899. ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1);
  1900. if (changed) {
  1901. ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
  1902. } else {
  1903. ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
  1904. }
  1905. OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen);
  1906. }
  1907. static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) {
  1908. static const uint8_t kContext[] = {3};
  1909. if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) {
  1910. return SSL_TLSEXT_ERR_ALERT_FATAL;
  1911. }
  1912. return SSL_TLSEXT_ERR_OK;
  1913. }
  1914. TEST_P(SSLVersionTest, SessionIDContext) {
  1915. static const uint8_t kContext1[] = {1};
  1916. static const uint8_t kContext2[] = {2};
  1917. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
  1918. sizeof(kContext1)));
  1919. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  1920. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  1921. bssl::UniquePtr<SSL_SESSION> session =
  1922. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  1923. ASSERT_TRUE(session);
  1924. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1925. session.get(),
  1926. true /* expect session reused */));
  1927. // Change the session ID context.
  1928. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2,
  1929. sizeof(kContext2)));
  1930. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1931. session.get(),
  1932. false /* expect session not reused */));
  1933. // Change the session ID context back and install an SNI callback to switch
  1934. // it.
  1935. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
  1936. sizeof(kContext1)));
  1937. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(),
  1938. SwitchSessionIDContextSNI);
  1939. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1940. session.get(),
  1941. false /* expect session not reused */));
  1942. // Switch the session ID context with the early callback instead.
  1943. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr);
  1944. SSL_CTX_set_select_certificate_cb(
  1945. server_ctx_.get(),
  1946. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  1947. static const uint8_t kContext[] = {3};
  1948. if (!SSL_set_session_id_context(client_hello->ssl, kContext,
  1949. sizeof(kContext))) {
  1950. return ssl_select_cert_error;
  1951. }
  1952. return ssl_select_cert_success;
  1953. });
  1954. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1955. session.get(),
  1956. false /* expect session not reused */));
  1957. }
  1958. static timeval g_current_time;
  1959. static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
  1960. *out_clock = g_current_time;
  1961. }
  1962. static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) {
  1963. out_clock->tv_sec = 1000;
  1964. out_clock->tv_usec = 0;
  1965. }
  1966. static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
  1967. EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
  1968. int encrypt) {
  1969. static const uint8_t kZeros[16] = {0};
  1970. if (encrypt) {
  1971. OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
  1972. RAND_bytes(iv, 16);
  1973. } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
  1974. return 0;
  1975. }
  1976. if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
  1977. !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
  1978. return -1;
  1979. }
  1980. // Returning two from the callback in decrypt mode renews the
  1981. // session in TLS 1.2 and below.
  1982. return encrypt ? 1 : 2;
  1983. }
  1984. static bool GetServerTicketTime(long *out, const SSL_SESSION *session) {
  1985. const uint8_t *ticket;
  1986. size_t ticket_len;
  1987. SSL_SESSION_get0_ticket(session, &ticket, &ticket_len);
  1988. if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) {
  1989. return false;
  1990. }
  1991. const uint8_t *ciphertext = ticket + 16 + 16;
  1992. size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH;
  1993. std::unique_ptr<uint8_t[]> plaintext(new uint8_t[len]);
  1994. #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
  1995. // Fuzzer-mode tickets are unencrypted.
  1996. OPENSSL_memcpy(plaintext.get(), ciphertext, len);
  1997. #else
  1998. static const uint8_t kZeros[16] = {0};
  1999. const uint8_t *iv = ticket + 16;
  2000. bssl::ScopedEVP_CIPHER_CTX ctx;
  2001. int len1, len2;
  2002. if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) ||
  2003. !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) ||
  2004. !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) {
  2005. return false;
  2006. }
  2007. len = static_cast<size_t>(len1 + len2);
  2008. #endif
  2009. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  2010. if (!ssl_ctx) {
  2011. return false;
  2012. }
  2013. bssl::UniquePtr<SSL_SESSION> server_session(
  2014. SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get()));
  2015. if (!server_session) {
  2016. return false;
  2017. }
  2018. *out = SSL_SESSION_get_time(server_session.get());
  2019. return true;
  2020. }
  2021. TEST_P(SSLVersionTest, SessionTimeout) {
  2022. for (bool server_test : {false, true}) {
  2023. SCOPED_TRACE(server_test);
  2024. ResetContexts();
  2025. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2026. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2027. static const time_t kStartTime = 1000;
  2028. g_current_time.tv_sec = kStartTime;
  2029. // We are willing to use a longer lifetime for TLS 1.3 sessions as
  2030. // resumptions still perform ECDHE.
  2031. const time_t timeout = version() == TLS1_3_VERSION
  2032. ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT
  2033. : SSL_DEFAULT_SESSION_TIMEOUT;
  2034. // Both client and server must enforce session timeouts. We configure the
  2035. // other side with a frozen clock so it never expires tickets.
  2036. if (server_test) {
  2037. SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
  2038. SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
  2039. } else {
  2040. SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback);
  2041. SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback);
  2042. }
  2043. // Configure a ticket callback which renews tickets.
  2044. SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback);
  2045. bssl::UniquePtr<SSL_SESSION> session =
  2046. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2047. ASSERT_TRUE(session);
  2048. // Advance the clock just behind the timeout.
  2049. g_current_time.tv_sec += timeout - 1;
  2050. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2051. session.get(),
  2052. true /* expect session reused */));
  2053. // Advance the clock one more second.
  2054. g_current_time.tv_sec++;
  2055. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2056. session.get(),
  2057. false /* expect session not reused */));
  2058. // Rewind the clock to before the session was minted.
  2059. g_current_time.tv_sec = kStartTime - 1;
  2060. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2061. session.get(),
  2062. false /* expect session not reused */));
  2063. // Renew the session 10 seconds before expiration.
  2064. time_t new_start_time = kStartTime + timeout - 10;
  2065. g_current_time.tv_sec = new_start_time;
  2066. bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed(
  2067. client_ctx_.get(), server_ctx_.get(), session.get());
  2068. ASSERT_TRUE(new_session);
  2069. // This new session is not the same object as before.
  2070. EXPECT_NE(session.get(), new_session.get());
  2071. // Check the sessions have timestamps measured from issuance.
  2072. long session_time = 0;
  2073. if (server_test) {
  2074. ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get()));
  2075. } else {
  2076. session_time = SSL_SESSION_get_time(new_session.get());
  2077. }
  2078. ASSERT_EQ(session_time, g_current_time.tv_sec);
  2079. if (version() == TLS1_3_VERSION) {
  2080. // Renewal incorporates fresh key material in TLS 1.3, so we extend the
  2081. // lifetime TLS 1.3.
  2082. g_current_time.tv_sec = new_start_time + timeout - 1;
  2083. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2084. new_session.get(),
  2085. true /* expect session reused */));
  2086. // The new session expires after the new timeout.
  2087. g_current_time.tv_sec = new_start_time + timeout + 1;
  2088. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2089. new_session.get(),
  2090. false /* expect session ot reused */));
  2091. // Renew the session until it begins just past the auth timeout.
  2092. time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT;
  2093. while (new_start_time < auth_end_time - 1000) {
  2094. // Get as close as possible to target start time.
  2095. new_start_time =
  2096. std::min(auth_end_time - 1000, new_start_time + timeout - 1);
  2097. g_current_time.tv_sec = new_start_time;
  2098. new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(),
  2099. new_session.get());
  2100. ASSERT_TRUE(new_session);
  2101. }
  2102. // Now the session's lifetime is bound by the auth timeout.
  2103. g_current_time.tv_sec = auth_end_time - 1;
  2104. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2105. new_session.get(),
  2106. true /* expect session reused */));
  2107. g_current_time.tv_sec = auth_end_time + 1;
  2108. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2109. new_session.get(),
  2110. false /* expect session ot reused */));
  2111. } else {
  2112. // The new session is usable just before the old expiration.
  2113. g_current_time.tv_sec = kStartTime + timeout - 1;
  2114. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2115. new_session.get(),
  2116. true /* expect session reused */));
  2117. // Renewal does not extend the lifetime, so it is not usable beyond the
  2118. // old expiration.
  2119. g_current_time.tv_sec = kStartTime + timeout + 1;
  2120. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2121. new_session.get(),
  2122. false /* expect session not reused */));
  2123. }
  2124. }
  2125. }
  2126. TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) {
  2127. static const uint8_t kZeroKey[kTicketKeyLen] = {};
  2128. uint8_t ticket_key[kTicketKeyLen];
  2129. ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key,
  2130. kTicketKeyLen));
  2131. ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen));
  2132. }
  2133. TEST_P(SSLVersionTest, DefaultTicketKeyRotation) {
  2134. static const time_t kStartTime = 1001;
  2135. g_current_time.tv_sec = kStartTime;
  2136. uint8_t ticket_key[kTicketKeyLen];
  2137. // We use session reuse as a proxy for ticket decryption success, hence
  2138. // disable session timeouts.
  2139. SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max());
  2140. SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(),
  2141. std::numeric_limits<uint32_t>::max());
  2142. SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
  2143. SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
  2144. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2145. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF);
  2146. // Initialize ticket_key with the current key.
  2147. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2148. true /* changed */));
  2149. // Verify ticket resumption actually works.
  2150. bssl::UniquePtr<SSL> client, server;
  2151. bssl::UniquePtr<SSL_SESSION> session =
  2152. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2153. ASSERT_TRUE(session);
  2154. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2155. session.get(), true /* reused */));
  2156. // Advance time to just before key rotation.
  2157. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1;
  2158. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2159. session.get(), true /* reused */));
  2160. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2161. false /* NOT changed */));
  2162. // Force key rotation.
  2163. g_current_time.tv_sec += 1;
  2164. bssl::UniquePtr<SSL_SESSION> new_session =
  2165. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2166. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2167. true /* changed */));
  2168. // Resumption with both old and new ticket should work.
  2169. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2170. session.get(), true /* reused */));
  2171. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2172. new_session.get(), true /* reused */));
  2173. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2174. false /* NOT changed */));
  2175. // Force key rotation again. Resumption with the old ticket now fails.
  2176. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL;
  2177. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2178. session.get(), false /* NOT reused */));
  2179. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2180. true /* changed */));
  2181. // But resumption with the newer session still works.
  2182. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2183. new_session.get(), true /* reused */));
  2184. }
  2185. static int SwitchContext(SSL *ssl, int *out_alert, void *arg) {
  2186. SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg);
  2187. SSL_set_SSL_CTX(ssl, ctx);
  2188. return SSL_TLSEXT_ERR_OK;
  2189. }
  2190. TEST_P(SSLVersionTest, SNICallback) {
  2191. bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate();
  2192. ASSERT_TRUE(cert2);
  2193. bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey();
  2194. ASSERT_TRUE(key2);
  2195. // Test that switching the |SSL_CTX| at the SNI callback behaves correctly.
  2196. static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256;
  2197. static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8};
  2198. static const uint8_t kOCSPResponse[] = {1, 2, 3, 4};
  2199. bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
  2200. ASSERT_TRUE(server_ctx2);
  2201. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get()));
  2202. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get()));
  2203. ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list(
  2204. server_ctx2.get(), kSCTList, sizeof(kSCTList)));
  2205. ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse,
  2206. sizeof(kOCSPResponse)));
  2207. // Historically signing preferences would be lost in some cases with the
  2208. // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure
  2209. // this doesn't happen when |version| is TLS 1.2, configure the private
  2210. // key to only sign SHA-256.
  2211. ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(),
  2212. &kECDSAWithSHA256, 1));
  2213. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext);
  2214. SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get());
  2215. SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get());
  2216. SSL_CTX_enable_ocsp_stapling(client_ctx_.get());
  2217. ASSERT_TRUE(Connect());
  2218. // The client should have received |cert2|.
  2219. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get()));
  2220. ASSERT_TRUE(peer);
  2221. EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0);
  2222. // The client should have received |server_ctx2|'s SCT list.
  2223. const uint8_t *data;
  2224. size_t len;
  2225. SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len);
  2226. EXPECT_EQ(Bytes(kSCTList), Bytes(data, len));
  2227. // The client should have received |server_ctx2|'s OCSP response.
  2228. SSL_get0_ocsp_response(client_.get(), &data, &len);
  2229. EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len));
  2230. }
  2231. // Test that the early callback can swap the maximum version.
  2232. TEST(SSLTest, EarlyCallbackVersionSwitch) {
  2233. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2234. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2235. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  2236. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  2237. ASSERT_TRUE(cert);
  2238. ASSERT_TRUE(key);
  2239. ASSERT_TRUE(server_ctx);
  2240. ASSERT_TRUE(client_ctx);
  2241. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  2242. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  2243. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  2244. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  2245. SSL_CTX_set_select_certificate_cb(
  2246. server_ctx.get(),
  2247. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  2248. if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) {
  2249. return ssl_select_cert_error;
  2250. }
  2251. return ssl_select_cert_success;
  2252. });
  2253. bssl::UniquePtr<SSL> client, server;
  2254. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2255. server_ctx.get()));
  2256. EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get()));
  2257. }
  2258. TEST(SSLTest, SetVersion) {
  2259. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2260. ASSERT_TRUE(ctx);
  2261. // Set valid TLS versions.
  2262. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2263. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  2264. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2265. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION));
  2266. // Invalid TLS versions are rejected.
  2267. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2268. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200));
  2269. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2270. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2271. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200));
  2272. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2273. // Zero is the default version.
  2274. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2275. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2276. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2277. EXPECT_EQ(TLS1_VERSION, ctx->conf_min_version);
  2278. // TLS 1.3 is available, but not by default.
  2279. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  2280. EXPECT_EQ(TLS1_3_VERSION, ctx->conf_max_version);
  2281. // SSL 3.0 is not available.
  2282. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION));
  2283. // TLS1_3_DRAFT_VERSION is not an API-level version.
  2284. EXPECT_FALSE(
  2285. SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_DRAFT23_VERSION));
  2286. ERR_clear_error();
  2287. ctx.reset(SSL_CTX_new(DTLS_method()));
  2288. ASSERT_TRUE(ctx);
  2289. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2290. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION));
  2291. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2292. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION));
  2293. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2294. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2295. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2296. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2297. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2298. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2299. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2300. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2301. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2302. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2303. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2304. EXPECT_EQ(TLS1_1_VERSION, ctx->conf_min_version);
  2305. }
  2306. static const char *GetVersionName(uint16_t version) {
  2307. switch (version) {
  2308. case TLS1_VERSION:
  2309. return "TLSv1";
  2310. case TLS1_1_VERSION:
  2311. return "TLSv1.1";
  2312. case TLS1_2_VERSION:
  2313. return "TLSv1.2";
  2314. case TLS1_3_VERSION:
  2315. return "TLSv1.3";
  2316. case DTLS1_VERSION:
  2317. return "DTLSv1";
  2318. case DTLS1_2_VERSION:
  2319. return "DTLSv1.2";
  2320. default:
  2321. return "???";
  2322. }
  2323. }
  2324. TEST_P(SSLVersionTest, Version) {
  2325. ASSERT_TRUE(Connect());
  2326. EXPECT_EQ(SSL_version(client_.get()), version());
  2327. EXPECT_EQ(SSL_version(server_.get()), version());
  2328. // Test the version name is reported as expected.
  2329. const char *version_name = GetVersionName(version());
  2330. EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0);
  2331. EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0);
  2332. // Test SSL_SESSION reports the same name.
  2333. const char *client_name =
  2334. SSL_SESSION_get_version(SSL_get_session(client_.get()));
  2335. const char *server_name =
  2336. SSL_SESSION_get_version(SSL_get_session(server_.get()));
  2337. EXPECT_EQ(strcmp(version_name, client_name), 0);
  2338. EXPECT_EQ(strcmp(version_name, server_name), 0);
  2339. }
  2340. // Tests that that |SSL_get_pending_cipher| is available during the ALPN
  2341. // selection callback.
  2342. TEST_P(SSLVersionTest, ALPNCipherAvailable) {
  2343. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2344. static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
  2345. ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos,
  2346. sizeof(kALPNProtos)),
  2347. 0);
  2348. // The ALPN callback does not fail the handshake on error, so have the
  2349. // callback write a boolean.
  2350. std::pair<uint16_t, bool> callback_state(version(), false);
  2351. SSL_CTX_set_alpn_select_cb(
  2352. server_ctx_.get(),
  2353. [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
  2354. unsigned in_len, void *arg) -> int {
  2355. auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg);
  2356. if (SSL_get_pending_cipher(ssl) != nullptr &&
  2357. SSL_version(ssl) == state->first) {
  2358. state->second = true;
  2359. }
  2360. return SSL_TLSEXT_ERR_NOACK;
  2361. },
  2362. &callback_state);
  2363. ASSERT_TRUE(Connect());
  2364. ASSERT_TRUE(callback_state.second);
  2365. }
  2366. TEST_P(SSLVersionTest, SSLClearSessionResumption) {
  2367. // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this
  2368. // API pattern.
  2369. if (version() == TLS1_3_VERSION) {
  2370. return;
  2371. }
  2372. shed_handshake_config_ = false;
  2373. ASSERT_TRUE(Connect());
  2374. EXPECT_FALSE(SSL_session_reused(client_.get()));
  2375. EXPECT_FALSE(SSL_session_reused(server_.get()));
  2376. // Reset everything.
  2377. ASSERT_TRUE(SSL_clear(client_.get()));
  2378. ASSERT_TRUE(SSL_clear(server_.get()));
  2379. // Attempt to connect a second time.
  2380. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2381. // |SSL_clear| should implicitly offer the previous session to the server.
  2382. EXPECT_TRUE(SSL_session_reused(client_.get()));
  2383. EXPECT_TRUE(SSL_session_reused(server_.get()));
  2384. }
  2385. TEST_P(SSLVersionTest, SSLClearFailsWithShedding) {
  2386. shed_handshake_config_ = false;
  2387. ASSERT_TRUE(Connect());
  2388. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2389. // Reset everything.
  2390. ASSERT_TRUE(SSL_clear(client_.get()));
  2391. ASSERT_TRUE(SSL_clear(server_.get()));
  2392. // Now enable shedding, and connect a second time.
  2393. shed_handshake_config_ = true;
  2394. ASSERT_TRUE(Connect());
  2395. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2396. // |SSL_clear| should now fail.
  2397. ASSERT_FALSE(SSL_clear(client_.get()));
  2398. ASSERT_FALSE(SSL_clear(server_.get()));
  2399. }
  2400. static bool ChainsEqual(STACK_OF(X509) * chain,
  2401. const std::vector<X509 *> &expected) {
  2402. if (sk_X509_num(chain) != expected.size()) {
  2403. return false;
  2404. }
  2405. for (size_t i = 0; i < expected.size(); i++) {
  2406. if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) {
  2407. return false;
  2408. }
  2409. }
  2410. return true;
  2411. }
  2412. TEST_P(SSLVersionTest, AutoChain) {
  2413. cert_ = GetChainTestCertificate();
  2414. ASSERT_TRUE(cert_);
  2415. key_ = GetChainTestKey();
  2416. ASSERT_TRUE(key_);
  2417. bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
  2418. ASSERT_TRUE(intermediate);
  2419. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2420. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  2421. // Configure both client and server to accept any certificate. Add
  2422. // |intermediate| to the cert store.
  2423. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()),
  2424. intermediate.get()));
  2425. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()),
  2426. intermediate.get()));
  2427. SSL_CTX_set_verify(client_ctx_.get(),
  2428. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  2429. nullptr);
  2430. SSL_CTX_set_verify(server_ctx_.get(),
  2431. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  2432. nullptr);
  2433. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  2434. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  2435. // By default, the client and server should each only send the leaf.
  2436. ASSERT_TRUE(Connect());
  2437. EXPECT_TRUE(
  2438. ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()}));
  2439. EXPECT_TRUE(
  2440. ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()}));
  2441. // If auto-chaining is enabled, then the intermediate is sent.
  2442. SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
  2443. SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
  2444. ASSERT_TRUE(Connect());
  2445. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
  2446. {cert_.get(), intermediate.get()}));
  2447. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
  2448. {cert_.get(), intermediate.get()}));
  2449. // Auto-chaining does not override explicitly-configured intermediates.
  2450. ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get()));
  2451. ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get()));
  2452. ASSERT_TRUE(Connect());
  2453. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
  2454. {cert_.get(), cert_.get()}));
  2455. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
  2456. {cert_.get(), cert_.get()}));
  2457. }
  2458. static bool ExpectBadWriteRetry() {
  2459. int err = ERR_get_error();
  2460. if (ERR_GET_LIB(err) != ERR_LIB_SSL ||
  2461. ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) {
  2462. char buf[ERR_ERROR_STRING_BUF_LEN];
  2463. ERR_error_string_n(err, buf, sizeof(buf));
  2464. fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf);
  2465. return false;
  2466. }
  2467. if (ERR_peek_error() != 0) {
  2468. fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n");
  2469. return false;
  2470. }
  2471. return true;
  2472. }
  2473. TEST_P(SSLVersionTest, SSLWriteRetry) {
  2474. if (is_dtls()) {
  2475. return;
  2476. }
  2477. for (bool enable_partial_write : {false, true}) {
  2478. SCOPED_TRACE(enable_partial_write);
  2479. // Connect a client and server.
  2480. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2481. ASSERT_TRUE(Connect());
  2482. if (enable_partial_write) {
  2483. SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
  2484. }
  2485. // Write without reading until the buffer is full and we have an unfinished
  2486. // write. Keep a count so we may reread it again later. "hello!" will be
  2487. // written in two chunks, "hello" and "!".
  2488. char data[] = "hello!";
  2489. static const int kChunkLen = 5; // The length of "hello".
  2490. unsigned count = 0;
  2491. for (;;) {
  2492. int ret = SSL_write(client_.get(), data, kChunkLen);
  2493. if (ret <= 0) {
  2494. ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE);
  2495. break;
  2496. }
  2497. ASSERT_EQ(ret, 5);
  2498. count++;
  2499. }
  2500. // Retrying with the same parameters is legal.
  2501. ASSERT_EQ(
  2502. SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)),
  2503. SSL_ERROR_WANT_WRITE);
  2504. // Retrying with the same buffer but shorter length is not legal.
  2505. ASSERT_EQ(SSL_get_error(client_.get(),
  2506. SSL_write(client_.get(), data, kChunkLen - 1)),
  2507. SSL_ERROR_SSL);
  2508. ASSERT_TRUE(ExpectBadWriteRetry());
  2509. // Retrying with a different buffer pointer is not legal.
  2510. char data2[] = "hello";
  2511. ASSERT_EQ(SSL_get_error(client_.get(),
  2512. SSL_write(client_.get(), data2, kChunkLen)),
  2513. SSL_ERROR_SSL);
  2514. ASSERT_TRUE(ExpectBadWriteRetry());
  2515. // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move.
  2516. SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
  2517. ASSERT_EQ(SSL_get_error(client_.get(),
  2518. SSL_write(client_.get(), data2, kChunkLen)),
  2519. SSL_ERROR_WANT_WRITE);
  2520. // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks.
  2521. ASSERT_EQ(SSL_get_error(client_.get(),
  2522. SSL_write(client_.get(), data2, kChunkLen - 1)),
  2523. SSL_ERROR_SSL);
  2524. ASSERT_TRUE(ExpectBadWriteRetry());
  2525. // Retrying with a larger buffer is legal.
  2526. ASSERT_EQ(SSL_get_error(client_.get(),
  2527. SSL_write(client_.get(), data, kChunkLen + 1)),
  2528. SSL_ERROR_WANT_WRITE);
  2529. // Drain the buffer.
  2530. char buf[20];
  2531. for (unsigned i = 0; i < count; i++) {
  2532. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
  2533. ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
  2534. }
  2535. // Now that there is space, a retry with a larger buffer should flush the
  2536. // pending record, skip over that many bytes of input (on assumption they
  2537. // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE
  2538. // is set, this will complete in two steps.
  2539. char data3[] = "_____!";
  2540. if (enable_partial_write) {
  2541. ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen);
  2542. ASSERT_EQ(SSL_write(client_.get(), data3 + kChunkLen, 1), 1);
  2543. } else {
  2544. ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen + 1);
  2545. }
  2546. // Check the last write was correct. The data will be spread over two
  2547. // records, so SSL_read returns twice.
  2548. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
  2549. ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
  2550. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), 1);
  2551. ASSERT_EQ(buf[0], '!');
  2552. }
  2553. }
  2554. TEST_P(SSLVersionTest, RecordCallback) {
  2555. for (bool test_server : {true, false}) {
  2556. SCOPED_TRACE(test_server);
  2557. ResetContexts();
  2558. bool read_seen = false;
  2559. bool write_seen = false;
  2560. auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf,
  2561. size_t len, SSL *ssl) {
  2562. if (cb_type != SSL3_RT_HEADER) {
  2563. return;
  2564. }
  2565. // The callback does not report a version for records.
  2566. EXPECT_EQ(0, cb_version);
  2567. if (is_write) {
  2568. write_seen = true;
  2569. } else {
  2570. read_seen = true;
  2571. }
  2572. // Sanity-check that the record header is plausible.
  2573. CBS cbs;
  2574. CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len);
  2575. uint8_t type;
  2576. uint16_t record_version, length;
  2577. ASSERT_TRUE(CBS_get_u8(&cbs, &type));
  2578. ASSERT_TRUE(CBS_get_u16(&cbs, &record_version));
  2579. EXPECT_EQ(record_version & 0xff00, version() & 0xff00);
  2580. if (is_dtls()) {
  2581. uint16_t epoch;
  2582. ASSERT_TRUE(CBS_get_u16(&cbs, &epoch));
  2583. EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch;
  2584. ASSERT_TRUE(CBS_skip(&cbs, 6));
  2585. }
  2586. ASSERT_TRUE(CBS_get_u16(&cbs, &length));
  2587. EXPECT_EQ(0u, CBS_len(&cbs));
  2588. };
  2589. using CallbackType = decltype(cb);
  2590. SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get();
  2591. SSL_CTX_set_msg_callback(
  2592. ctx, [](int is_write, int cb_version, int cb_type, const void *buf,
  2593. size_t len, SSL *ssl, void *arg) {
  2594. CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg);
  2595. (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl);
  2596. });
  2597. SSL_CTX_set_msg_callback_arg(ctx, &cb);
  2598. ASSERT_TRUE(Connect());
  2599. EXPECT_TRUE(read_seen);
  2600. EXPECT_TRUE(write_seen);
  2601. }
  2602. }
  2603. TEST_P(SSLVersionTest, GetServerName) {
  2604. ClientConfig config;
  2605. config.servername = "host1";
  2606. SSL_CTX_set_tlsext_servername_callback(
  2607. server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int {
  2608. // During the handshake, |SSL_get_servername| must match |config|.
  2609. ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg);
  2610. EXPECT_STREQ(config_p->servername.c_str(),
  2611. SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name));
  2612. return SSL_TLSEXT_ERR_OK;
  2613. });
  2614. SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config);
  2615. ASSERT_TRUE(Connect(config));
  2616. // After the handshake, it must also be available.
  2617. EXPECT_STREQ(config.servername.c_str(),
  2618. SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
  2619. // Establish a session under host1.
  2620. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2621. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2622. bssl::UniquePtr<SSL_SESSION> session =
  2623. CreateClientSession(client_ctx_.get(), server_ctx_.get(), config);
  2624. // If the client resumes a session with a different name, |SSL_get_servername|
  2625. // must return the new name.
  2626. ASSERT_TRUE(session);
  2627. config.session = session.get();
  2628. config.servername = "host2";
  2629. ASSERT_TRUE(Connect(config));
  2630. EXPECT_STREQ(config.servername.c_str(),
  2631. SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
  2632. }
  2633. // Test that session cache mode bits are honored in the client session callback.
  2634. TEST_P(SSLVersionTest, ClientSessionCacheMode) {
  2635. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF);
  2636. EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2637. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT);
  2638. EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2639. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER);
  2640. EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2641. }
  2642. TEST(SSLTest, AddChainCertHack) {
  2643. // Ensure that we don't accidently break the hack that we have in place to
  2644. // keep curl and serf happy when they use an |X509| even after transfering
  2645. // ownership.
  2646. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2647. ASSERT_TRUE(ctx);
  2648. X509 *cert = GetTestCertificate().release();
  2649. ASSERT_TRUE(cert);
  2650. SSL_CTX_add0_chain_cert(ctx.get(), cert);
  2651. // This should not trigger a use-after-free.
  2652. X509_cmp(cert, cert);
  2653. }
  2654. TEST(SSLTest, GetCertificate) {
  2655. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2656. ASSERT_TRUE(ctx);
  2657. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2658. ASSERT_TRUE(cert);
  2659. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  2660. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  2661. ASSERT_TRUE(ssl);
  2662. X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
  2663. ASSERT_TRUE(cert2);
  2664. X509 *cert3 = SSL_get_certificate(ssl.get());
  2665. ASSERT_TRUE(cert3);
  2666. // The old and new certificates must be identical.
  2667. EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
  2668. EXPECT_EQ(0, X509_cmp(cert.get(), cert3));
  2669. uint8_t *der = nullptr;
  2670. long der_len = i2d_X509(cert.get(), &der);
  2671. ASSERT_LT(0, der_len);
  2672. bssl::UniquePtr<uint8_t> free_der(der);
  2673. uint8_t *der2 = nullptr;
  2674. long der2_len = i2d_X509(cert2, &der2);
  2675. ASSERT_LT(0, der2_len);
  2676. bssl::UniquePtr<uint8_t> free_der2(der2);
  2677. uint8_t *der3 = nullptr;
  2678. long der3_len = i2d_X509(cert3, &der3);
  2679. ASSERT_LT(0, der3_len);
  2680. bssl::UniquePtr<uint8_t> free_der3(der3);
  2681. // They must also encode identically.
  2682. EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len));
  2683. EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len));
  2684. }
  2685. TEST(SSLTest, SetChainAndKeyMismatch) {
  2686. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2687. ASSERT_TRUE(ctx);
  2688. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2689. ASSERT_TRUE(key);
  2690. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2691. ASSERT_TRUE(leaf);
  2692. std::vector<CRYPTO_BUFFER*> chain = {
  2693. leaf.get(),
  2694. };
  2695. // Should fail because |GetTestKey| doesn't match the chain-test certificate.
  2696. ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(),
  2697. key.get(), nullptr));
  2698. ERR_clear_error();
  2699. }
  2700. TEST(SSLTest, SetChainAndKey) {
  2701. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2702. ASSERT_TRUE(client_ctx);
  2703. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2704. ASSERT_TRUE(server_ctx);
  2705. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2706. ASSERT_TRUE(key);
  2707. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2708. ASSERT_TRUE(leaf);
  2709. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2710. GetChainTestIntermediateBuffer();
  2711. ASSERT_TRUE(intermediate);
  2712. std::vector<CRYPTO_BUFFER*> chain = {
  2713. leaf.get(), intermediate.get(),
  2714. };
  2715. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2716. chain.size(), key.get(), nullptr));
  2717. SSL_CTX_set_custom_verify(
  2718. client_ctx.get(), SSL_VERIFY_PEER,
  2719. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2720. return ssl_verify_ok;
  2721. });
  2722. bssl::UniquePtr<SSL> client, server;
  2723. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2724. server_ctx.get()));
  2725. }
  2726. TEST(SSLTest, BuffersFailWithoutCustomVerify) {
  2727. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2728. ASSERT_TRUE(client_ctx);
  2729. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2730. ASSERT_TRUE(server_ctx);
  2731. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2732. ASSERT_TRUE(key);
  2733. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2734. ASSERT_TRUE(leaf);
  2735. std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
  2736. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2737. chain.size(), key.get(), nullptr));
  2738. // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default
  2739. // configuration, certificate verification should fail.
  2740. bssl::UniquePtr<SSL> client, server;
  2741. ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2742. server_ctx.get()));
  2743. // Whereas with a verifier, the connection should succeed.
  2744. SSL_CTX_set_custom_verify(
  2745. client_ctx.get(), SSL_VERIFY_PEER,
  2746. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2747. return ssl_verify_ok;
  2748. });
  2749. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2750. server_ctx.get()));
  2751. }
  2752. TEST(SSLTest, CustomVerify) {
  2753. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2754. ASSERT_TRUE(client_ctx);
  2755. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2756. ASSERT_TRUE(server_ctx);
  2757. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2758. ASSERT_TRUE(key);
  2759. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2760. ASSERT_TRUE(leaf);
  2761. std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
  2762. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2763. chain.size(), key.get(), nullptr));
  2764. SSL_CTX_set_custom_verify(
  2765. client_ctx.get(), SSL_VERIFY_PEER,
  2766. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2767. return ssl_verify_ok;
  2768. });
  2769. bssl::UniquePtr<SSL> client, server;
  2770. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2771. server_ctx.get()));
  2772. // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped
  2773. // connection.
  2774. SSL_CTX_set_custom_verify(
  2775. client_ctx.get(), SSL_VERIFY_PEER,
  2776. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2777. return ssl_verify_invalid;
  2778. });
  2779. ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2780. server_ctx.get()));
  2781. // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped
  2782. // connection.
  2783. SSL_CTX_set_custom_verify(
  2784. client_ctx.get(), SSL_VERIFY_NONE,
  2785. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2786. return ssl_verify_invalid;
  2787. });
  2788. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2789. server_ctx.get()));
  2790. }
  2791. TEST(SSLTest, ClientCABuffers) {
  2792. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2793. ASSERT_TRUE(client_ctx);
  2794. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2795. ASSERT_TRUE(server_ctx);
  2796. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2797. ASSERT_TRUE(key);
  2798. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2799. ASSERT_TRUE(leaf);
  2800. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2801. GetChainTestIntermediateBuffer();
  2802. ASSERT_TRUE(intermediate);
  2803. std::vector<CRYPTO_BUFFER *> chain = {
  2804. leaf.get(),
  2805. intermediate.get(),
  2806. };
  2807. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2808. chain.size(), key.get(), nullptr));
  2809. bssl::UniquePtr<CRYPTO_BUFFER> ca_name(
  2810. CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr));
  2811. ASSERT_TRUE(ca_name);
  2812. bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names(
  2813. sk_CRYPTO_BUFFER_new_null());
  2814. ASSERT_TRUE(ca_names);
  2815. ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name)));
  2816. SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release());
  2817. // Configure client and server to accept all certificates.
  2818. SSL_CTX_set_custom_verify(
  2819. client_ctx.get(), SSL_VERIFY_PEER,
  2820. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2821. return ssl_verify_ok;
  2822. });
  2823. SSL_CTX_set_custom_verify(
  2824. server_ctx.get(), SSL_VERIFY_PEER,
  2825. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2826. return ssl_verify_ok;
  2827. });
  2828. bool cert_cb_called = false;
  2829. SSL_CTX_set_cert_cb(
  2830. client_ctx.get(),
  2831. [](SSL *ssl, void *arg) -> int {
  2832. const STACK_OF(CRYPTO_BUFFER) *peer_names =
  2833. SSL_get0_server_requested_CAs(ssl);
  2834. EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names));
  2835. CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0);
  2836. EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name),
  2837. CRYPTO_BUFFER_len(peer_name)));
  2838. *reinterpret_cast<bool *>(arg) = true;
  2839. return 1;
  2840. },
  2841. &cert_cb_called);
  2842. bssl::UniquePtr<SSL> client, server;
  2843. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2844. server_ctx.get()));
  2845. EXPECT_TRUE(cert_cb_called);
  2846. }
  2847. // Configuring the empty cipher list, though an error, should still modify the
  2848. // configuration.
  2849. TEST(SSLTest, EmptyCipherList) {
  2850. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2851. ASSERT_TRUE(ctx);
  2852. // Initially, the cipher list is not empty.
  2853. EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2854. // Configuring the empty cipher list fails.
  2855. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), ""));
  2856. ERR_clear_error();
  2857. // But the cipher list is still updated to empty.
  2858. EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2859. }
  2860. // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the
  2861. // test |SSL_TICKET_AEAD_METHOD| can fail.
  2862. enum ssl_test_ticket_aead_failure_mode {
  2863. ssl_test_ticket_aead_ok = 0,
  2864. ssl_test_ticket_aead_seal_fail,
  2865. ssl_test_ticket_aead_open_soft_fail,
  2866. ssl_test_ticket_aead_open_hard_fail,
  2867. };
  2868. struct ssl_test_ticket_aead_state {
  2869. unsigned retry_count;
  2870. ssl_test_ticket_aead_failure_mode failure_mode;
  2871. };
  2872. static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to,
  2873. const CRYPTO_EX_DATA *from,
  2874. void **from_d, int index,
  2875. long argl, void *argp) {
  2876. abort();
  2877. }
  2878. static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr,
  2879. CRYPTO_EX_DATA *ad, int index,
  2880. long argl, void *argp) {
  2881. auto state = reinterpret_cast<ssl_test_ticket_aead_state*>(ptr);
  2882. if (state == nullptr) {
  2883. return;
  2884. }
  2885. OPENSSL_free(state);
  2886. }
  2887. static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT;
  2888. static int g_ssl_test_ticket_aead_ex_index;
  2889. static int ssl_test_ticket_aead_get_ex_index() {
  2890. CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] {
  2891. g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index(
  2892. 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup,
  2893. ssl_test_ticket_aead_ex_index_free);
  2894. });
  2895. return g_ssl_test_ticket_aead_ex_index;
  2896. }
  2897. static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) {
  2898. return 1;
  2899. }
  2900. static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len,
  2901. size_t max_out_len, const uint8_t *in,
  2902. size_t in_len) {
  2903. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2904. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2905. if (state->failure_mode == ssl_test_ticket_aead_seal_fail ||
  2906. max_out_len < in_len + 1) {
  2907. return 0;
  2908. }
  2909. OPENSSL_memmove(out, in, in_len);
  2910. out[in_len] = 0xff;
  2911. *out_len = in_len + 1;
  2912. return 1;
  2913. }
  2914. static ssl_ticket_aead_result_t ssl_test_ticket_aead_open(
  2915. SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
  2916. const uint8_t *in, size_t in_len) {
  2917. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2918. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2919. if (state->retry_count > 0) {
  2920. state->retry_count--;
  2921. return ssl_ticket_aead_retry;
  2922. }
  2923. switch (state->failure_mode) {
  2924. case ssl_test_ticket_aead_ok:
  2925. break;
  2926. case ssl_test_ticket_aead_seal_fail:
  2927. // If |seal| failed then there shouldn't be any ticket to try and
  2928. // decrypt.
  2929. abort();
  2930. break;
  2931. case ssl_test_ticket_aead_open_soft_fail:
  2932. return ssl_ticket_aead_ignore_ticket;
  2933. case ssl_test_ticket_aead_open_hard_fail:
  2934. return ssl_ticket_aead_error;
  2935. }
  2936. if (in_len == 0 || in[in_len - 1] != 0xff) {
  2937. return ssl_ticket_aead_ignore_ticket;
  2938. }
  2939. if (max_out_len < in_len - 1) {
  2940. return ssl_ticket_aead_error;
  2941. }
  2942. OPENSSL_memmove(out, in, in_len - 1);
  2943. *out_len = in_len - 1;
  2944. return ssl_ticket_aead_success;
  2945. }
  2946. static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = {
  2947. ssl_test_ticket_aead_max_overhead,
  2948. ssl_test_ticket_aead_seal,
  2949. ssl_test_ticket_aead_open,
  2950. };
  2951. static void ConnectClientAndServerWithTicketMethod(
  2952. bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server,
  2953. SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count,
  2954. ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) {
  2955. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  2956. ASSERT_TRUE(client);
  2957. ASSERT_TRUE(server);
  2958. SSL_set_connect_state(client.get());
  2959. SSL_set_accept_state(server.get());
  2960. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2961. OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state)));
  2962. ASSERT_TRUE(state);
  2963. OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state));
  2964. state->retry_count = retry_count;
  2965. state->failure_mode = failure_mode;
  2966. ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(),
  2967. state));
  2968. SSL_set_session(client.get(), session);
  2969. BIO *bio1, *bio2;
  2970. ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0));
  2971. // SSL_set_bio takes ownership.
  2972. SSL_set_bio(client.get(), bio1, bio1);
  2973. SSL_set_bio(server.get(), bio2, bio2);
  2974. if (CompleteHandshakes(client.get(), server.get())) {
  2975. *out_client = std::move(client);
  2976. *out_server = std::move(server);
  2977. } else {
  2978. out_client->reset();
  2979. out_server->reset();
  2980. }
  2981. }
  2982. using TicketAEADMethodParam =
  2983. testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>;
  2984. class TicketAEADMethodTest
  2985. : public ::testing::TestWithParam<TicketAEADMethodParam> {};
  2986. TEST_P(TicketAEADMethodTest, Resume) {
  2987. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2988. ASSERT_TRUE(cert);
  2989. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2990. ASSERT_TRUE(key);
  2991. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  2992. ASSERT_TRUE(server_ctx);
  2993. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  2994. ASSERT_TRUE(client_ctx);
  2995. const uint16_t version = testing::get<0>(GetParam());
  2996. const unsigned retry_count = testing::get<1>(GetParam());
  2997. const ssl_test_ticket_aead_failure_mode failure_mode =
  2998. testing::get<2>(GetParam());
  2999. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3000. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3001. ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version));
  3002. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version));
  3003. ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version));
  3004. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version));
  3005. SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
  3006. SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
  3007. SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
  3008. SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
  3009. SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession);
  3010. SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod);
  3011. bssl::UniquePtr<SSL> client, server;
  3012. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3013. server_ctx.get(), retry_count,
  3014. failure_mode, nullptr);
  3015. switch (failure_mode) {
  3016. case ssl_test_ticket_aead_ok:
  3017. case ssl_test_ticket_aead_open_hard_fail:
  3018. case ssl_test_ticket_aead_open_soft_fail:
  3019. ASSERT_TRUE(client);
  3020. break;
  3021. case ssl_test_ticket_aead_seal_fail:
  3022. EXPECT_FALSE(client);
  3023. return;
  3024. }
  3025. EXPECT_FALSE(SSL_session_reused(client.get()));
  3026. EXPECT_FALSE(SSL_session_reused(server.get()));
  3027. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  3028. SSL_read(client.get(), nullptr, 0);
  3029. bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
  3030. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3031. server_ctx.get(), retry_count,
  3032. failure_mode, session.get());
  3033. switch (failure_mode) {
  3034. case ssl_test_ticket_aead_ok:
  3035. ASSERT_TRUE(client);
  3036. EXPECT_TRUE(SSL_session_reused(client.get()));
  3037. EXPECT_TRUE(SSL_session_reused(server.get()));
  3038. break;
  3039. case ssl_test_ticket_aead_seal_fail:
  3040. abort();
  3041. break;
  3042. case ssl_test_ticket_aead_open_hard_fail:
  3043. EXPECT_FALSE(client);
  3044. break;
  3045. case ssl_test_ticket_aead_open_soft_fail:
  3046. ASSERT_TRUE(client);
  3047. EXPECT_FALSE(SSL_session_reused(client.get()));
  3048. EXPECT_FALSE(SSL_session_reused(server.get()));
  3049. }
  3050. }
  3051. std::string TicketAEADMethodParamToString(
  3052. const testing::TestParamInfo<TicketAEADMethodParam> &params) {
  3053. std::string ret = GetVersionName(std::get<0>(params.param));
  3054. // GTest only allows alphanumeric characters and '_' in the parameter
  3055. // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13".
  3056. for (auto it = ret.begin(); it != ret.end();) {
  3057. if (*it == '.' || *it == 'v') {
  3058. it = ret.erase(it);
  3059. } else {
  3060. ++it;
  3061. }
  3062. }
  3063. char retry_count[256];
  3064. snprintf(retry_count, sizeof(retry_count), "%d", std::get<1>(params.param));
  3065. ret += "_";
  3066. ret += retry_count;
  3067. ret += "Retries_";
  3068. switch (std::get<2>(params.param)) {
  3069. case ssl_test_ticket_aead_ok:
  3070. ret += "OK";
  3071. break;
  3072. case ssl_test_ticket_aead_seal_fail:
  3073. ret += "SealFail";
  3074. break;
  3075. case ssl_test_ticket_aead_open_soft_fail:
  3076. ret += "OpenSoftFail";
  3077. break;
  3078. case ssl_test_ticket_aead_open_hard_fail:
  3079. ret += "OpenHardFail";
  3080. break;
  3081. }
  3082. return ret;
  3083. }
  3084. INSTANTIATE_TEST_CASE_P(
  3085. TicketAEADMethodTests, TicketAEADMethodTest,
  3086. testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION),
  3087. testing::Values(0, 1, 2),
  3088. testing::Values(ssl_test_ticket_aead_ok,
  3089. ssl_test_ticket_aead_seal_fail,
  3090. ssl_test_ticket_aead_open_soft_fail,
  3091. ssl_test_ticket_aead_open_hard_fail)),
  3092. TicketAEADMethodParamToString);
  3093. TEST(SSLTest, SelectNextProto) {
  3094. uint8_t *result;
  3095. uint8_t result_len;
  3096. // If there is an overlap, it should be returned.
  3097. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3098. SSL_select_next_proto(&result, &result_len,
  3099. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3100. (const uint8_t *)"\1x\1y\1a\1z", 8));
  3101. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3102. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3103. SSL_select_next_proto(&result, &result_len,
  3104. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3105. (const uint8_t *)"\1x\1y\2bb\1z", 9));
  3106. EXPECT_EQ(Bytes("bb"), Bytes(result, result_len));
  3107. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3108. SSL_select_next_proto(&result, &result_len,
  3109. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3110. (const uint8_t *)"\1x\1y\3ccc\1z", 10));
  3111. EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len));
  3112. // Peer preference order takes precedence over local.
  3113. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3114. SSL_select_next_proto(&result, &result_len,
  3115. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3116. (const uint8_t *)"\3ccc\2bb\1a", 9));
  3117. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3118. // If there is no overlap, return the first local protocol.
  3119. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3120. SSL_select_next_proto(&result, &result_len,
  3121. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3122. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3123. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3124. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3125. SSL_select_next_proto(&result, &result_len, nullptr, 0,
  3126. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3127. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3128. }
  3129. TEST(SSLTest, SealRecord) {
  3130. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3131. server_ctx(SSL_CTX_new(TLS_method()));
  3132. ASSERT_TRUE(client_ctx);
  3133. ASSERT_TRUE(server_ctx);
  3134. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3135. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3136. ASSERT_TRUE(cert);
  3137. ASSERT_TRUE(key);
  3138. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3139. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3140. bssl::UniquePtr<SSL> client, server;
  3141. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3142. server_ctx.get()));
  3143. const std::vector<uint8_t> record = {1, 2, 3, 4, 5};
  3144. std::vector<uint8_t> prefix(
  3145. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3146. body(record.size()),
  3147. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3148. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3149. bssl::MakeSpan(body), bssl::MakeSpan(suffix),
  3150. record));
  3151. std::vector<uint8_t> sealed;
  3152. sealed.insert(sealed.end(), prefix.begin(), prefix.end());
  3153. sealed.insert(sealed.end(), body.begin(), body.end());
  3154. sealed.insert(sealed.end(), suffix.begin(), suffix.end());
  3155. std::vector<uint8_t> sealed_copy = sealed;
  3156. bssl::Span<uint8_t> plaintext;
  3157. size_t record_len;
  3158. uint8_t alert = 255;
  3159. EXPECT_EQ(bssl::OpenRecord(server.get(), &plaintext, &record_len, &alert,
  3160. bssl::MakeSpan(sealed)),
  3161. bssl::OpenRecordResult::kOK);
  3162. EXPECT_EQ(record_len, sealed.size());
  3163. EXPECT_EQ(plaintext, record);
  3164. EXPECT_EQ(255, alert);
  3165. }
  3166. TEST(SSLTest, SealRecordInPlace) {
  3167. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3168. server_ctx(SSL_CTX_new(TLS_method()));
  3169. ASSERT_TRUE(client_ctx);
  3170. ASSERT_TRUE(server_ctx);
  3171. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3172. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3173. ASSERT_TRUE(cert);
  3174. ASSERT_TRUE(key);
  3175. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3176. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3177. bssl::UniquePtr<SSL> client, server;
  3178. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3179. server_ctx.get()));
  3180. const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
  3181. std::vector<uint8_t> record = plaintext;
  3182. std::vector<uint8_t> prefix(
  3183. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3184. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3185. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3186. bssl::MakeSpan(record), bssl::MakeSpan(suffix),
  3187. record));
  3188. record.insert(record.begin(), prefix.begin(), prefix.end());
  3189. record.insert(record.end(), suffix.begin(), suffix.end());
  3190. bssl::Span<uint8_t> result;
  3191. size_t record_len;
  3192. uint8_t alert;
  3193. EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
  3194. bssl::MakeSpan(record)),
  3195. bssl::OpenRecordResult::kOK);
  3196. EXPECT_EQ(record_len, record.size());
  3197. EXPECT_EQ(plaintext, result);
  3198. }
  3199. TEST(SSLTest, SealRecordTrailingData) {
  3200. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3201. server_ctx(SSL_CTX_new(TLS_method()));
  3202. ASSERT_TRUE(client_ctx);
  3203. ASSERT_TRUE(server_ctx);
  3204. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3205. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3206. ASSERT_TRUE(cert);
  3207. ASSERT_TRUE(key);
  3208. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3209. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3210. bssl::UniquePtr<SSL> client, server;
  3211. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3212. server_ctx.get()));
  3213. const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
  3214. std::vector<uint8_t> record = plaintext;
  3215. std::vector<uint8_t> prefix(
  3216. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3217. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3218. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3219. bssl::MakeSpan(record), bssl::MakeSpan(suffix),
  3220. record));
  3221. record.insert(record.begin(), prefix.begin(), prefix.end());
  3222. record.insert(record.end(), suffix.begin(), suffix.end());
  3223. record.insert(record.end(), {5, 4, 3, 2, 1});
  3224. bssl::Span<uint8_t> result;
  3225. size_t record_len;
  3226. uint8_t alert;
  3227. EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
  3228. bssl::MakeSpan(record)),
  3229. bssl::OpenRecordResult::kOK);
  3230. EXPECT_EQ(record_len, record.size() - 5);
  3231. EXPECT_EQ(plaintext, result);
  3232. }
  3233. TEST(SSLTest, SealRecordInvalidSpanSize) {
  3234. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3235. server_ctx(SSL_CTX_new(TLS_method()));
  3236. ASSERT_TRUE(client_ctx);
  3237. ASSERT_TRUE(server_ctx);
  3238. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3239. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3240. ASSERT_TRUE(cert);
  3241. ASSERT_TRUE(key);
  3242. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3243. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3244. bssl::UniquePtr<SSL> client, server;
  3245. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3246. server_ctx.get()));
  3247. std::vector<uint8_t> record = {1, 2, 3, 4, 5};
  3248. std::vector<uint8_t> prefix(
  3249. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3250. body(record.size()),
  3251. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3252. auto expect_err = []() {
  3253. int err = ERR_get_error();
  3254. EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL);
  3255. EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFER_TOO_SMALL);
  3256. ERR_clear_error();
  3257. };
  3258. EXPECT_FALSE(bssl::SealRecord(
  3259. client.get(), bssl::MakeSpan(prefix.data(), prefix.size() - 1),
  3260. bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
  3261. expect_err();
  3262. EXPECT_FALSE(bssl::SealRecord(
  3263. client.get(), bssl::MakeSpan(prefix.data(), prefix.size() + 1),
  3264. bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
  3265. expect_err();
  3266. EXPECT_FALSE(
  3267. bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3268. bssl::MakeSpan(record.data(), record.size() - 1),
  3269. bssl::MakeSpan(suffix), record));
  3270. expect_err();
  3271. EXPECT_FALSE(
  3272. bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3273. bssl::MakeSpan(record.data(), record.size() + 1),
  3274. bssl::MakeSpan(suffix), record));
  3275. expect_err();
  3276. EXPECT_FALSE(bssl::SealRecord(
  3277. client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
  3278. bssl::MakeSpan(suffix.data(), suffix.size() - 1), record));
  3279. expect_err();
  3280. EXPECT_FALSE(bssl::SealRecord(
  3281. client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
  3282. bssl::MakeSpan(suffix.data(), suffix.size() + 1), record));
  3283. expect_err();
  3284. }
  3285. // The client should gracefully handle no suitable ciphers being enabled.
  3286. TEST(SSLTest, NoCiphersAvailable) {
  3287. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3288. ASSERT_TRUE(ctx);
  3289. // Configure |client_ctx| with a cipher list that does not intersect with its
  3290. // version configuration.
  3291. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(
  3292. ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"));
  3293. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  3294. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  3295. ASSERT_TRUE(ssl);
  3296. SSL_set_connect_state(ssl.get());
  3297. UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem()));
  3298. ASSERT_TRUE(rbio);
  3299. ASSERT_TRUE(wbio);
  3300. SSL_set0_rbio(ssl.get(), rbio.release());
  3301. SSL_set0_wbio(ssl.get(), wbio.release());
  3302. int ret = SSL_do_handshake(ssl.get());
  3303. EXPECT_EQ(-1, ret);
  3304. EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret));
  3305. uint32_t err = ERR_get_error();
  3306. EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
  3307. EXPECT_EQ(SSL_R_NO_CIPHERS_AVAILABLE, ERR_GET_REASON(err));
  3308. }
  3309. TEST_P(SSLVersionTest, SessionVersion) {
  3310. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3311. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3312. bssl::UniquePtr<SSL_SESSION> session =
  3313. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3314. ASSERT_TRUE(session);
  3315. EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
  3316. // Sessions in TLS 1.3 and later should be single-use.
  3317. EXPECT_EQ(version() == TLS1_3_VERSION,
  3318. !!SSL_SESSION_should_be_single_use(session.get()));
  3319. // Making fake sessions for testing works.
  3320. session.reset(SSL_SESSION_new(client_ctx_.get()));
  3321. ASSERT_TRUE(session);
  3322. ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version()));
  3323. EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
  3324. }
  3325. TEST_P(SSLVersionTest, SSLPending) {
  3326. UniquePtr<SSL> ssl(SSL_new(client_ctx_.get()));
  3327. ASSERT_TRUE(ssl);
  3328. EXPECT_EQ(0, SSL_pending(ssl.get()));
  3329. ASSERT_TRUE(Connect());
  3330. EXPECT_EQ(0, SSL_pending(client_.get()));
  3331. ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5));
  3332. ASSERT_EQ(5, SSL_write(server_.get(), "world", 5));
  3333. EXPECT_EQ(0, SSL_pending(client_.get()));
  3334. char buf[10];
  3335. ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1));
  3336. EXPECT_EQ(5, SSL_pending(client_.get()));
  3337. ASSERT_EQ(1, SSL_read(client_.get(), buf, 1));
  3338. EXPECT_EQ(4, SSL_pending(client_.get()));
  3339. ASSERT_EQ(4, SSL_read(client_.get(), buf, 10));
  3340. EXPECT_EQ(0, SSL_pending(client_.get()));
  3341. ASSERT_EQ(2, SSL_read(client_.get(), buf, 2));
  3342. EXPECT_EQ(3, SSL_pending(client_.get()));
  3343. }
  3344. // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored.
  3345. TEST(SSLTest, ShutdownIgnoresTickets) {
  3346. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3347. ASSERT_TRUE(ctx);
  3348. ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION));
  3349. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  3350. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3351. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3352. ASSERT_TRUE(cert);
  3353. ASSERT_TRUE(key);
  3354. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  3355. ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get()));
  3356. SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH);
  3357. bssl::UniquePtr<SSL> client, server;
  3358. ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get()));
  3359. SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int {
  3360. ADD_FAILURE() << "New session callback called during SSL_shutdown";
  3361. return 0;
  3362. });
  3363. // Send close_notify.
  3364. EXPECT_EQ(0, SSL_shutdown(server.get()));
  3365. EXPECT_EQ(0, SSL_shutdown(client.get()));
  3366. // Receive close_notify.
  3367. EXPECT_EQ(1, SSL_shutdown(server.get()));
  3368. EXPECT_EQ(1, SSL_shutdown(client.get()));
  3369. }
  3370. TEST(SSLTest, SignatureAlgorithmProperties) {
  3371. EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234));
  3372. EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234));
  3373. EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234));
  3374. EXPECT_EQ(EVP_PKEY_RSA,
  3375. SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3376. EXPECT_EQ(EVP_md5_sha1(),
  3377. SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3378. EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3379. EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type(
  3380. SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3381. EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest(
  3382. SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3383. EXPECT_FALSE(
  3384. SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3385. EXPECT_EQ(EVP_PKEY_RSA,
  3386. SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3387. EXPECT_EQ(EVP_sha384(),
  3388. SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3389. EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3390. }
  3391. static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in,
  3392. size_t in_len) {
  3393. for (size_t i = 0; i < in_len; i++) {
  3394. if (!CBB_add_u8(out, in[i] ^ 0x55)) {
  3395. return 0;
  3396. }
  3397. }
  3398. SSL_set_app_data(ssl, XORCompressFunc);
  3399. return 1;
  3400. }
  3401. static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out,
  3402. size_t uncompressed_len, const uint8_t *in,
  3403. size_t in_len) {
  3404. if (in_len != uncompressed_len) {
  3405. return 0;
  3406. }
  3407. uint8_t *data;
  3408. *out = CRYPTO_BUFFER_alloc(&data, uncompressed_len);
  3409. if (*out == nullptr) {
  3410. return 0;
  3411. }
  3412. for (size_t i = 0; i < in_len; i++) {
  3413. data[i] = in[i] ^ 0x55;
  3414. }
  3415. SSL_set_app_data(ssl, XORDecompressFunc);
  3416. return 1;
  3417. }
  3418. TEST(SSLTest, CertCompression) {
  3419. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3420. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3421. ASSERT_TRUE(client_ctx);
  3422. ASSERT_TRUE(server_ctx);
  3423. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3424. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3425. ASSERT_TRUE(cert);
  3426. ASSERT_TRUE(key);
  3427. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3428. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3429. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  3430. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  3431. ASSERT_TRUE(SSL_CTX_add_cert_compression_alg(
  3432. client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc));
  3433. ASSERT_TRUE(SSL_CTX_add_cert_compression_alg(
  3434. server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc));
  3435. bssl::UniquePtr<SSL> client, server;
  3436. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3437. server_ctx.get()));
  3438. EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc);
  3439. EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc);
  3440. }
  3441. void MoveBIOs(SSL *dest, SSL *src) {
  3442. BIO *rbio = SSL_get_rbio(src);
  3443. BIO_up_ref(rbio);
  3444. SSL_set0_rbio(dest, rbio);
  3445. BIO *wbio = SSL_get_wbio(src);
  3446. BIO_up_ref(wbio);
  3447. SSL_set0_wbio(dest, wbio);
  3448. SSL_set0_rbio(src, nullptr);
  3449. SSL_set0_wbio(src, nullptr);
  3450. }
  3451. TEST(SSLTest, Handoff) {
  3452. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3453. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3454. bssl::UniquePtr<SSL_CTX> handshaker_ctx(SSL_CTX_new(TLS_method()));
  3455. ASSERT_TRUE(client_ctx);
  3456. ASSERT_TRUE(server_ctx);
  3457. ASSERT_TRUE(handshaker_ctx);
  3458. SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
  3459. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
  3460. ASSERT_TRUE(
  3461. SSL_CTX_set_max_proto_version(handshaker_ctx.get(), TLS1_2_VERSION));
  3462. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3463. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3464. ASSERT_TRUE(cert);
  3465. ASSERT_TRUE(key);
  3466. ASSERT_TRUE(SSL_CTX_use_certificate(handshaker_ctx.get(), cert.get()));
  3467. ASSERT_TRUE(SSL_CTX_use_PrivateKey(handshaker_ctx.get(), key.get()));
  3468. bssl::UniquePtr<SSL> client, server;
  3469. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3470. server_ctx.get(), ClientConfig(),
  3471. false /* don't handshake */));
  3472. int client_ret = SSL_do_handshake(client.get());
  3473. int client_err = SSL_get_error(client.get(), client_ret);
  3474. ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
  3475. int server_ret = SSL_do_handshake(server.get());
  3476. int server_err = SSL_get_error(server.get(), server_ret);
  3477. ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
  3478. ScopedCBB cbb;
  3479. Array<uint8_t> handoff;
  3480. ASSERT_TRUE(CBB_init(cbb.get(), 256));
  3481. ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get()));
  3482. ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff));
  3483. bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get()));
  3484. ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff));
  3485. MoveBIOs(handshaker.get(), server.get());
  3486. int handshake_ret = SSL_do_handshake(handshaker.get());
  3487. int handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
  3488. ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
  3489. // Double-check that additional calls to |SSL_do_handshake| continue
  3490. // to get |SSL_ERRROR_HANDBACK|.
  3491. handshake_ret = SSL_do_handshake(handshaker.get());
  3492. handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
  3493. ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
  3494. ScopedCBB cbb_handback;
  3495. Array<uint8_t> handback;
  3496. ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024));
  3497. ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get()));
  3498. ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback));
  3499. bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get()));
  3500. ASSERT_TRUE(SSL_apply_handback(server2.get(), handback));
  3501. MoveBIOs(server2.get(), handshaker.get());
  3502. ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get()));
  3503. uint8_t byte = 42;
  3504. EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
  3505. EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1);
  3506. EXPECT_EQ(42, byte);
  3507. byte = 43;
  3508. EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1);
  3509. EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
  3510. EXPECT_EQ(43, byte);
  3511. }
  3512. TEST(SSLTest, HandoffDeclined) {
  3513. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3514. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3515. ASSERT_TRUE(client_ctx);
  3516. ASSERT_TRUE(server_ctx);
  3517. SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
  3518. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
  3519. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3520. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3521. ASSERT_TRUE(cert);
  3522. ASSERT_TRUE(key);
  3523. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3524. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3525. bssl::UniquePtr<SSL> client, server;
  3526. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3527. server_ctx.get(), ClientConfig(),
  3528. false /* don't handshake */));
  3529. int client_ret = SSL_do_handshake(client.get());
  3530. int client_err = SSL_get_error(client.get(), client_ret);
  3531. ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
  3532. int server_ret = SSL_do_handshake(server.get());
  3533. int server_err = SSL_get_error(server.get(), server_ret);
  3534. ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
  3535. ScopedCBB cbb;
  3536. ASSERT_TRUE(CBB_init(cbb.get(), 256));
  3537. ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get()));
  3538. ASSERT_TRUE(SSL_decline_handoff(server.get()));
  3539. ASSERT_TRUE(CompleteHandshakes(client.get(), server.get()));
  3540. uint8_t byte = 42;
  3541. EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
  3542. EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1);
  3543. EXPECT_EQ(42, byte);
  3544. byte = 43;
  3545. EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1);
  3546. EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
  3547. EXPECT_EQ(43, byte);
  3548. }
  3549. TEST_P(SSLVersionTest, VerifyBeforeCertRequest) {
  3550. // Configure the server to request client certificates.
  3551. SSL_CTX_set_custom_verify(
  3552. server_ctx_.get(), SSL_VERIFY_PEER,
  3553. [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
  3554. // Configure the client to reject the server certificate.
  3555. SSL_CTX_set_custom_verify(
  3556. client_ctx_.get(), SSL_VERIFY_PEER,
  3557. [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; });
  3558. // cert_cb should not be called. Verification should fail first.
  3559. SSL_CTX_set_cert_cb(client_ctx_.get(),
  3560. [](SSL *ssl, void *arg) {
  3561. ADD_FAILURE() << "cert_cb unexpectedly called";
  3562. return 0;
  3563. },
  3564. nullptr);
  3565. bssl::UniquePtr<SSL> client, server;
  3566. EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
  3567. server_ctx_.get()));
  3568. }
  3569. // TODO(davidben): Convert this file to GTest properly.
  3570. TEST(SSLTest, AllTests) {
  3571. if (!TestSSL_SESSIONEncoding(kOpenSSLSession) ||
  3572. !TestSSL_SESSIONEncoding(kCustomSession) ||
  3573. !TestSSL_SESSIONEncoding(kBoringSSLSession) ||
  3574. !TestBadSSL_SESSIONEncoding(kBadSessionExtraField) ||
  3575. !TestBadSSL_SESSIONEncoding(kBadSessionVersion) ||
  3576. !TestBadSSL_SESSIONEncoding(kBadSessionTrailingData) ||
  3577. // Test the padding extension at TLS 1.2.
  3578. !TestPaddingExtension(TLS1_2_VERSION, TLS1_2_VERSION) ||
  3579. // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there
  3580. // will be no PSK binder after the padding extension.
  3581. !TestPaddingExtension(TLS1_3_VERSION, TLS1_2_VERSION) ||
  3582. // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there
  3583. // will be a PSK binder after the padding extension.
  3584. !TestPaddingExtension(TLS1_3_VERSION, TLS1_3_VERSION)) {
  3585. ADD_FAILURE() << "Tests failed";
  3586. }
  3587. }
  3588. } // namespace
  3589. } // namespace bssl