boringssl/ssl/internal.h
David Benjamin 3f2611a98f Hide SSL struct.
BUG=6

Change-Id: I5383ad230f1fdc54f9536c9922bfbf991401a00c
Reviewed-on: https://boringssl-review.googlesource.com/13632
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-02-06 18:45:50 +00:00

2145 lines
88 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#ifndef OPENSSL_HEADER_SSL_INTERNAL_H
#define OPENSSL_HEADER_SSL_INTERNAL_H
#include <openssl/base.h>
#include <openssl/aead.h>
#include <openssl/ssl.h>
#include <openssl/stack.h>
#if defined(OPENSSL_WINDOWS)
/* Windows defines struct timeval in winsock2.h. */
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#else
#include <sys/time.h>
#endif
#if defined(__cplusplus)
extern "C" {
#endif
/* Cipher suites. */
/* Bits for |algorithm_mkey| (key exchange algorithm). */
#define SSL_kRSA 0x00000001L
#define SSL_kDHE 0x00000002L
#define SSL_kECDHE 0x00000004L
/* SSL_kPSK is only set for plain PSK, not ECDHE_PSK. */
#define SSL_kPSK 0x00000008L
#define SSL_kGENERIC 0x00000010L
/* Bits for |algorithm_auth| (server authentication). */
#define SSL_aRSA 0x00000001L
#define SSL_aECDSA 0x00000002L
/* SSL_aPSK is set for both PSK and ECDHE_PSK. */
#define SSL_aPSK 0x00000004L
#define SSL_aGENERIC 0x00000008L
#define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
/* Bits for |algorithm_enc| (symmetric encryption). */
#define SSL_3DES 0x00000001L
#define SSL_AES128 0x00000002L
#define SSL_AES256 0x00000004L
#define SSL_AES128GCM 0x00000008L
#define SSL_AES256GCM 0x00000010L
#define SSL_eNULL 0x00000020L
#define SSL_CHACHA20POLY1305 0x00000040L
#define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
/* Bits for |algorithm_mac| (symmetric authentication). */
#define SSL_SHA1 0x00000001L
#define SSL_SHA256 0x00000002L
#define SSL_SHA384 0x00000004L
/* SSL_AEAD is set for all AEADs. */
#define SSL_AEAD 0x00000008L
/* Bits for |algorithm_prf| (handshake digest). */
#define SSL_HANDSHAKE_MAC_DEFAULT 0x1
#define SSL_HANDSHAKE_MAC_SHA256 0x2
#define SSL_HANDSHAKE_MAC_SHA384 0x4
/* SSL_MAX_DIGEST is the number of digest types which exist. When adding a new
* one, update the table in ssl_cipher.c. */
#define SSL_MAX_DIGEST 4
/* ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
* object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
* and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
* respectively. The MAC key length is zero except for legacy block and stream
* ciphers. It returns 1 on success and 0 on error. */
int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
size_t *out_mac_secret_len,
size_t *out_fixed_iv_len,
const SSL_CIPHER *cipher, uint16_t version);
/* ssl_get_handshake_digest returns the |EVP_MD| corresponding to
* |algorithm_prf|. It returns SHA-1 for |SSL_HANDSHAKE_DEFAULT|. The caller is
* responsible for maintaining the additional MD5 digest and switching to
* SHA-256 in TLS 1.2. */
const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf);
/* ssl_create_cipher_list evaluates |rule_str| according to the ciphers in
* |ssl_method|. It sets |*out_cipher_list| to a newly-allocated
* |ssl_cipher_preference_list_st| containing the result. It returns
* |(*out_cipher_list)->ciphers| on success and NULL on
* failure. */
STACK_OF(SSL_CIPHER) *
ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method,
struct ssl_cipher_preference_list_st **out_cipher_list,
const char *rule_str);
/* ssl_cipher_get_value returns the cipher suite id of |cipher|. */
uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
/* ssl_cipher_get_key_type returns the |EVP_PKEY_*| value corresponding to the
* server key used in |cipher| or |EVP_PKEY_NONE| if there is none. */
int ssl_cipher_get_key_type(const SSL_CIPHER *cipher);
/* ssl_cipher_uses_certificate_auth returns one if |cipher| authenticates the
* server and, optionally, the client with a certificate. Otherwise it returns
* zero. */
int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
/* ssl_cipher_requires_server_key_exchange returns 1 if |cipher| requires a
* ServerKeyExchange message. Otherwise it returns 0.
*
* This function may return zero while still allowing |cipher| an optional
* ServerKeyExchange. This is the case for plain PSK ciphers. */
int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
/* ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
* length of an encrypted 1-byte record, for use in record-splitting. Otherwise
* it returns zero. */
size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
/* Encryption layer. */
/* SSL_AEAD_CTX contains information about an AEAD that is being used to encrypt
* an SSL connection. */
typedef struct ssl_aead_ctx_st {
const SSL_CIPHER *cipher;
EVP_AEAD_CTX ctx;
/* fixed_nonce contains any bytes of the nonce that are fixed for all
* records. */
uint8_t fixed_nonce[12];
uint8_t fixed_nonce_len, variable_nonce_len;
/* variable_nonce_included_in_record is non-zero if the variable nonce
* for a record is included as a prefix before the ciphertext. */
unsigned variable_nonce_included_in_record : 1;
/* random_variable_nonce is non-zero if the variable nonce is
* randomly generated, rather than derived from the sequence
* number. */
unsigned random_variable_nonce : 1;
/* omit_length_in_ad is non-zero if the length should be omitted in the
* AEAD's ad parameter. */
unsigned omit_length_in_ad : 1;
/* omit_version_in_ad is non-zero if the version should be omitted
* in the AEAD's ad parameter. */
unsigned omit_version_in_ad : 1;
/* omit_ad is non-zero if the AEAD's ad parameter should be omitted. */
unsigned omit_ad : 1;
/* xor_fixed_nonce is non-zero if the fixed nonce should be XOR'd into the
* variable nonce rather than prepended. */
unsigned xor_fixed_nonce : 1;
} SSL_AEAD_CTX;
/* SSL_AEAD_CTX_new creates a newly-allocated |SSL_AEAD_CTX| using the supplied
* key material. It returns NULL on error. Only one of |SSL_AEAD_CTX_open| or
* |SSL_AEAD_CTX_seal| may be used with the resulting object, depending on
* |direction|. |version| is the normalized protocol version, so DTLS 1.0 is
* represented as 0x0301, not 0xffef. */
SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction,
uint16_t version, const SSL_CIPHER *cipher,
const uint8_t *enc_key, size_t enc_key_len,
const uint8_t *mac_key, size_t mac_key_len,
const uint8_t *fixed_iv, size_t fixed_iv_len);
/* SSL_AEAD_CTX_free frees |ctx|. */
void SSL_AEAD_CTX_free(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_explicit_nonce_len returns the length of the explicit nonce for
* |ctx|, if any. |ctx| may be NULL to denote the null cipher. */
size_t SSL_AEAD_CTX_explicit_nonce_len(const SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_max_overhead returns the maximum overhead of calling
* |SSL_AEAD_CTX_seal|. |ctx| may be NULL to denote the null cipher. */
size_t SSL_AEAD_CTX_max_overhead(const SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_open authenticates and decrypts |in_len| bytes from |in|
* in-place. On success, it sets |*out| to the plaintext in |in| and returns
* one. Otherwise, it returns zero. |ctx| may be NULL to denote the null cipher.
* The output will always be |explicit_nonce_len| bytes ahead of |in|. */
int SSL_AEAD_CTX_open(SSL_AEAD_CTX *ctx, CBS *out, uint8_t type,
uint16_t wire_version, const uint8_t seqnum[8],
uint8_t *in, size_t in_len);
/* SSL_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
* writes the result to |out|. It returns one on success and zero on
* error. |ctx| may be NULL to denote the null cipher.
*
* If |in| and |out| alias then |out| + |explicit_nonce_len| must be == |in|. */
int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len);
/* DTLS replay bitmap. */
/* DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
* replayed packets. It should be initialized by zeroing every field. */
typedef struct dtls1_bitmap_st {
/* map is a bit mask of the last 64 sequence numbers. Bit
* |1<<i| corresponds to |max_seq_num - i|. */
uint64_t map;
/* max_seq_num is the largest sequence number seen so far as a 64-bit
* integer. */
uint64_t max_seq_num;
} DTLS1_BITMAP;
/* Record layer. */
/* ssl_record_sequence_update increments the sequence number in |seq|. It
* returns one on success and zero on wraparound. */
int ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
/* ssl_record_prefix_len returns the length of the prefix before the ciphertext
* of a record for |ssl|.
*
* TODO(davidben): Expose this as part of public API once the high-level
* buffer-free APIs are available. */
size_t ssl_record_prefix_len(const SSL *ssl);
enum ssl_open_record_t {
ssl_open_record_success,
ssl_open_record_discard,
ssl_open_record_partial,
ssl_open_record_close_notify,
ssl_open_record_fatal_alert,
ssl_open_record_error,
};
/* tls_open_record decrypts a record from |in| in-place.
*
* If the input did not contain a complete record, it returns
* |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
* bytes necessary. It is guaranteed that a successful call to |tls_open_record|
* will consume at least that many bytes.
*
* Otherwise, it sets |*out_consumed| to the number of bytes of input
* consumed. Note that input may be consumed on all return codes if a record was
* decrypted.
*
* On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
* record type and |*out| to the record body in |in|. Note that |*out| may be
* empty.
*
* If a record was successfully processed but should be discarded, it returns
* |ssl_open_record_discard|.
*
* If a record was successfully processed but is a close_notify or fatal alert,
* it returns |ssl_open_record_close_notify| or |ssl_open_record_fatal_alert|.
*
* On failure, it returns |ssl_open_record_error| and sets |*out_alert| to an
* alert to emit. */
enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, CBS *out,
size_t *out_consumed, uint8_t *out_alert,
uint8_t *in, size_t in_len);
/* dtls_open_record implements |tls_open_record| for DTLS. It never returns
* |ssl_open_record_partial| but otherwise behaves analogously. */
enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, CBS *out,
size_t *out_consumed,
uint8_t *out_alert, uint8_t *in,
size_t in_len);
/* ssl_seal_align_prefix_len returns the length of the prefix before the start
* of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
* use this to align buffers.
*
* Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
* record and is the offset into second record's ciphertext. Thus sealing a
* small record may result in a smaller output than this value.
*
* TODO(davidben): Is this alignment valuable? Record-splitting makes this a
* mess. */
size_t ssl_seal_align_prefix_len(const SSL *ssl);
/* tls_seal_record seals a new record of type |type| and body |in| and writes it
* to |out|. At most |max_out| bytes will be written. It returns one on success
* and zero on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 1/n-1
* record splitting and may write two records concatenated.
*
* For a large record, the bulk of the ciphertext will begin
* |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
* improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
* bytes to |out|.
*
* |in| and |out| may not alias. */
int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint8_t type, const uint8_t *in, size_t in_len);
enum dtls1_use_epoch_t {
dtls1_use_previous_epoch,
dtls1_use_current_epoch,
};
/* dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
* record. */
size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
/* dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
* front of the plaintext when sealing a record in-place. */
size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
/* dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
* which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
* may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
* ahead of |out|. */
int dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint8_t type, const uint8_t *in, size_t in_len,
enum dtls1_use_epoch_t use_epoch);
/* ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
* state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
* |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
* appropriate. */
enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
const uint8_t *in, size_t in_len);
/* Private key operations. */
/* ssl_has_private_key returns one if |ssl| has a private key
* configured and zero otherwise. */
int ssl_has_private_key(const SSL *ssl);
/* ssl_is_ecdsa_key_type returns one if |type| is an ECDSA key type and zero
* otherwise. */
int ssl_is_ecdsa_key_type(int type);
/* ssl_private_key_* call the corresponding function on the
* |SSL_PRIVATE_KEY_METHOD| for |ssl|, if configured. Otherwise, they implement
* the operation with |EVP_PKEY|. */
int ssl_private_key_type(SSL *ssl);
size_t ssl_private_key_max_signature_len(SSL *ssl);
enum ssl_private_key_result_t ssl_private_key_sign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t signature_algorithm, const uint8_t *in, size_t in_len);
enum ssl_private_key_result_t ssl_private_key_decrypt(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len);
enum ssl_private_key_result_t ssl_private_key_complete(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out);
/* ssl_private_key_supports_signature_algorithm returns one if |ssl|'s private
* key supports |signature_algorithm| and zero otherwise. */
int ssl_private_key_supports_signature_algorithm(SSL *ssl,
uint16_t signature_algorithm);
/* ssl_public_key_verify verifies that the |signature| is valid for the public
* key |pkey| and input |in|, using the |signature_algorithm| specified. */
int ssl_public_key_verify(
SSL *ssl, const uint8_t *signature, size_t signature_len,
uint16_t signature_algorithm, EVP_PKEY *pkey,
const uint8_t *in, size_t in_len);
/* Custom extensions */
typedef struct ssl_handshake_st SSL_HANDSHAKE;
/* ssl_custom_extension (a.k.a. SSL_CUSTOM_EXTENSION) is a structure that
* contains information about custom-extension callbacks. */
struct ssl_custom_extension {
SSL_custom_ext_add_cb add_callback;
void *add_arg;
SSL_custom_ext_free_cb free_callback;
SSL_custom_ext_parse_cb parse_callback;
void *parse_arg;
uint16_t value;
};
void SSL_CUSTOM_EXTENSION_free(SSL_CUSTOM_EXTENSION *custom_extension);
int custom_ext_add_clienthello(SSL_HANDSHAKE *hs, CBB *extensions);
int custom_ext_parse_serverhello(SSL_HANDSHAKE *hs, int *out_alert,
uint16_t value, const CBS *extension);
int custom_ext_parse_clienthello(SSL_HANDSHAKE *hs, int *out_alert,
uint16_t value, const CBS *extension);
int custom_ext_add_serverhello(SSL_HANDSHAKE *hs, CBB *extensions);
/* Handshake hash.
*
* The TLS handshake maintains a transcript of all handshake messages. At
* various points in the protocol, this is either a handshake buffer, a rolling
* hash (selected by cipher suite) or both. */
/* ssl3_init_handshake_buffer initializes the handshake buffer and resets the
* handshake hash. It returns one success and zero on failure. */
int ssl3_init_handshake_buffer(SSL *ssl);
/* ssl3_init_handshake_hash initializes the handshake hash based on the pending
* cipher and the contents of the handshake buffer. Subsequent calls to
* |ssl3_update_handshake_hash| will update the rolling hash. It returns one on
* success and zero on failure. It is an error to call this function after the
* handshake buffer is released. */
int ssl3_init_handshake_hash(SSL *ssl);
/* ssl3_free_handshake_buffer releases the handshake buffer. Subsequent calls
* to |ssl3_update_handshake_hash| will not update the handshake buffer. */
void ssl3_free_handshake_buffer(SSL *ssl);
/* ssl3_free_handshake_hash releases the handshake hash. */
void ssl3_free_handshake_hash(SSL *ssl);
/* ssl3_update_handshake_hash adds |in| to the handshake buffer and handshake
* hash, whichever is enabled. It returns one on success and zero on failure. */
int ssl3_update_handshake_hash(SSL *ssl, const uint8_t *in, size_t in_len);
/* ECDH groups. */
typedef struct ssl_ecdh_ctx_st SSL_ECDH_CTX;
/* An SSL_ECDH_METHOD is an implementation of ECDH-like key exchanges for
* TLS. */
typedef struct ssl_ecdh_method_st {
int nid;
uint16_t group_id;
const char name[8];
/* cleanup releases state in |ctx|. */
void (*cleanup)(SSL_ECDH_CTX *ctx);
/* offer generates a keypair and writes the public value to
* |out_public_key|. It returns one on success and zero on error. */
int (*offer)(SSL_ECDH_CTX *ctx, CBB *out_public_key);
/* accept performs a key exchange against the |peer_key| generated by |offer|.
* On success, it returns one, writes the public value to |out_public_key|,
* and sets |*out_secret| and |*out_secret_len| to a newly-allocated buffer
* containing the shared secret. The caller must release this buffer with
* |OPENSSL_free|. On failure, it returns zero and sets |*out_alert| to an
* alert to send to the peer. */
int (*accept)(SSL_ECDH_CTX *ctx, CBB *out_public_key, uint8_t **out_secret,
size_t *out_secret_len, uint8_t *out_alert,
const uint8_t *peer_key, size_t peer_key_len);
/* finish performs a key exchange against the |peer_key| generated by
* |accept|. On success, it returns one and sets |*out_secret| and
* |*out_secret_len| to a newly-allocated buffer containing the shared
* secret. The caller must release this buffer with |OPENSSL_free|. On
* failure, it returns zero and sets |*out_alert| to an alert to send to the
* peer. */
int (*finish)(SSL_ECDH_CTX *ctx, uint8_t **out_secret, size_t *out_secret_len,
uint8_t *out_alert, const uint8_t *peer_key,
size_t peer_key_len);
/* get_key initializes |out| with a length-prefixed key from |cbs|. It returns
* one on success and zero on error. */
int (*get_key)(CBS *cbs, CBS *out);
/* add_key initializes |out_contents| to receive a key. Typically it will then
* be passed to |offer| or |accept|. It returns one on success and zero on
* error. */
int (*add_key)(CBB *cbb, CBB *out_contents);
} SSL_ECDH_METHOD;
struct ssl_ecdh_ctx_st {
const SSL_ECDH_METHOD *method;
void *data;
};
/* ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
* sets |*out_group_id| to the group ID and returns one. Otherwise, it returns
* zero. */
int ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
/* ssl_name_to_group_id looks up the group corresponding to the |name| string
* of length |len|. On success, it sets |*out_group_id| to the group ID and
* returns one. Otherwise, it returns zero. */
int ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
/* SSL_ECDH_CTX_init sets up |ctx| for use with curve |group_id|. It returns one
* on success and zero on error. */
int SSL_ECDH_CTX_init(SSL_ECDH_CTX *ctx, uint16_t group_id);
/* SSL_ECDH_CTX_init_for_dhe sets up |ctx| for use with legacy DHE-based ciphers
* where the server specifies a group. It takes ownership of |params|. */
void SSL_ECDH_CTX_init_for_dhe(SSL_ECDH_CTX *ctx, DH *params);
/* SSL_ECDH_CTX_cleanup releases memory associated with |ctx|. It is legal to
* call it in the zero state. */
void SSL_ECDH_CTX_cleanup(SSL_ECDH_CTX *ctx);
/* SSL_ECDH_CTX_get_id returns the group ID for |ctx|. */
uint16_t SSL_ECDH_CTX_get_id(const SSL_ECDH_CTX *ctx);
/* SSL_ECDH_CTX_get_key calls the |get_key| method of |SSL_ECDH_METHOD|. */
int SSL_ECDH_CTX_get_key(SSL_ECDH_CTX *ctx, CBS *cbs, CBS *out);
/* SSL_ECDH_CTX_add_key calls the |add_key| method of |SSL_ECDH_METHOD|. */
int SSL_ECDH_CTX_add_key(SSL_ECDH_CTX *ctx, CBB *cbb, CBB *out_contents);
/* SSL_ECDH_CTX_offer calls the |offer| method of |SSL_ECDH_METHOD|. */
int SSL_ECDH_CTX_offer(SSL_ECDH_CTX *ctx, CBB *out_public_key);
/* SSL_ECDH_CTX_accept calls the |accept| method of |SSL_ECDH_METHOD|. */
int SSL_ECDH_CTX_accept(SSL_ECDH_CTX *ctx, CBB *out_public_key,
uint8_t **out_secret, size_t *out_secret_len,
uint8_t *out_alert, const uint8_t *peer_key,
size_t peer_key_len);
/* SSL_ECDH_CTX_finish the |finish| method of |SSL_ECDH_METHOD|. */
int SSL_ECDH_CTX_finish(SSL_ECDH_CTX *ctx, uint8_t **out_secret,
size_t *out_secret_len, uint8_t *out_alert,
const uint8_t *peer_key, size_t peer_key_len);
/* Handshake messages. */
/* SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
* ChangeCipherSpec, in the longest handshake flight. Currently this is the
* client's second leg in a full handshake when client certificates, NPN, and
* Channel ID, are all enabled. */
#define SSL_MAX_HANDSHAKE_FLIGHT 7
/* ssl_max_handshake_message_len returns the maximum number of bytes permitted
* in a handshake message for |ssl|. */
size_t ssl_max_handshake_message_len(const SSL *ssl);
/* dtls_clear_incoming_messages releases all buffered incoming messages. */
void dtls_clear_incoming_messages(SSL *ssl);
/* dtls_has_incoming_messages returns one if there are buffered incoming
* messages ahead of the current message and zero otherwise. */
int dtls_has_incoming_messages(const SSL *ssl);
typedef struct dtls_outgoing_message_st {
uint8_t *data;
uint32_t len;
uint16_t epoch;
char is_ccs;
} DTLS_OUTGOING_MESSAGE;
/* dtls_clear_outgoing_messages releases all buffered outgoing messages. */
void dtls_clear_outgoing_messages(SSL *ssl);
/* Callbacks. */
/* ssl_do_info_callback calls |ssl|'s info callback, if set. */
void ssl_do_info_callback(const SSL *ssl, int type, int value);
/* ssl_do_msg_callback calls |ssl|'s message callback, if set. */
void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type,
const void *buf, size_t len);
/* Transport buffers. */
/* ssl_read_buffer returns a pointer to contents of the read buffer. */
uint8_t *ssl_read_buffer(SSL *ssl);
/* ssl_read_buffer_len returns the length of the read buffer. */
size_t ssl_read_buffer_len(const SSL *ssl);
/* ssl_read_buffer_extend_to extends the read buffer to the desired length. For
* TLS, it reads to the end of the buffer until the buffer is |len| bytes
* long. For DTLS, it reads a new packet and ignores |len|. It returns one on
* success, zero on EOF, and a negative number on error.
*
* It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
* non-empty. */
int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
/* ssl_read_buffer_consume consumes |len| bytes from the read buffer. It
* advances the data pointer and decrements the length. The memory consumed will
* remain valid until the next call to |ssl_read_buffer_extend| or it is
* discarded with |ssl_read_buffer_discard|. */
void ssl_read_buffer_consume(SSL *ssl, size_t len);
/* ssl_read_buffer_discard discards the consumed bytes from the read buffer. If
* the buffer is now empty, it releases memory used by it. */
void ssl_read_buffer_discard(SSL *ssl);
/* ssl_read_buffer_clear releases all memory associated with the read buffer and
* zero-initializes it. */
void ssl_read_buffer_clear(SSL *ssl);
/* ssl_write_buffer_is_pending returns one if the write buffer has pending data
* and zero if is empty. */
int ssl_write_buffer_is_pending(const SSL *ssl);
/* ssl_write_buffer_init initializes the write buffer. On success, it sets
* |*out_ptr| to the start of the write buffer with space for up to |max_len|
* bytes. It returns one on success and zero on failure. Call
* |ssl_write_buffer_set_len| to complete initialization. */
int ssl_write_buffer_init(SSL *ssl, uint8_t **out_ptr, size_t max_len);
/* ssl_write_buffer_set_len is called after |ssl_write_buffer_init| to complete
* initialization after |len| bytes are written to the buffer. */
void ssl_write_buffer_set_len(SSL *ssl, size_t len);
/* ssl_write_buffer_flush flushes the write buffer to the transport. It returns
* one on success and <= 0 on error. For DTLS, whether or not the write
* succeeds, the write buffer will be cleared. */
int ssl_write_buffer_flush(SSL *ssl);
/* ssl_write_buffer_clear releases all memory associated with the write buffer
* and zero-initializes it. */
void ssl_write_buffer_clear(SSL *ssl);
/* Certificate functions. */
/* ssl_has_certificate returns one if a certificate and private key are
* configured and zero otherwise. */
int ssl_has_certificate(const SSL *ssl);
/* ssl_session_x509_cache_objects fills out |sess->x509_peer| and
* |sess->x509_chain| from |sess->certs| and erases
* |sess->x509_chain_without_leaf|. It returns one on success or zero on
* error. */
int ssl_session_x509_cache_objects(SSL_SESSION *sess);
/* ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
* by a TLS Certificate message. On success, it returns a newly-allocated
* |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns NULL and sets
* |*out_alert| to an alert to send to the peer.
*
* If the list is non-empty then |*out_pubkey| will be set to a freshly
* allocated public-key from the leaf certificate.
*
* If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
* SHA-256 hash of the leaf to |out_leaf_sha256|. */
STACK_OF(CRYPTO_BUFFER) *ssl_parse_cert_chain(uint8_t *out_alert,
EVP_PKEY **out_pubkey,
uint8_t *out_leaf_sha256,
CBS *cbs,
CRYPTO_BUFFER_POOL *pool);
/* ssl_add_cert_chain adds |ssl|'s certificate chain to |cbb| in the format used
* by a TLS Certificate message. If there is no certificate chain, it emits an
* empty certificate list. It returns one on success and zero on error. */
int ssl_add_cert_chain(SSL *ssl, CBB *cbb);
/* ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
* necessary. On success, it updates |ssl|'s certificate configuration as needed
* and returns one. Otherwise, it returns zero. */
int ssl_auto_chain_if_needed(SSL *ssl);
/* ssl_cert_check_digital_signature_key_usage parses the DER-encoded, X.509
* certificate in |in| and returns one if doesn't specify a key usage or, if it
* does, if it includes digitalSignature. Otherwise it pushes to the error
* queue and returns zero. */
int ssl_cert_check_digital_signature_key_usage(const CBS *in);
/* ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
* certificate in |in|. It returns an allocated |EVP_PKEY| or else returns NULL
* and pushes to the error queue. */
EVP_PKEY *ssl_cert_parse_pubkey(const CBS *in);
/* ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
* TLS CertificateRequest message. On success, it returns a newly-allocated
* |X509_NAME| list and advances |cbs|. Otherwise, it returns NULL and sets
* |*out_alert| to an alert to send to the peer. */
STACK_OF(X509_NAME) *
ssl_parse_client_CA_list(SSL *ssl, uint8_t *out_alert, CBS *cbs);
/* ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
* used by a TLS CertificateRequest message. It returns one on success and zero
* on error. */
int ssl_add_client_CA_list(SSL *ssl, CBB *cbb);
/* ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
* a server's leaf certificate for |ssl|. Otherwise, it returns zero and pushes
* an error on the error queue. */
int ssl_check_leaf_certificate(SSL *ssl, EVP_PKEY *pkey,
const CRYPTO_BUFFER *leaf);
/* TLS 1.3 key derivation. */
/* tls13_init_key_schedule initializes the handshake hash and key derivation
* state. The cipher suite and PRF hash must have been selected at this point.
* It returns one on success and zero on error. */
int tls13_init_key_schedule(SSL_HANDSHAKE *hs);
/* tls13_advance_key_schedule incorporates |in| into the key schedule with
* HKDF-Extract. It returns one on success and zero on error. */
int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
size_t len);
/* tls13_get_context_hash writes Hash(Handshake Context) to |out| which must
* have room for at least |EVP_MAX_MD_SIZE| bytes. On success, it returns one
* and sets |*out_len| to the number of bytes written. Otherwise, it returns
* zero. */
int tls13_get_context_hash(SSL *ssl, uint8_t *out, size_t *out_len);
/* tls13_set_traffic_key sets the read or write traffic keys to
* |traffic_secret|. It returns one on success and zero on error. */
int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction,
const uint8_t *traffic_secret,
size_t traffic_secret_len);
/* tls13_derive_handshake_secrets derives the handshake traffic secret. It
* returns one on success and zero on error. */
int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
/* tls13_rotate_traffic_key derives the next read or write traffic secret. It
* returns one on success and zero on error. */
int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
/* tls13_derive_application_secrets derives the initial application data traffic
* and exporter secrets based on the handshake transcripts and |master_secret|.
* It returns one on success and zero on error. */
int tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
/* tls13_derive_resumption_secret derives the |resumption_secret|. */
int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
/* tls13_export_keying_material provides an exporter interface to use the
* |exporter_secret|. */
int tls13_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context);
/* tls13_finished_mac calculates the MAC of the handshake transcript to verify
* the integrity of the Finished message, and stores the result in |out| and
* length in |out_len|. |is_server| is 1 if this is for the Server Finished and
* 0 for the Client Finished. */
int tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out,
size_t *out_len, int is_server);
/* tls13_write_psk_binder calculates the PSK binder value and replaces the last
* bytes of |msg| with the resulting value. It returns 1 on success, and 0 on
* failure. */
int tls13_write_psk_binder(SSL *ssl, uint8_t *msg, size_t len);
/* tls13_verify_psk_binder verifies that the handshake transcript, truncated
* up to the binders has a valid signature using the value of |session|'s
* resumption secret. It returns 1 on success, and 0 on failure. */
int tls13_verify_psk_binder(SSL *ssl, SSL_SESSION *session, CBS *binders);
/* Handshake functions. */
enum ssl_hs_wait_t {
ssl_hs_error,
ssl_hs_ok,
ssl_hs_read_message,
ssl_hs_flush,
ssl_hs_flush_and_read_message,
ssl_hs_x509_lookup,
ssl_hs_channel_id_lookup,
ssl_hs_private_key_operation,
};
struct ssl_handshake_st {
/* ssl is a non-owning pointer to the parent |SSL| object. */
SSL *ssl;
/* do_tls13_handshake runs the TLS 1.3 handshake. On completion, it returns
* |ssl_hs_ok|. Otherwise, it returns a value corresponding to what operation
* is needed to progress. */
enum ssl_hs_wait_t (*do_tls13_handshake)(SSL_HANDSHAKE *hs);
/* wait contains the operation |do_tls13_handshake| is currently blocking on
* or |ssl_hs_ok| if none. */
enum ssl_hs_wait_t wait;
/* state contains one of the SSL3_ST_* values. */
int state;
/* next_state is used when SSL_ST_FLUSH_DATA is entered */
int next_state;
/* tls13_state is the internal state for the TLS 1.3 handshake. Its values
* depend on |do_tls13_handshake| but the starting state is always zero. */
int tls13_state;
size_t hash_len;
uint8_t secret[EVP_MAX_MD_SIZE];
uint8_t client_handshake_secret[EVP_MAX_MD_SIZE];
uint8_t server_handshake_secret[EVP_MAX_MD_SIZE];
uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE];
uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE];
union {
/* sent is a bitset where the bits correspond to elements of kExtensions
* in t1_lib.c. Each bit is set if that extension was sent in a
* ClientHello. It's not used by servers. */
uint32_t sent;
/* received is a bitset, like |sent|, but is used by servers to record
* which extensions were received from a client. */
uint32_t received;
} extensions;
union {
/* sent is a bitset where the bits correspond to elements of
* |client_custom_extensions| in the |SSL_CTX|. Each bit is set if that
* extension was sent in a ClientHello. It's not used by servers. */
uint16_t sent;
/* received is a bitset, like |sent|, but is used by servers to record
* which custom extensions were received from a client. The bits here
* correspond to |server_custom_extensions|. */
uint16_t received;
} custom_extensions;
/* retry_group is the group ID selected by the server in HelloRetryRequest in
* TLS 1.3. */
uint16_t retry_group;
/* ecdh_ctx is the current ECDH instance. */
SSL_ECDH_CTX ecdh_ctx;
/* cookie is the value of the cookie received from the server, if any. */
uint8_t *cookie;
size_t cookie_len;
/* key_share_bytes is the value of the previously sent KeyShare extension by
* the client in TLS 1.3. */
uint8_t *key_share_bytes;
size_t key_share_bytes_len;
/* public_key, for servers, is the key share to be sent to the client in TLS
* 1.3. */
uint8_t *public_key;
size_t public_key_len;
/* peer_sigalgs are the signature algorithms that the peer supports. These are
* taken from the contents of the signature algorithms extension for a server
* or from the CertificateRequest for a client. */
uint16_t *peer_sigalgs;
/* num_peer_sigalgs is the number of entries in |peer_sigalgs|. */
size_t num_peer_sigalgs;
/* peer_supported_group_list contains the supported group IDs advertised by
* the peer. This is only set on the server's end. The server does not
* advertise this extension to the client. */
uint16_t *peer_supported_group_list;
size_t peer_supported_group_list_len;
/* peer_key is the peer's ECDH key for a TLS 1.2 client. */
uint8_t *peer_key;
size_t peer_key_len;
/* server_params, in TLS 1.2, stores the ServerKeyExchange parameters to be
* signed while the signature is being computed. */
uint8_t *server_params;
size_t server_params_len;
/* peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
* server when using a TLS 1.2 PSK key exchange. */
char *peer_psk_identity_hint;
/* ca_names, on the client, contains the list of CAs received in a
* CertificateRequest message. */
STACK_OF(X509_NAME) *ca_names;
/* certificate_types, on the client, contains the set of certificate types
* received in a CertificateRequest message. */
uint8_t *certificate_types;
size_t num_certificate_types;
/* hostname, on the server, is the value of the SNI extension. */
char *hostname;
/* peer_pubkey is the public key parsed from the peer's leaf certificate. */
EVP_PKEY *peer_pubkey;
/* key_block is the record-layer key block for TLS 1.2 and earlier. */
uint8_t *key_block;
uint8_t key_block_len;
/* session_tickets_sent, in TLS 1.3, is the number of tickets the server has
* sent. */
uint8_t session_tickets_sent;
/* scts_requested is one if the SCT extension is in the ClientHello. */
unsigned scts_requested:1;
/* needs_psk_binder if the ClientHello has a placeholder PSK binder to be
* filled in. */
unsigned needs_psk_binder:1;
unsigned received_hello_retry_request:1;
/* accept_psk_mode stores whether the client's PSK mode is compatible with our
* preferences. */
unsigned accept_psk_mode:1;
/* cert_request is one if a client certificate was requested and zero
* otherwise. */
unsigned cert_request:1;
/* certificate_status_expected is one if OCSP stapling was negotiated and the
* server is expected to send a CertificateStatus message. (This is used on
* both the client and server sides.) */
unsigned certificate_status_expected:1;
/* ocsp_stapling_requested is one if a client requested OCSP stapling. */
unsigned ocsp_stapling_requested:1;
/* should_ack_sni is used by a server and indicates that the SNI extension
* should be echoed in the ServerHello. */
unsigned should_ack_sni:1;
/* in_false_start is one if there is a pending client handshake in False
* Start. The client may write data at this point. */
unsigned in_false_start:1;
/* next_proto_neg_seen is one of NPN was negotiated. */
unsigned next_proto_neg_seen:1;
/* ticket_expected is one if a TLS 1.2 NewSessionTicket message is to be sent
* or received. */
unsigned ticket_expected:1;
/* v2_clienthello is one if we received a V2ClientHello. */
unsigned v2_clienthello:1;
/* client_version is the value sent or received in the ClientHello version. */
uint16_t client_version;
} /* SSL_HANDSHAKE */;
SSL_HANDSHAKE *ssl_handshake_new(SSL *ssl);
/* ssl_handshake_free releases all memory associated with |hs|. */
void ssl_handshake_free(SSL_HANDSHAKE *hs);
/* ssl_check_message_type checks if the current message has type |type|. If so
* it returns one. Otherwise, it sends an alert and returns zero. */
int ssl_check_message_type(SSL *ssl, int type);
/* tls13_handshake runs the TLS 1.3 handshake. It returns one on success and <=
* 0 on error. */
int tls13_handshake(SSL_HANDSHAKE *hs);
/* The following are implementations of |do_tls13_handshake| for the client and
* server. */
enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
/* tls13_post_handshake processes a post-handshake message. It returns one on
* success and zero on failure. */
int tls13_post_handshake(SSL *ssl);
int tls13_process_certificate(SSL_HANDSHAKE *hs, int allow_anonymous);
int tls13_process_certificate_verify(SSL_HANDSHAKE *hs);
int tls13_process_finished(SSL_HANDSHAKE *hs);
int tls13_add_certificate(SSL_HANDSHAKE *hs);
enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs,
int is_first_run);
int tls13_add_finished(SSL_HANDSHAKE *hs);
int tls13_process_new_session_ticket(SSL *ssl);
int ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t **out_secret,
size_t *out_secret_len,
uint8_t *out_alert, CBS *contents);
int ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, int *out_found,
uint8_t **out_secret,
size_t *out_secret_len,
uint8_t *out_alert, CBS *contents);
int ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
int ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
uint8_t *out_alert, CBS *contents);
int ssl_ext_pre_shared_key_parse_clienthello(SSL_HANDSHAKE *hs,
SSL_SESSION **out_session,
CBS *out_binders,
uint8_t *out_alert, CBS *contents);
int ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
/* ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
* returns one iff it's valid. */
int ssl_is_sct_list_valid(const CBS *contents);
int ssl_write_client_hello(SSL_HANDSHAKE *hs);
/* ssl_clear_tls13_state releases client state only needed for TLS 1.3. It
* should be called once the version is known to be TLS 1.2 or earlier. */
void ssl_clear_tls13_state(SSL_HANDSHAKE *hs);
enum ssl_cert_verify_context_t {
ssl_cert_verify_server,
ssl_cert_verify_client,
ssl_cert_verify_channel_id,
};
/* tls13_get_cert_verify_signature_input generates the message to be signed for
* TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
* type of signature. It sets |*out| and |*out_len| to a newly allocated buffer
* containing the result. The caller must free it with |OPENSSL_free| to release
* it. This function returns one on success and zero on failure. */
int tls13_get_cert_verify_signature_input(
SSL *ssl, uint8_t **out, size_t *out_len,
enum ssl_cert_verify_context_t cert_verify_context);
/* ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
* one on successful negotiation or if nothing was negotiated. It returns zero
* and sets |*out_alert| to an alert on error. */
int ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
const SSL_CLIENT_HELLO *client_hello);
typedef struct {
uint16_t type;
int *out_present;
CBS *out_data;
} SSL_EXTENSION_TYPE;
/* ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
* it. It writes the parsed extensions to pointers denoted by |ext_types|. On
* success, it fills in the |out_present| and |out_data| fields and returns one.
* Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown
* extensions are rejected unless |ignore_unknown| is 1. */
int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
const SSL_EXTENSION_TYPE *ext_types,
size_t num_ext_types, int ignore_unknown);
/* SSLKEYLOGFILE functions. */
/* ssl_log_secret logs |secret| with label |label|, if logging is enabled for
* |ssl|. It returns one on success and zero on failure. */
int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret,
size_t secret_len);
/* ClientHello functions. */
int ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out, const uint8_t *in,
size_t in_len);
int ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
CBS *out, uint16_t extension_type);
int ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO *client_hello,
uint16_t id);
/* GREASE. */
enum ssl_grease_index_t {
ssl_grease_cipher = 0,
ssl_grease_group,
ssl_grease_extension1,
ssl_grease_extension2,
ssl_grease_version,
ssl_grease_ticket_extension,
};
/* ssl_get_grease_value returns a GREASE value for |ssl|. For a given
* connection, the values for each index will be deterministic. This allows the
* same ClientHello be sent twice for a HelloRetryRequest or the same group be
* advertised in both supported_groups and key_shares. */
uint16_t ssl_get_grease_value(const SSL *ssl, enum ssl_grease_index_t index);
/* Signature algorithms. */
/* tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
* algorithms and saves them on |hs|. It returns one on success and zero on
* error. */
int tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
/* tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
* with |hs|'s private key based on the peer's preferences and the algorithms
* supported. It returns one on success and zero on error. */
int tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
/* tls12_get_verify_sigalgs sets |*out| to the signature algorithms acceptable
* for the peer signature and returns the length of the list. */
size_t tls12_get_verify_sigalgs(const SSL *ssl, const uint16_t **out);
/* tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
* signature. It returns one on success and zero on error, setting |*out_alert|
* to an alert to send. */
int tls12_check_peer_sigalg(SSL *ssl, int *out_alert, uint16_t sigalg);
/* Underdocumented functions.
*
* Functions below here haven't been touched up and may be underdocumented. */
#define TLSEXT_CHANNEL_ID_SIZE 128
/* From RFC4492, used in encoding the curve type in ECParameters */
#define NAMED_CURVE_TYPE 3
typedef struct cert_st {
EVP_PKEY *privatekey;
/* chain contains the certificate chain, with the leaf at the beginning. The
* first element of |chain| may be NULL to indicate that the leaf certificate
* has not yet been set.
* If |chain| != NULL -> len(chain) >= 1
* If |chain[0]| == NULL -> len(chain) >= 2.
* |chain[1..]| != NULL */
STACK_OF(CRYPTO_BUFFER) *chain;
/* x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
* a cache in order to implement “get0” functions that return a non-owning
* pointer to the certificate chain. */
STACK_OF(X509) *x509_chain;
/* x509_leaf may contain a parsed copy of the first element of |chain|. This
* is only used as a cache in order to implement “get0” functions that return
* a non-owning pointer to the certificate chain. */
X509 *x509_leaf;
/* x509_stash contains the last |X509| object append to the chain. This is a
* workaround for some third-party code that continue to use an |X509| object
* even after passing ownership with an “add0” function. */
X509 *x509_stash;
/* key_method, if non-NULL, is a set of callbacks to call for private key
* operations. */
const SSL_PRIVATE_KEY_METHOD *key_method;
DH *dh_tmp;
DH *(*dh_tmp_cb)(SSL *ssl, int is_export, int keysize);
/* sigalgs, if non-NULL, is the set of signature algorithms supported by
* |privatekey| in decreasing order of preference. */
uint16_t *sigalgs;
size_t num_sigalgs;
/* Certificate setup callback: if set is called whenever a
* certificate may be required (client or server). the callback
* can then examine any appropriate parameters and setup any
* certificates required. This allows advanced applications
* to select certificates on the fly: for example based on
* supported signature algorithms or curves. */
int (*cert_cb)(SSL *ssl, void *arg);
void *cert_cb_arg;
/* Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
* store is used instead. */
X509_STORE *verify_store;
} CERT;
/* SSL_METHOD is a compatibility structure to support the legacy version-locked
* methods. */
struct ssl_method_st {
/* version, if non-zero, is the only protocol version acceptable to an
* SSL_CTX initialized from this method. */
uint16_t version;
/* method is the underlying SSL_PROTOCOL_METHOD that initializes the
* SSL_CTX. */
const SSL_PROTOCOL_METHOD *method;
};
/* Used to hold functions for SSLv2 or SSLv3/TLSv1 functions */
struct ssl_protocol_method_st {
/* is_dtls is one if the protocol is DTLS and zero otherwise. */
char is_dtls;
/* min_version is the minimum implemented version. */
uint16_t min_version;
/* max_version is the maximum implemented version. */
uint16_t max_version;
/* version_from_wire maps |wire_version| to a protocol version. On success, it
* sets |*out_version| to the result and returns one. If the version is
* unknown, it returns zero. */
int (*version_from_wire)(uint16_t *out_version, uint16_t wire_version);
/* version_to_wire maps |version| to the wire representation. It is an error
* to call it with an invalid version. */
uint16_t (*version_to_wire)(uint16_t version);
int (*ssl_new)(SSL *ssl);
void (*ssl_free)(SSL *ssl);
/* ssl_get_message reads the next handshake message. On success, it returns
* one and sets |ssl->s3->tmp.message_type|, |ssl->init_msg|, and
* |ssl->init_num|. Otherwise, it returns <= 0. */
int (*ssl_get_message)(SSL *ssl);
/* get_current_message sets |*out| to the current handshake message. This
* includes the protocol-specific message header. */
void (*get_current_message)(const SSL *ssl, CBS *out);
/* release_current_message is called to release the current handshake message.
* If |free_buffer| is one, buffers will also be released. */
void (*release_current_message)(SSL *ssl, int free_buffer);
/* read_app_data reads up to |len| bytes of application data into |buf|. On
* success, it returns the number of bytes read. Otherwise, it returns <= 0
* and sets |*out_got_handshake| to whether the failure was due to a
* post-handshake handshake message. If so, it fills in the current message as
* in |ssl_get_message|. */
int (*read_app_data)(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len,
int peek);
int (*read_change_cipher_spec)(SSL *ssl);
void (*read_close_notify)(SSL *ssl);
int (*write_app_data)(SSL *ssl, const uint8_t *buf, int len);
int (*dispatch_alert)(SSL *ssl);
/* supports_cipher returns one if |cipher| is supported by this protocol and
* zero otherwise. */
int (*supports_cipher)(const SSL_CIPHER *cipher);
/* init_message begins a new handshake message of type |type|. |cbb| is the
* root CBB to be passed into |finish_message|. |*body| is set to a child CBB
* the caller should write to. It returns one on success and zero on error. */
int (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
/* finish_message finishes a handshake message. It sets |*out_msg| to a
* newly-allocated buffer with the serialized message. The caller must
* release it with |OPENSSL_free| when done. It returns one on success and
* zero on error. */
int (*finish_message)(SSL *ssl, CBB *cbb, uint8_t **out_msg, size_t *out_len);
/* add_message adds a handshake message to the pending flight. It returns one
* on success and zero on error. In either case, it takes ownership of |msg|
* and releases it with |OPENSSL_free| when done. */
int (*add_message)(SSL *ssl, uint8_t *msg, size_t len);
/* add_change_cipher_spec adds a ChangeCipherSpec record to the pending
* flight. It returns one on success and zero on error. */
int (*add_change_cipher_spec)(SSL *ssl);
/* add_alert adds an alert to the pending flight. It returns one on success
* and zero on error. */
int (*add_alert)(SSL *ssl, uint8_t level, uint8_t desc);
/* flush_flight flushes the pending flight to the transport. It returns one on
* success and <= 0 on error. */
int (*flush_flight)(SSL *ssl);
/* expect_flight is called when the handshake expects a flight of messages from
* the peer. */
void (*expect_flight)(SSL *ssl);
/* received_flight is called when the handshake has received a flight of
* messages from the peer. */
void (*received_flight)(SSL *ssl);
/* set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It takes
* ownership of |aead_ctx|. It returns one on success and zero if changing the
* read state is forbidden at this point. */
int (*set_read_state)(SSL *ssl, SSL_AEAD_CTX *aead_ctx);
/* set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It takes
* ownership of |aead_ctx|. It returns one on success and zero if changing the
* write state is forbidden at this point. */
int (*set_write_state)(SSL *ssl, SSL_AEAD_CTX *aead_ctx);
};
/* This is for the SSLv3/TLSv1.0 differences in crypto/hash stuff It is a bit
* of a mess of functions, but hell, think of it as an opaque structure. */
typedef struct ssl3_enc_method {
/* prf computes the PRF function for |ssl|. It writes |out_len| bytes to
* |out|, using |secret| as the secret and |label| as the label. |seed1| and
* |seed2| are concatenated to form the seed parameter. It returns one on
* success and zero on failure. */
int (*prf)(const SSL *ssl, uint8_t *out, size_t out_len,
const uint8_t *secret, size_t secret_len, const char *label,
size_t label_len, const uint8_t *seed1, size_t seed1_len,
const uint8_t *seed2, size_t seed2_len);
int (*final_finish_mac)(SSL *ssl, int from_server, uint8_t *out);
} SSL3_ENC_METHOD;
typedef struct ssl3_record_st {
/* type is the record type. */
uint8_t type;
/* length is the number of unconsumed bytes in the record. */
uint16_t length;
/* data is a non-owning pointer to the first unconsumed byte of the record. */
uint8_t *data;
} SSL3_RECORD;
typedef struct ssl3_buffer_st {
/* buf is the memory allocated for this buffer. */
uint8_t *buf;
/* offset is the offset into |buf| which the buffer contents start at. */
uint16_t offset;
/* len is the length of the buffer contents from |buf| + |offset|. */
uint16_t len;
/* cap is how much memory beyond |buf| + |offset| is available. */
uint16_t cap;
} SSL3_BUFFER;
/* An ssl_shutdown_t describes the shutdown state of one end of the connection,
* whether it is alive or has been shutdown via close_notify or fatal alert. */
enum ssl_shutdown_t {
ssl_shutdown_none = 0,
ssl_shutdown_close_notify = 1,
ssl_shutdown_fatal_alert = 2,
};
typedef struct ssl3_state_st {
uint8_t read_sequence[8];
uint8_t write_sequence[8];
uint8_t server_random[SSL3_RANDOM_SIZE];
uint8_t client_random[SSL3_RANDOM_SIZE];
/* read_buffer holds data from the transport to be processed. */
SSL3_BUFFER read_buffer;
/* write_buffer holds data to be written to the transport. */
SSL3_BUFFER write_buffer;
SSL3_RECORD rrec; /* each decoded record goes in here */
/* partial write - check the numbers match */
unsigned int wnum; /* number of bytes sent so far */
int wpend_tot; /* number bytes written */
int wpend_type;
int wpend_ret; /* number of bytes submitted */
const uint8_t *wpend_buf;
/* handshake_buffer, if non-NULL, contains the handshake transcript. */
BUF_MEM *handshake_buffer;
/* handshake_hash, if initialized with an |EVP_MD|, maintains the handshake
* hash. For TLS 1.1 and below, it is the SHA-1 half. */
EVP_MD_CTX handshake_hash;
/* handshake_md5, if initialized with an |EVP_MD|, maintains the MD5 half of
* the handshake hash for TLS 1.1 and below. */
EVP_MD_CTX handshake_md5;
/* recv_shutdown is the shutdown state for the receive half of the
* connection. */
enum ssl_shutdown_t recv_shutdown;
/* recv_shutdown is the shutdown state for the send half of the connection. */
enum ssl_shutdown_t send_shutdown;
int alert_dispatch;
int total_renegotiations;
/* early_data_skipped is the amount of early data that has been skipped by the
* record layer. */
uint16_t early_data_skipped;
/* empty_record_count is the number of consecutive empty records received. */
uint8_t empty_record_count;
/* warning_alert_count is the number of consecutive warning alerts
* received. */
uint8_t warning_alert_count;
/* key_update_count is the number of consecutive KeyUpdates received. */
uint8_t key_update_count;
/* skip_early_data instructs the record layer to skip unexpected early data
* messages when 0RTT is rejected. */
unsigned skip_early_data:1;
/* have_version is true if the connection's final version is known. Otherwise
* the version has not been negotiated yet. */
unsigned have_version:1;
/* v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
* and future messages should use the record layer. */
unsigned v2_hello_done:1;
/* is_v2_hello is true if the current handshake message was derived from a
* V2ClientHello rather than received from the peer directly. */
unsigned is_v2_hello:1;
/* initial_handshake_complete is true if the initial handshake has
* completed. */
unsigned initial_handshake_complete:1;
/* session_reused indicates whether a session was resumed. */
unsigned session_reused:1;
unsigned send_connection_binding:1;
/* In a client, this means that the server supported Channel ID and that a
* Channel ID was sent. In a server it means that we echoed support for
* Channel IDs and that tlsext_channel_id will be valid after the
* handshake. */
unsigned tlsext_channel_id_valid:1;
/* short_header is one if https://github.com/tlswg/tls13-spec/pull/762 has
* been negotiated. */
unsigned short_header:1;
uint8_t send_alert[2];
/* pending_flight is the pending outgoing flight. This is used to flush each
* handshake flight in a single write. */
BUF_MEM *pending_flight;
/* pending_flight_offset is the number of bytes of |pending_flight| which have
* been successfully written. */
uint32_t pending_flight_offset;
/* aead_read_ctx is the current read cipher state. */
SSL_AEAD_CTX *aead_read_ctx;
/* aead_write_ctx is the current write cipher state. */
SSL_AEAD_CTX *aead_write_ctx;
/* enc_method is the method table corresponding to the current protocol
* version. */
const SSL3_ENC_METHOD *enc_method;
/* hs is the handshake state for the current handshake or NULL if there isn't
* one. */
SSL_HANDSHAKE *hs;
uint8_t write_traffic_secret[EVP_MAX_MD_SIZE];
uint8_t read_traffic_secret[EVP_MAX_MD_SIZE];
uint8_t exporter_secret[EVP_MAX_MD_SIZE];
uint8_t write_traffic_secret_len;
uint8_t read_traffic_secret_len;
uint8_t exporter_secret_len;
/* Connection binding to prevent renegotiation attacks */
uint8_t previous_client_finished[12];
uint8_t previous_client_finished_len;
uint8_t previous_server_finished_len;
uint8_t previous_server_finished[12];
/* State pertaining to the pending handshake.
*
* TODO(davidben): Move everything not needed after the handshake completes to
* |hs| and remove this. */
struct {
/* used to hold the new cipher we are going to use */
const SSL_CIPHER *new_cipher;
int message_type;
int reuse_message;
uint8_t new_mac_secret_len;
uint8_t new_key_len;
uint8_t new_fixed_iv_len;
/* extended_master_secret indicates whether the extended master secret
* computation is used in this handshake. Note that this is different from
* whether it was used for the current session. If this is a resumption
* handshake then EMS might be negotiated in the client and server hello
* messages, but it doesn't matter if the session that's being resumed
* didn't use it to create the master secret initially. */
char extended_master_secret;
} tmp;
/* new_session is the new mutable session being established by the current
* handshake. It should not be cached. */
SSL_SESSION *new_session;
/* established_session is the session established by the connection. This
* session is only filled upon the completion of the handshake and is
* immutable. */
SSL_SESSION *established_session;
/* Next protocol negotiation. For the client, this is the protocol that we
* sent in NextProtocol and is set when handling ServerHello extensions.
*
* For a server, this is the client's selected_protocol from NextProtocol and
* is set when handling the NextProtocol message, before the Finished
* message. */
uint8_t *next_proto_negotiated;
size_t next_proto_negotiated_len;
/* ALPN information
* (we are in the process of transitioning from NPN to ALPN.) */
/* In a server these point to the selected ALPN protocol after the
* ClientHello has been processed. In a client these contain the protocol
* that the server selected once the ServerHello has been processed. */
uint8_t *alpn_selected;
size_t alpn_selected_len;
/* For a server:
* If |tlsext_channel_id_valid| is true, then this contains the
* verified Channel ID from the client: a P256 point, (x,y), where
* each are big-endian values. */
uint8_t tlsext_channel_id[64];
} SSL3_STATE;
/* lengths of messages */
#define DTLS1_COOKIE_LENGTH 256
#define DTLS1_RT_HEADER_LENGTH 13
#define DTLS1_HM_HEADER_LENGTH 12
#define DTLS1_CCS_HEADER_LENGTH 1
#define DTLS1_AL_HEADER_LENGTH 2
struct hm_header_st {
uint8_t type;
uint32_t msg_len;
uint16_t seq;
uint32_t frag_off;
uint32_t frag_len;
};
/* An hm_fragment is an incoming DTLS message, possibly not yet assembled. */
typedef struct hm_fragment_st {
/* type is the type of the message. */
uint8_t type;
/* seq is the sequence number of this message. */
uint16_t seq;
/* msg_len is the length of the message body. */
uint32_t msg_len;
/* data is a pointer to the message, including message header. It has length
* |DTLS1_HM_HEADER_LENGTH| + |msg_len|. */
uint8_t *data;
/* reassembly is a bitmask of |msg_len| bits corresponding to which parts of
* the message have been received. It is NULL if the message is complete. */
uint8_t *reassembly;
} hm_fragment;
typedef struct dtls1_state_st {
/* send_cookie is true if we are resending the ClientHello
* with a cookie from a HelloVerifyRequest. */
unsigned int send_cookie;
uint8_t cookie[DTLS1_COOKIE_LENGTH];
size_t cookie_len;
/* The current data and handshake epoch. This is initially undefined, and
* starts at zero once the initial handshake is completed. */
uint16_t r_epoch;
uint16_t w_epoch;
/* records being received in the current epoch */
DTLS1_BITMAP bitmap;
uint16_t handshake_write_seq;
uint16_t handshake_read_seq;
/* save last sequence number for retransmissions */
uint8_t last_write_sequence[8];
/* incoming_messages is a ring buffer of incoming handshake messages that have
* yet to be processed. The front of the ring buffer is message number
* |handshake_read_seq|, at position |handshake_read_seq| %
* |SSL_MAX_HANDSHAKE_FLIGHT|. */
hm_fragment *incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
/* outgoing_messages is the queue of outgoing messages from the last handshake
* flight. */
DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
uint8_t outgoing_messages_len;
/* outgoing_written is the number of outgoing messages that have been
* written. */
uint8_t outgoing_written;
/* outgoing_offset is the number of bytes of the next outgoing message have
* been written. */
uint32_t outgoing_offset;
unsigned int mtu; /* max DTLS packet size */
/* num_timeouts is the number of times the retransmit timer has fired since
* the last time it was reset. */
unsigned int num_timeouts;
/* Indicates when the last handshake msg or heartbeat sent will
* timeout. */
struct timeval next_timeout;
/* timeout_duration_ms is the timeout duration in milliseconds. */
unsigned timeout_duration_ms;
} DTLS1_STATE;
struct ssl_st {
/* method is the method table corresponding to the current protocol (DTLS or
* TLS). */
const SSL_PROTOCOL_METHOD *method;
/* version is the protocol version. */
int version;
/* max_version is the maximum acceptable protocol version. Note this version
* is normalized in DTLS. */
uint16_t max_version;
/* min_version is the minimum acceptable protocol version. Note this version
* is normalized in DTLS. */
uint16_t min_version;
uint16_t max_send_fragment;
/* There are 2 BIO's even though they are normally both the same. This is so
* data can be read and written to different handlers */
BIO *rbio; /* used by SSL_read */
BIO *wbio; /* used by SSL_write */
int (*handshake_func)(SSL_HANDSHAKE *hs);
BUF_MEM *init_buf; /* buffer used during init */
/* init_msg is a pointer to the current handshake message body. */
const uint8_t *init_msg;
/* init_num is the length of the current handshake message body. */
uint32_t init_num;
struct ssl3_state_st *s3; /* SSLv3 variables */
struct dtls1_state_st *d1; /* DTLSv1 variables */
/* callback that allows applications to peek at protocol messages */
void (*msg_callback)(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl, void *arg);
void *msg_callback_arg;
X509_VERIFY_PARAM *param;
/* crypto */
struct ssl_cipher_preference_list_st *cipher_list;
/* session info */
/* client cert? */
/* This is used to hold the server certificate used */
struct cert_st /* CERT */ *cert;
/* This holds a variable that indicates what we were doing when a 0 or -1 is
* returned. This is needed for non-blocking IO so we know what request
* needs re-doing when in SSL_accept or SSL_connect */
int rwstate;
/* initial_timeout_duration_ms is the default DTLS timeout duration in
* milliseconds. It's used to initialize the timer any time it's restarted. */
unsigned initial_timeout_duration_ms;
/* the session_id_context is used to ensure sessions are only reused
* in the appropriate context */
uint8_t sid_ctx_length;
uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH];
/* session is the configured session to be offered by the client. This session
* is immutable. */
SSL_SESSION *session;
int (*verify_callback)(int ok,
X509_STORE_CTX *ctx); /* fail if callback returns 0 */
void (*info_callback)(const SSL *ssl, int type, int value);
/* Server-only: psk_identity_hint is the identity hint to send in
* PSK-based key exchanges. */
char *psk_identity_hint;
unsigned int (*psk_client_callback)(SSL *ssl, const char *hint,
char *identity,
unsigned int max_identity_len,
uint8_t *psk, unsigned int max_psk_len);
unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
uint8_t *psk, unsigned int max_psk_len);
SSL_CTX *ctx;
/* extra application data */
CRYPTO_EX_DATA ex_data;
/* for server side, keep the list of CA_dn we can use */
STACK_OF(X509_NAME) *client_CA;
uint32_t options; /* protocol behaviour */
uint32_t mode; /* API behaviour */
uint32_t max_cert_list;
char *tlsext_hostname;
size_t supported_group_list_len;
uint16_t *supported_group_list; /* our list */
SSL_CTX *initial_ctx; /* initial ctx, used to store sessions */
/* srtp_profiles is the list of configured SRTP protection profiles for
* DTLS-SRTP. */
STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles;
/* srtp_profile is the selected SRTP protection profile for
* DTLS-SRTP. */
const SRTP_PROTECTION_PROFILE *srtp_profile;
/* The client's Channel ID private key. */
EVP_PKEY *tlsext_channel_id_private;
/* For a client, this contains the list of supported protocols in wire
* format. */
uint8_t *alpn_client_proto_list;
unsigned alpn_client_proto_list_len;
/* renegotiate_mode controls how peer renegotiation attempts are handled. */
enum ssl_renegotiate_mode_t renegotiate_mode;
/* verify_mode is a bitmask of |SSL_VERIFY_*| values. */
uint8_t verify_mode;
/* server is true iff the this SSL* is the server half. Note: before the SSL*
* is initialized by either SSL_set_accept_state or SSL_set_connect_state,
* the side is not determined. In this state, server is always false. */
unsigned server:1;
/* quiet_shutdown is true if the connection should not send a close_notify on
* shutdown. */
unsigned quiet_shutdown:1;
/* Enable signed certificate time stamps. Currently client only. */
unsigned signed_cert_timestamps_enabled:1;
/* ocsp_stapling_enabled is only used by client connections and indicates
* whether OCSP stapling will be requested. */
unsigned ocsp_stapling_enabled:1;
/* tlsext_channel_id_enabled is copied from the |SSL_CTX|. For a server,
* means that we'll accept Channel IDs from clients. For a client, means that
* we'll advertise support. */
unsigned tlsext_channel_id_enabled:1;
/* retain_only_sha256_of_client_certs is true if we should compute the SHA256
* hash of the peer's certificate and then discard it to save memory and
* session space. Only effective on the server side. */
unsigned retain_only_sha256_of_client_certs:1;
/* session_timeout is the default lifetime in seconds of the session
* created in this connection at TLS 1.2 and earlier. */
long session_timeout;
/* session_psk_dhe_timeout is the default lifetime in seconds of sessions
* created in this connection at TLS 1.3. */
long session_psk_dhe_timeout;
/* OCSP response to be sent to the client, if requested. */
CRYPTO_BUFFER *ocsp_response;
};
extern const SSL3_ENC_METHOD TLSv1_enc_data;
extern const SSL3_ENC_METHOD SSLv3_enc_data;
/* From draft-ietf-tls-tls13-18, used in determining PSK modes. */
#define SSL_PSK_KE 0x0
#define SSL_PSK_DHE_KE 0x1
/* From draft-ietf-tls-tls13-16, used in determining whether to respond with a
* KeyUpdate. */
#define SSL_KEY_UPDATE_NOT_REQUESTED 0
#define SSL_KEY_UPDATE_REQUESTED 1
CERT *ssl_cert_new(void);
CERT *ssl_cert_dup(CERT *cert);
void ssl_cert_clear_certs(CERT *c);
void ssl_cert_free(CERT *c);
CRYPTO_BUFFER *x509_to_buffer(X509 *x509);
void ssl_cert_flush_cached_x509_leaf(CERT *cert);
int ssl_cert_cache_leaf_cert(CERT *cert);
/* ssl_compare_public_and_private_key returns one if |pubkey| is the public
* counterpart to |privkey|. Otherwise it returns zero and pushes a helpful
* message on the error queue. */
int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
const EVP_PKEY *privkey);
int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server);
int ssl_encrypt_ticket(SSL *ssl, CBB *out, const SSL_SESSION *session);
/* ssl_session_is_context_valid returns one if |session|'s session ID context
* matches the one set on |ssl| and zero otherwise. */
int ssl_session_is_context_valid(const SSL *ssl, const SSL_SESSION *session);
/* ssl_session_is_time_valid returns one if |session| is still valid and zero if
* it has expired. */
int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
/* ssl_session_is_resumable returns one if |session| is resumable for |ssl| and
* zero otherwise. */
int ssl_session_is_resumable(const SSL *ssl, const SSL_SESSION *session);
void ssl_set_session(SSL *ssl, SSL_SESSION *session);
enum ssl_session_result_t {
ssl_session_success,
ssl_session_error,
ssl_session_retry,
};
/* ssl_get_prev_session looks up the previous session based on |client_hello|.
* On success, it sets |*out_session| to the session or NULL if none was found.
* If the session could not be looked up synchronously, it returns
* |ssl_session_retry| and should be called again. Otherwise, it returns
* |ssl_session_error|. */
enum ssl_session_result_t ssl_get_prev_session(
SSL *ssl, SSL_SESSION **out_session, int *out_tickets_supported,
int *out_renew_ticket, const SSL_CLIENT_HELLO *client_hello);
/* The following flags determine which parts of the session are duplicated. */
#define SSL_SESSION_DUP_AUTH_ONLY 0x0
#define SSL_SESSION_INCLUDE_TICKET 0x1
#define SSL_SESSION_INCLUDE_NONAUTH 0x2
#define SSL_SESSION_DUP_ALL \
(SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
/* SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
* fields in |session| or NULL on error. The new session is non-resumable and
* must be explicitly marked resumable once it has been filled in. */
OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_dup(SSL_SESSION *session,
int dup_flags);
/* ssl_session_rebase_time updates |session|'s start time to the current time,
* adjusting the timeout so the expiration time is unchanged. */
void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
/* ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
* |session|'s timeout to |timeout| (measured from the current time). The
* renewal is clamped to the session's auth_timeout. */
void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, long timeout);
void ssl_cipher_preference_list_free(
struct ssl_cipher_preference_list_st *cipher_list);
/* ssl_get_cipher_preferences returns the cipher preference list for TLS 1.2 and
* below. */
const struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(
const SSL *ssl);
int ssl_verify_cert_chain(SSL *ssl, long *out_verify_result,
STACK_OF(X509) * cert_chain);
void ssl_update_cache(SSL_HANDSHAKE *hs, int mode);
int ssl_verify_alarm_type(long type);
int ssl3_get_finished(SSL_HANDSHAKE *hs);
int ssl3_send_alert(SSL *ssl, int level, int desc);
int ssl3_get_message(SSL *ssl);
void ssl3_get_current_message(const SSL *ssl, CBS *out);
void ssl3_release_current_message(SSL *ssl, int free_buffer);
/* ssl3_cert_verify_hash writes the SSL 3.0 CertificateVerify hash into the
* bytes pointed to by |out| and writes the number of bytes to |*out_len|. |out|
* must have room for |EVP_MAX_MD_SIZE| bytes. It sets |*out_md| to the hash
* function used. It returns one on success and zero on failure. */
int ssl3_cert_verify_hash(SSL *ssl, const EVP_MD **out_md, uint8_t *out,
size_t *out_len, uint16_t signature_algorithm);
int ssl3_send_finished(SSL_HANDSHAKE *hs);
int ssl3_dispatch_alert(SSL *ssl);
int ssl3_read_app_data(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len,
int peek);
int ssl3_read_change_cipher_spec(SSL *ssl);
void ssl3_read_close_notify(SSL *ssl);
int ssl3_read_handshake_bytes(SSL *ssl, uint8_t *buf, int len);
int ssl3_write_app_data(SSL *ssl, const uint8_t *buf, int len);
int ssl3_output_cert_chain(SSL *ssl);
int ssl3_new(SSL *ssl);
void ssl3_free(SSL *ssl);
int ssl3_accept(SSL_HANDSHAKE *hs);
int ssl3_connect(SSL_HANDSHAKE *hs);
int ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
int ssl3_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg, size_t *out_len);
int ssl3_add_message(SSL *ssl, uint8_t *msg, size_t len);
int ssl3_add_change_cipher_spec(SSL *ssl);
int ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc);
int ssl3_flush_flight(SSL *ssl);
int dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
int dtls1_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg,
size_t *out_len);
int dtls1_add_message(SSL *ssl, uint8_t *msg, size_t len);
int dtls1_add_change_cipher_spec(SSL *ssl);
int dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc);
int dtls1_flush_flight(SSL *ssl);
/* ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
* the pending flight. It returns one on success and zero on error. */
int ssl_add_message_cbb(SSL *ssl, CBB *cbb);
/* ssl_hash_current_message incorporates the current handshake message into the
* handshake hash. It returns one on success and zero on allocation failure. */
int ssl_hash_current_message(SSL *ssl);
/* dtls1_get_record reads a new input record. On success, it places it in
* |ssl->s3->rrec| and returns one. Otherwise it returns <= 0 on error or if
* more data is needed. */
int dtls1_get_record(SSL *ssl);
int dtls1_read_app_data(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len,
int peek);
int dtls1_read_change_cipher_spec(SSL *ssl);
void dtls1_read_close_notify(SSL *ssl);
int dtls1_write_app_data(SSL *ssl, const uint8_t *buf, int len);
/* dtls1_write_record sends a record. It returns one on success and <= 0 on
* error. */
int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
enum dtls1_use_epoch_t use_epoch);
int dtls1_send_finished(SSL *ssl, int a, int b, const char *sender, int slen);
int dtls1_retransmit_outgoing_messages(SSL *ssl);
void dtls1_clear_record_buffer(SSL *ssl);
int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
CBS *out_body);
int dtls1_check_timeout_num(SSL *ssl);
int dtls1_handshake_write(SSL *ssl);
void dtls1_start_timer(SSL *ssl);
void dtls1_stop_timer(SSL *ssl);
int dtls1_is_timer_expired(SSL *ssl);
void dtls1_double_timeout(SSL *ssl);
unsigned int dtls1_min_mtu(void);
int dtls1_new(SSL *ssl);
int dtls1_accept(SSL *ssl);
int dtls1_connect(SSL *ssl);
void dtls1_free(SSL *ssl);
int dtls1_get_message(SSL *ssl);
void dtls1_get_current_message(const SSL *ssl, CBS *out);
void dtls1_release_current_message(SSL *ssl, int free_buffer);
int dtls1_dispatch_alert(SSL *ssl);
int tls1_change_cipher_state(SSL_HANDSHAKE *hs, int which);
int tls1_handshake_digest(SSL *ssl, uint8_t *out, size_t out_len);
int tls1_generate_master_secret(SSL *ssl, uint8_t *out, const uint8_t *premaster,
size_t premaster_len);
/* tls1_get_grouplist sets |*out_group_ids| and |*out_group_ids_len| to the
* locally-configured group preference list. */
void tls1_get_grouplist(SSL *ssl, const uint16_t **out_group_ids,
size_t *out_group_ids_len);
/* tls1_check_group_id returns one if |group_id| is consistent with
* locally-configured group preferences. */
int tls1_check_group_id(SSL *ssl, uint16_t group_id);
/* tls1_get_shared_group sets |*out_group_id| to the first preferred shared
* group between client and server preferences and returns one. If none may be
* found, it returns zero. */
int tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
/* tls1_set_curves converts the array of |ncurves| NIDs pointed to by |curves|
* into a newly allocated array of TLS group IDs. On success, the function
* returns one and writes the array to |*out_group_ids| and its size to
* |*out_group_ids_len|. Otherwise, it returns zero. */
int tls1_set_curves(uint16_t **out_group_ids, size_t *out_group_ids_len,
const int *curves, size_t ncurves);
/* tls1_set_curves_list converts the string of curves pointed to by |curves|
* into a newly allocated array of TLS group IDs. On success, the function
* returns one and writes the array to |*out_group_ids| and its size to
* |*out_group_ids_len|. Otherwise, it returns zero. */
int tls1_set_curves_list(uint16_t **out_group_ids, size_t *out_group_ids_len,
const char *curves);
/* ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It
* returns one on success and zero on failure. The |header_len| argument is the
* length of the ClientHello written so far and is used to compute the padding
* length. (It does not include the record header.) */
int ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len);
int ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
int ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
const SSL_CLIENT_HELLO *client_hello);
int ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs);
#define tlsext_tick_md EVP_sha256
/* tls_process_ticket processes a session ticket from the client. On success,
* it sets |*out_session| to the decrypted session or NULL if the ticket was
* rejected. If the ticket was valid, it sets |*out_renew_ticket| to whether
* the ticket should be renewed. It returns one on success and zero on fatal
* error. */
int tls_process_ticket(SSL *ssl, SSL_SESSION **out_session,
int *out_renew_ticket, const uint8_t *ticket,
size_t ticket_len, const uint8_t *session_id,
size_t session_id_len);
/* tls1_verify_channel_id processes the current message as a Channel ID message,
* and verifies the signature. If the key is valid, it saves the Channel ID and
* returns one. Otherwise, it returns zero. */
int tls1_verify_channel_id(SSL *ssl);
/* tls1_write_channel_id generates a Channel ID message and puts the output in
* |cbb|. |ssl->tlsext_channel_id_private| must already be set before calling.
* This function returns one on success and zero on error. */
int tls1_write_channel_id(SSL *ssl, CBB *cbb);
/* tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
* it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
* one on success and zero on failure. */
int tls1_channel_id_hash(SSL *ssl, uint8_t *out, size_t *out_len);
int tls1_record_handshake_hashes_for_channel_id(SSL *ssl);
/* ssl_do_channel_id_callback checks runs |ssl->ctx->channel_id_cb| if
* necessary. It returns one on success and zero on fatal error. Note that, on
* success, |ssl->tlsext_channel_id_private| may be unset, in which case the
* operation should be retried later. */
int ssl_do_channel_id_callback(SSL *ssl);
/* ssl3_can_false_start returns one if |ssl| is allowed to False Start and zero
* otherwise. */
int ssl3_can_false_start(const SSL *ssl);
/* ssl3_get_enc_method returns the SSL3_ENC_METHOD corresponding to
* |version|. */
const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version);
/* ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
* minimum and maximum enabled protocol versions, respectively. */
int ssl_get_version_range(const SSL *ssl, uint16_t *out_min_version,
uint16_t *out_max_version);
/* ssl3_protocol_version returns |ssl|'s protocol version. It is an error to
* call this function before the version is determined. */
uint16_t ssl3_protocol_version(const SSL *ssl);
uint32_t ssl_get_algorithm_prf(const SSL *ssl);
void ssl_get_current_time(const SSL *ssl, struct timeval *out_clock);
/* ssl_reset_error_state resets state for |SSL_get_error|. */
void ssl_reset_error_state(SSL *ssl);
#if defined(__cplusplus)
} /* extern C */
#endif
#endif /* OPENSSL_HEADER_SSL_INTERNAL_H */