95c29f3cd1
Initial fork from f2d678e6e89b6508147086610e985d4e8416e867 (1.0.2 beta). (This change contains substantial changes from the original and effectively starts a new history.)
581 lines
17 KiB
C
581 lines
17 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 1999.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/pkcs8.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/cipher.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/x509.h>
|
|
|
|
#include "../evp/internal.h"
|
|
|
|
|
|
#define PKCS12_KEY_ID 1
|
|
#define PKCS12_IV_ID 2
|
|
|
|
static int ascii_to_ucs2(const char *ascii, size_t ascii_len,
|
|
uint8_t **out, size_t *out_len) {
|
|
uint8_t *unitmp;
|
|
size_t ulen, i;
|
|
|
|
ulen = ascii_len * 2 + 2;
|
|
if (ulen < ascii_len) {
|
|
return 0;
|
|
}
|
|
unitmp = OPENSSL_malloc(ulen);
|
|
if (unitmp == NULL) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < ulen - 2; i += 2) {
|
|
unitmp[i] = 0;
|
|
unitmp[i + 1] = ascii[i >> 1];
|
|
}
|
|
|
|
/* Make result double null terminated */
|
|
unitmp[ulen - 2] = 0;
|
|
unitmp[ulen - 1] = 0;
|
|
*out_len = ulen;
|
|
*out = unitmp;
|
|
return 1;
|
|
}
|
|
|
|
static int pkcs12_key_gen_uni(uint8_t *pass, size_t pass_len, uint8_t *salt,
|
|
size_t salt_len, int id, int iterations,
|
|
size_t out_len, uint8_t *out,
|
|
const EVP_MD *md_type) {
|
|
uint8_t *B, *D, *I, *p, *Ai;
|
|
int Slen, Plen, Ilen, Ijlen;
|
|
int i, j, v;
|
|
size_t u;
|
|
int ret = 0;
|
|
BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */
|
|
EVP_MD_CTX ctx;
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
v = EVP_MD_block_size(md_type);
|
|
u = EVP_MD_size(md_type);
|
|
D = OPENSSL_malloc(v);
|
|
Ai = OPENSSL_malloc(u);
|
|
B = OPENSSL_malloc(v + 1);
|
|
Slen = v * ((salt_len + v - 1) / v);
|
|
if (pass_len)
|
|
Plen = v * ((pass_len + v - 1) / v);
|
|
else
|
|
Plen = 0;
|
|
Ilen = Slen + Plen;
|
|
I = OPENSSL_malloc(Ilen);
|
|
Ij = BN_new();
|
|
Bpl1 = BN_new();
|
|
if (!D || !Ai || !B || !I || !Ij || !Bpl1)
|
|
goto err;
|
|
for (i = 0; i < v; i++)
|
|
D[i] = id;
|
|
p = I;
|
|
for (i = 0; i < Slen; i++)
|
|
*p++ = salt[i % salt_len];
|
|
for (i = 0; i < Plen; i++)
|
|
*p++ = pass[i % pass_len];
|
|
for (;;) {
|
|
if (!EVP_DigestInit_ex(&ctx, md_type, NULL) ||
|
|
!EVP_DigestUpdate(&ctx, D, v) ||
|
|
!EVP_DigestUpdate(&ctx, I, Ilen) ||
|
|
!EVP_DigestFinal_ex(&ctx, Ai, NULL)) {
|
|
goto err;
|
|
}
|
|
for (j = 1; j < iterations; j++) {
|
|
if (!EVP_DigestInit_ex(&ctx, md_type, NULL) ||
|
|
!EVP_DigestUpdate(&ctx, Ai, u) ||
|
|
!EVP_DigestFinal_ex(&ctx, Ai, NULL)) {
|
|
goto err;
|
|
}
|
|
}
|
|
memcpy(out, Ai, out_len < u ? out_len : u);
|
|
if (u >= out_len) {
|
|
ret = 1;
|
|
goto end;
|
|
}
|
|
out_len -= u;
|
|
out += u;
|
|
for (j = 0; j < v; j++)
|
|
B[j] = Ai[j % u];
|
|
/* Work out B + 1 first then can use B as tmp space */
|
|
if (!BN_bin2bn(B, v, Bpl1))
|
|
goto err;
|
|
if (!BN_add_word(Bpl1, 1))
|
|
goto err;
|
|
for (j = 0; j < Ilen; j += v) {
|
|
if (!BN_bin2bn(I + j, v, Ij))
|
|
goto err;
|
|
if (!BN_add(Ij, Ij, Bpl1))
|
|
goto err;
|
|
if (!BN_bn2bin(Ij, B))
|
|
goto err;
|
|
Ijlen = BN_num_bytes(Ij);
|
|
/* If more than 2^(v*8) - 1 cut off MSB */
|
|
if (Ijlen > v) {
|
|
if (!BN_bn2bin(Ij, B))
|
|
goto err;
|
|
memcpy(I + j, B + 1, v);
|
|
/* If less than v bytes pad with zeroes */
|
|
} else if (Ijlen < v) {
|
|
memset(I + j, 0, v - Ijlen);
|
|
if (!BN_bn2bin(Ij, I + j + v - Ijlen))
|
|
goto err;
|
|
} else if (!BN_bn2bin(Ij, I + j)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_uni, ERR_R_MALLOC_FAILURE);
|
|
|
|
end:
|
|
OPENSSL_free(Ai);
|
|
OPENSSL_free(B);
|
|
OPENSSL_free(D);
|
|
OPENSSL_free(I);
|
|
BN_free(Ij);
|
|
BN_free(Bpl1);
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pkcs12_key_gen_asc(const char *pass, size_t pass_len, uint8_t *salt,
|
|
size_t salt_len, int id, int iterations,
|
|
int out_len, uint8_t *out,
|
|
const EVP_MD *md_type) {
|
|
int ret;
|
|
uint8_t *ucs2_pass = NULL;
|
|
size_t ucs2_pass_len = 0;
|
|
|
|
if (pass && !ascii_to_ucs2(pass, pass_len, &ucs2_pass, &ucs2_pass_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_asc, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
ret = pkcs12_key_gen_uni(ucs2_pass, ucs2_pass_len, salt, salt_len, id,
|
|
iterations, out_len, out, md_type);
|
|
|
|
if (ucs2_pass) {
|
|
OPENSSL_cleanse(ucs2_pass, ucs2_pass_len);
|
|
OPENSSL_free(ucs2_pass);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pkcs12_pbe_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass,
|
|
size_t pass_len, ASN1_TYPE *param,
|
|
const EVP_CIPHER *cipher, const EVP_MD *md,
|
|
int is_encrypt) {
|
|
PBEPARAM *pbe;
|
|
int salt_len, iterations, ret;
|
|
uint8_t *salt;
|
|
const uint8_t *pbuf;
|
|
uint8_t key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH];
|
|
|
|
/* Extract useful info from parameter */
|
|
if (param == NULL || param->type != V_ASN1_SEQUENCE ||
|
|
param->value.sequence == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
pbuf = param->value.sequence->data;
|
|
pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length);
|
|
if (pbe == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (!pbe->iter) {
|
|
iterations = 1;
|
|
} else {
|
|
iterations = ASN1_INTEGER_get(pbe->iter);
|
|
}
|
|
salt = pbe->salt->data;
|
|
salt_len = pbe->salt->length;
|
|
if (!pkcs12_key_gen_asc(pass, pass_len, salt, salt_len, PKCS12_KEY_ID,
|
|
iterations, EVP_CIPHER_key_length(cipher), key, md)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR);
|
|
PBEPARAM_free(pbe);
|
|
return 0;
|
|
}
|
|
if (!pkcs12_key_gen_asc(pass, pass_len, salt, salt_len, PKCS12_IV_ID,
|
|
iterations, EVP_CIPHER_iv_length(cipher), iv, md)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR);
|
|
PBEPARAM_free(pbe);
|
|
return 0;
|
|
}
|
|
PBEPARAM_free(pbe);
|
|
ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
|
|
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
|
|
OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
|
|
return ret;
|
|
}
|
|
|
|
typedef int (*keygen_func)(EVP_CIPHER_CTX *ctx, const char *pass,
|
|
size_t pass_len, ASN1_TYPE *param,
|
|
const EVP_CIPHER *cipher, const EVP_MD *md,
|
|
int is_encrypt);
|
|
|
|
struct pbe_suite {
|
|
int pbe_nid;
|
|
int cipher_nid;
|
|
int md_nid;
|
|
keygen_func keygen;
|
|
};
|
|
|
|
static const struct pbe_suite kBuiltinPBE[] = {
|
|
{
|
|
NID_pbe_WithSHA1And128BitRC4, NID_rc4, NID_sha1, pkcs12_pbe_keyivgen,
|
|
},
|
|
{
|
|
NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NID_des_ede3_cbc, NID_sha1,
|
|
pkcs12_pbe_keyivgen,
|
|
},
|
|
};
|
|
|
|
static int pbe_cipher_init(ASN1_OBJECT *pbe_obj, const char *pass,
|
|
size_t pass_len, ASN1_TYPE *param,
|
|
EVP_CIPHER_CTX *ctx, int is_encrypt) {
|
|
const EVP_CIPHER *cipher;
|
|
const EVP_MD *md;
|
|
unsigned i;
|
|
|
|
const struct pbe_suite *suite = NULL;
|
|
const int pbe_nid = OBJ_obj2nid(pbe_obj);
|
|
|
|
for (i = 0; i < sizeof(kBuiltinPBE) / sizeof(struct pbe_suite); i++) {
|
|
suite = &kBuiltinPBE[i];
|
|
if (suite->pbe_nid == pbe_nid) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (suite == NULL) {
|
|
char obj_str[80];
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_ALGORITHM);
|
|
if (!pbe_obj) {
|
|
strncpy(obj_str, "NULL", sizeof(obj_str));
|
|
} else {
|
|
i2t_ASN1_OBJECT(obj_str, sizeof(obj_str), pbe_obj);
|
|
}
|
|
ERR_add_error_data(2, "TYPE=", obj_str);
|
|
return 0;
|
|
}
|
|
|
|
if (suite->cipher_nid == -1) {
|
|
cipher = NULL;
|
|
} else {
|
|
cipher = EVP_get_cipherbynid(suite->cipher_nid);
|
|
if (!cipher) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_CIPHER);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (suite->md_nid == -1) {
|
|
md = NULL;
|
|
} else {
|
|
md = EVP_get_digestbynid(suite->md_nid);
|
|
if (!md) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_DIGEST);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!suite->keygen(ctx, pass, pass_len, param, cipher, md, is_encrypt)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_KEYGEN_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pbe_crypt(const X509_ALGOR *algor, const char *pass, size_t pass_len,
|
|
uint8_t *in, size_t in_len, uint8_t **out, size_t *out_len,
|
|
int is_encrypt) {
|
|
uint8_t *buf;
|
|
int n, ret = 0;
|
|
EVP_CIPHER_CTX ctx;
|
|
unsigned block_size;
|
|
|
|
EVP_CIPHER_CTX_init(&ctx);
|
|
|
|
if (!pbe_cipher_init(algor->algorithm, pass, pass_len, algor->parameter, &ctx,
|
|
is_encrypt)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_UNKNOWN_CIPHER_ALGORITHM);
|
|
return 0;
|
|
}
|
|
block_size = EVP_CIPHER_CTX_block_size(&ctx);
|
|
|
|
if (in_len + block_size < in_len) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_TOO_LONG);
|
|
goto err;
|
|
}
|
|
|
|
buf = OPENSSL_malloc(in_len + block_size);
|
|
if (buf == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_CipherUpdate(&ctx, buf, &n, in, in_len)) {
|
|
OPENSSL_free(buf);
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB);
|
|
goto err;
|
|
}
|
|
*out_len = n;
|
|
|
|
if (!EVP_CipherFinal_ex(&ctx, buf + n, &n)) {
|
|
OPENSSL_free(buf);
|
|
OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB);
|
|
goto err;
|
|
}
|
|
*out_len += n;
|
|
*out = buf;
|
|
ret = 1;
|
|
|
|
err:
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void *pkcs12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it,
|
|
const char *pass, size_t pass_len,
|
|
ASN1_OCTET_STRING *oct) {
|
|
uint8_t *out;
|
|
const uint8_t *p;
|
|
void *ret;
|
|
size_t out_len;
|
|
|
|
if (!pbe_crypt(algor, pass, pass_len, oct->data, oct->length, &out, &out_len,
|
|
0 /* decrypt */)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_CRYPT_ERROR);
|
|
return NULL;
|
|
}
|
|
p = out;
|
|
ret = ASN1_item_d2i(NULL, &p, out_len, it);
|
|
OPENSSL_cleanse(out, out_len);
|
|
if (!ret) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_DECODE_ERROR);
|
|
}
|
|
OPENSSL_free(out);
|
|
return ret;
|
|
}
|
|
|
|
PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
|
|
int pass_len) {
|
|
if (pass && pass_len == -1) {
|
|
pass_len = strlen(pass);
|
|
}
|
|
return pkcs12_item_decrypt_d2i(pkcs8->algor,
|
|
ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass,
|
|
pass_len, pkcs8->digest);
|
|
}
|
|
|
|
static ASN1_OCTET_STRING *pkcs12_item_i2d_encrypt(X509_ALGOR *algor,
|
|
const ASN1_ITEM *it,
|
|
const char *pass,
|
|
size_t passlen, void *obj) {
|
|
ASN1_OCTET_STRING *oct;
|
|
uint8_t *in = NULL;
|
|
int in_len;
|
|
size_t crypt_len;
|
|
|
|
oct = M_ASN1_OCTET_STRING_new();
|
|
if (oct == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
in_len = ASN1_item_i2d(obj, &in, it);
|
|
if (!in) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCODE_ERROR);
|
|
return NULL;
|
|
}
|
|
if (!pbe_crypt(algor, pass, passlen, in, in_len, &oct->data, &crypt_len,
|
|
1 /* encrypt */)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCRYPT_ERROR);
|
|
OPENSSL_free(in);
|
|
return NULL;
|
|
}
|
|
oct->length = crypt_len;
|
|
OPENSSL_cleanse(in, in_len);
|
|
OPENSSL_free(in);
|
|
return oct;
|
|
}
|
|
|
|
X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
|
|
int pass_len, uint8_t *salt, size_t salt_len,
|
|
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
|
|
X509_SIG *pkcs8 = NULL;
|
|
X509_ALGOR *pbe;
|
|
|
|
if (pass && pass_len == -1) {
|
|
pass_len = strlen(pass);
|
|
}
|
|
|
|
pkcs8 = X509_SIG_new();
|
|
if (pkcs8 == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (pbe_nid == -1) {
|
|
pbe = PKCS5_pbe2_set(cipher, iterations, salt, salt_len);
|
|
} else {
|
|
pbe = PKCS5_pbe_set(pbe_nid, iterations, salt, salt_len);
|
|
}
|
|
|
|
if (!pbe) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, ERR_R_ASN1_LIB);
|
|
goto err;
|
|
}
|
|
|
|
X509_ALGOR_free(pkcs8->algor);
|
|
pkcs8->algor = pbe;
|
|
M_ASN1_OCTET_STRING_free(pkcs8->digest);
|
|
pkcs8->digest = pkcs12_item_i2d_encrypt(
|
|
pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, pass_len, p8inf);
|
|
if (!pkcs8->digest) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, PKCS8_R_ENCRYPT_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
return pkcs8;
|
|
|
|
err:
|
|
X509_SIG_free(pkcs8);
|
|
return NULL;
|
|
}
|
|
|
|
EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
|
|
EVP_PKEY *pkey = NULL;
|
|
ASN1_OBJECT *algoid;
|
|
char obj_tmp[80];
|
|
|
|
if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8))
|
|
return NULL;
|
|
|
|
pkey = EVP_PKEY_new();
|
|
if (pkey == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY,
|
|
PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM);
|
|
i2t_ASN1_OBJECT(obj_tmp, 80, algoid);
|
|
ERR_add_error_data(2, "TYPE=", obj_tmp);
|
|
goto error;
|
|
}
|
|
|
|
if (pkey->ameth->priv_decode) {
|
|
if (!pkey->ameth->priv_decode(pkey, p8)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_PRIVATE_KEY_DECODE_ERROR);
|
|
goto error;
|
|
}
|
|
} else {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_METHOD_NOT_SUPPORTED);
|
|
goto error;
|
|
}
|
|
|
|
return pkey;
|
|
|
|
error:
|
|
EVP_PKEY_free(pkey);
|
|
return NULL;
|
|
}
|
|
|
|
PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
|
|
PKCS8_PRIV_KEY_INFO *p8;
|
|
|
|
p8 = PKCS8_PRIV_KEY_INFO_new();
|
|
if (p8 == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
p8->broken = PKCS8_OK;
|
|
|
|
if (pkey->ameth) {
|
|
if (pkey->ameth->priv_encode) {
|
|
if (!pkey->ameth->priv_encode(p8, pkey)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8,
|
|
PKCS8_R_PRIVATE_KEY_ENCODE_ERROR);
|
|
goto error;
|
|
}
|
|
} else {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_METHOD_NOT_SUPPORTED);
|
|
goto error;
|
|
}
|
|
} else {
|
|
OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8,
|
|
PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM);
|
|
goto error;
|
|
}
|
|
return p8;
|
|
|
|
error:
|
|
PKCS8_PRIV_KEY_INFO_free(p8);
|
|
return NULL;
|
|
}
|