25'ten fazla konu seçemezsiniz Konular bir harf veya rakamla başlamalı, kısa çizgiler ('-') içerebilir ve en fazla 35 karakter uzunluğunda olabilir.
 
 
 
 
 
 

354 satır
12 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/digest.h>
  57. #include <assert.h>
  58. #include <string.h>
  59. #include <openssl/asn1.h>
  60. #include <openssl/md4.h>
  61. #include <openssl/md5.h>
  62. #include <openssl/nid.h>
  63. #include <openssl/sha.h>
  64. #include "internal.h"
  65. #include "../internal.h"
  66. #if defined(NDEBUG)
  67. #define CHECK(x) (void) (x)
  68. #else
  69. #define CHECK(x) assert(x)
  70. #endif
  71. static void md4_init(EVP_MD_CTX *ctx) {
  72. CHECK(MD4_Init(ctx->md_data));
  73. }
  74. static void md4_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  75. CHECK(MD4_Update(ctx->md_data, data, count));
  76. }
  77. static void md4_final(EVP_MD_CTX *ctx, uint8_t *out) {
  78. CHECK(MD4_Final(out, ctx->md_data));
  79. }
  80. static const EVP_MD md4_md = {
  81. NID_md4, MD4_DIGEST_LENGTH, 0 /* flags */, md4_init,
  82. md4_update, md4_final, 64 /* block size */, sizeof(MD4_CTX),
  83. };
  84. const EVP_MD *EVP_md4(void) { return &md4_md; }
  85. static void md5_init(EVP_MD_CTX *ctx) {
  86. CHECK(MD5_Init(ctx->md_data));
  87. }
  88. static void md5_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  89. CHECK(MD5_Update(ctx->md_data, data, count));
  90. }
  91. static void md5_final(EVP_MD_CTX *ctx, uint8_t *out) {
  92. CHECK(MD5_Final(out, ctx->md_data));
  93. }
  94. static const EVP_MD md5_md = {
  95. NID_md5, MD5_DIGEST_LENGTH, 0 /* flags */, md5_init,
  96. md5_update, md5_final, 64 /* block size */, sizeof(MD5_CTX),
  97. };
  98. const EVP_MD *EVP_md5(void) { return &md5_md; }
  99. static void sha1_init(EVP_MD_CTX *ctx) {
  100. CHECK(SHA1_Init(ctx->md_data));
  101. }
  102. static void sha1_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  103. CHECK(SHA1_Update(ctx->md_data, data, count));
  104. }
  105. static void sha1_final(EVP_MD_CTX *ctx, uint8_t *md) {
  106. CHECK(SHA1_Final(md, ctx->md_data));
  107. }
  108. static const EVP_MD sha1_md = {
  109. NID_sha1, SHA_DIGEST_LENGTH, 0 /* flags */, sha1_init,
  110. sha1_update, sha1_final, 64 /* block size */, sizeof(SHA_CTX),
  111. };
  112. const EVP_MD *EVP_sha1(void) { return &sha1_md; }
  113. static void sha224_init(EVP_MD_CTX *ctx) {
  114. CHECK(SHA224_Init(ctx->md_data));
  115. }
  116. static void sha224_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  117. CHECK(SHA224_Update(ctx->md_data, data, count));
  118. }
  119. static void sha224_final(EVP_MD_CTX *ctx, uint8_t *md) {
  120. CHECK(SHA224_Final(md, ctx->md_data));
  121. }
  122. static const EVP_MD sha224_md = {
  123. NID_sha224, SHA224_DIGEST_LENGTH, 0 /* flags */,
  124. sha224_init, sha224_update, sha224_final,
  125. 64 /* block size */, sizeof(SHA256_CTX),
  126. };
  127. const EVP_MD *EVP_sha224(void) { return &sha224_md; }
  128. static void sha256_init(EVP_MD_CTX *ctx) {
  129. CHECK(SHA256_Init(ctx->md_data));
  130. }
  131. static void sha256_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  132. CHECK(SHA256_Update(ctx->md_data, data, count));
  133. }
  134. static void sha256_final(EVP_MD_CTX *ctx, uint8_t *md) {
  135. CHECK(SHA256_Final(md, ctx->md_data));
  136. }
  137. static const EVP_MD sha256_md = {
  138. NID_sha256, SHA256_DIGEST_LENGTH, 0 /* flags */,
  139. sha256_init, sha256_update, sha256_final,
  140. 64 /* block size */, sizeof(SHA256_CTX),
  141. };
  142. const EVP_MD *EVP_sha256(void) { return &sha256_md; }
  143. static void sha384_init(EVP_MD_CTX *ctx) {
  144. CHECK(SHA384_Init(ctx->md_data));
  145. }
  146. static void sha384_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  147. CHECK(SHA384_Update(ctx->md_data, data, count));
  148. }
  149. static void sha384_final(EVP_MD_CTX *ctx, uint8_t *md) {
  150. CHECK(SHA384_Final(md, ctx->md_data));
  151. }
  152. static const EVP_MD sha384_md = {
  153. NID_sha384, SHA384_DIGEST_LENGTH, 0 /* flags */,
  154. sha384_init, sha384_update, sha384_final,
  155. 128 /* block size */, sizeof(SHA512_CTX),
  156. };
  157. const EVP_MD *EVP_sha384(void) { return &sha384_md; }
  158. static void sha512_init(EVP_MD_CTX *ctx) {
  159. CHECK(SHA512_Init(ctx->md_data));
  160. }
  161. static void sha512_update(EVP_MD_CTX *ctx, const void *data, size_t count) {
  162. CHECK(SHA512_Update(ctx->md_data, data, count));
  163. }
  164. static void sha512_final(EVP_MD_CTX *ctx, uint8_t *md) {
  165. CHECK(SHA512_Final(md, ctx->md_data));
  166. }
  167. static const EVP_MD sha512_md = {
  168. NID_sha512, SHA512_DIGEST_LENGTH, 0 /* flags */,
  169. sha512_init, sha512_update, sha512_final,
  170. 128 /* block size */, sizeof(SHA512_CTX),
  171. };
  172. const EVP_MD *EVP_sha512(void) { return &sha512_md; }
  173. typedef struct {
  174. MD5_CTX md5;
  175. SHA_CTX sha1;
  176. } MD5_SHA1_CTX;
  177. static void md5_sha1_init(EVP_MD_CTX *md_ctx) {
  178. MD5_SHA1_CTX *ctx = md_ctx->md_data;
  179. CHECK(MD5_Init(&ctx->md5) && SHA1_Init(&ctx->sha1));
  180. }
  181. static void md5_sha1_update(EVP_MD_CTX *md_ctx, const void *data,
  182. size_t count) {
  183. MD5_SHA1_CTX *ctx = md_ctx->md_data;
  184. CHECK(MD5_Update(&ctx->md5, data, count) &&
  185. SHA1_Update(&ctx->sha1, data, count));
  186. }
  187. static void md5_sha1_final(EVP_MD_CTX *md_ctx, uint8_t *out) {
  188. MD5_SHA1_CTX *ctx = md_ctx->md_data;
  189. CHECK(MD5_Final(out, &ctx->md5) &&
  190. SHA1_Final(out + MD5_DIGEST_LENGTH, &ctx->sha1));
  191. }
  192. static const EVP_MD md5_sha1_md = {
  193. NID_md5_sha1,
  194. MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH,
  195. 0 /* flags */,
  196. md5_sha1_init,
  197. md5_sha1_update,
  198. md5_sha1_final,
  199. 64 /* block size */,
  200. sizeof(MD5_SHA1_CTX),
  201. };
  202. const EVP_MD *EVP_md5_sha1(void) { return &md5_sha1_md; }
  203. struct nid_to_digest {
  204. int nid;
  205. const EVP_MD* (*md_func)(void);
  206. const char *short_name;
  207. const char *long_name;
  208. };
  209. static const struct nid_to_digest nid_to_digest_mapping[] = {
  210. {NID_md4, EVP_md4, SN_md4, LN_md4},
  211. {NID_md5, EVP_md5, SN_md5, LN_md5},
  212. {NID_sha1, EVP_sha1, SN_sha1, LN_sha1},
  213. {NID_sha224, EVP_sha224, SN_sha224, LN_sha224},
  214. {NID_sha256, EVP_sha256, SN_sha256, LN_sha256},
  215. {NID_sha384, EVP_sha384, SN_sha384, LN_sha384},
  216. {NID_sha512, EVP_sha512, SN_sha512, LN_sha512},
  217. {NID_md5_sha1, EVP_md5_sha1, SN_md5_sha1, LN_md5_sha1},
  218. /* As a remnant of signing |EVP_MD|s, OpenSSL returned the corresponding
  219. * hash function when given a signature OID. To avoid unintended lax parsing
  220. * of hash OIDs, this is no longer supported for lookup by OID or NID.
  221. * Node.js, however, exposes |EVP_get_digestbyname|'s full behavior to
  222. * consumers so we retain it there. */
  223. {NID_undef, EVP_sha1, SN_dsaWithSHA, LN_dsaWithSHA},
  224. {NID_undef, EVP_sha1, SN_dsaWithSHA1, LN_dsaWithSHA1},
  225. {NID_undef, EVP_sha1, SN_ecdsa_with_SHA1, NULL},
  226. {NID_undef, EVP_md5, SN_md5WithRSAEncryption, LN_md5WithRSAEncryption},
  227. {NID_undef, EVP_sha1, SN_sha1WithRSAEncryption, LN_sha1WithRSAEncryption},
  228. {NID_undef, EVP_sha224, SN_sha224WithRSAEncryption,
  229. LN_sha224WithRSAEncryption},
  230. {NID_undef, EVP_sha256, SN_sha256WithRSAEncryption,
  231. LN_sha256WithRSAEncryption},
  232. {NID_undef, EVP_sha384, SN_sha384WithRSAEncryption,
  233. LN_sha384WithRSAEncryption},
  234. {NID_undef, EVP_sha512, SN_sha512WithRSAEncryption,
  235. LN_sha512WithRSAEncryption},
  236. };
  237. const EVP_MD* EVP_get_digestbynid(int nid) {
  238. if (nid == NID_undef) {
  239. /* Skip the |NID_undef| entries in |nid_to_digest_mapping|. */
  240. return NULL;
  241. }
  242. for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(nid_to_digest_mapping); i++) {
  243. if (nid_to_digest_mapping[i].nid == nid) {
  244. return nid_to_digest_mapping[i].md_func();
  245. }
  246. }
  247. return NULL;
  248. }
  249. static const struct {
  250. uint8_t oid[9];
  251. uint8_t oid_len;
  252. const EVP_MD *(*md_func) (void);
  253. } kMDOIDs[] = {
  254. /* 1.2.840.113549.2.4 */
  255. { {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x04}, 8, EVP_md4 },
  256. /* 1.2.840.113549.2.5 */
  257. { {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05}, 8, EVP_md5 },
  258. /* 1.3.14.3.2.26 */
  259. { {0x2b, 0x0e, 0x03, 0x02, 0x1a}, 5, EVP_sha1 },
  260. /* 2.16.840.1.101.3.4.2.1 */
  261. { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01}, 9, EVP_sha256 },
  262. /* 2.16.840.1.101.3.4.2.2 */
  263. { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02}, 9, EVP_sha384 },
  264. /* 2.16.840.1.101.3.4.2.3 */
  265. { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03}, 9, EVP_sha512 },
  266. /* 2.16.840.1.101.3.4.2.4 */
  267. { {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04}, 9, EVP_sha224 },
  268. };
  269. const EVP_MD *EVP_get_digestbyobj(const ASN1_OBJECT *obj) {
  270. for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMDOIDs); i++) {
  271. if (obj->length == kMDOIDs[i].oid_len &&
  272. memcmp(obj->data, kMDOIDs[i].oid, obj->length) == 0) {
  273. return kMDOIDs[i].md_func();
  274. }
  275. }
  276. return NULL;
  277. }
  278. const EVP_MD *EVP_get_digestbyname(const char *name) {
  279. for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(nid_to_digest_mapping); i++) {
  280. const char *short_name = nid_to_digest_mapping[i].short_name;
  281. const char *long_name = nid_to_digest_mapping[i].long_name;
  282. if ((short_name && strcmp(short_name, name) == 0) ||
  283. (long_name && strcmp(long_name, name) == 0)) {
  284. return nid_to_digest_mapping[i].md_func();
  285. }
  286. }
  287. return NULL;
  288. }