Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
 
 
 
 
 
 

382 rader
15 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/sha.h>
  57. #include <string.h>
  58. #include <openssl/mem.h>
  59. #if !defined(OPENSSL_NO_ASM) && \
  60. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  61. defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
  62. #define SHA1_ASM
  63. #endif
  64. int SHA1_Init(SHA_CTX *sha) {
  65. memset(sha, 0, sizeof(SHA_CTX));
  66. sha->h0 = 0x67452301UL;
  67. sha->h1 = 0xefcdab89UL;
  68. sha->h2 = 0x98badcfeUL;
  69. sha->h3 = 0x10325476UL;
  70. sha->h4 = 0xc3d2e1f0UL;
  71. return 1;
  72. }
  73. uint8_t *SHA1(const uint8_t *data, size_t len, uint8_t *out) {
  74. SHA_CTX ctx;
  75. static uint8_t buf[SHA_DIGEST_LENGTH];
  76. /* TODO(fork): remove this static buffer. */
  77. if (out == NULL) {
  78. out = buf;
  79. }
  80. if (!SHA1_Init(&ctx)) {
  81. return NULL;
  82. }
  83. SHA1_Update(&ctx, data, len);
  84. SHA1_Final(out, &ctx);
  85. OPENSSL_cleanse(&ctx, sizeof(ctx));
  86. return out;
  87. }
  88. #define DATA_ORDER_IS_BIG_ENDIAN
  89. #define HASH_LONG uint32_t
  90. #define HASH_CTX SHA_CTX
  91. #define HASH_CBLOCK 64
  92. #define HASH_MAKE_STRING(c, s) \
  93. do { \
  94. unsigned long ll; \
  95. ll = (c)->h0; \
  96. (void) HOST_l2c(ll, (s)); \
  97. ll = (c)->h1; \
  98. (void) HOST_l2c(ll, (s)); \
  99. ll = (c)->h2; \
  100. (void) HOST_l2c(ll, (s)); \
  101. ll = (c)->h3; \
  102. (void) HOST_l2c(ll, (s)); \
  103. ll = (c)->h4; \
  104. (void) HOST_l2c(ll, (s)); \
  105. } while (0)
  106. #define HASH_UPDATE SHA1_Update
  107. #define HASH_TRANSFORM SHA1_Transform
  108. #define HASH_FINAL SHA1_Final
  109. #define HASH_BLOCK_DATA_ORDER sha1_block_data_order
  110. #define Xupdate(a, ix, ia, ib, ic, id) \
  111. ((a) = (ia ^ ib ^ ic ^ id), ix = (a) = ROTATE((a), 1))
  112. #ifndef SHA1_ASM
  113. static
  114. #endif
  115. void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
  116. #include "../digest/md32_common.h"
  117. #define K_00_19 0x5a827999UL
  118. #define K_20_39 0x6ed9eba1UL
  119. #define K_40_59 0x8f1bbcdcUL
  120. #define K_60_79 0xca62c1d6UL
  121. /* As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified
  122. * to the code in F_00_19. Wei attributes these optimisations to Peter
  123. * Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define
  124. * F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) I've just become aware of another
  125. * tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a */
  126. #define F_00_19(b, c, d) ((((c) ^ (d)) & (b)) ^ (d))
  127. #define F_20_39(b, c, d) ((b) ^ (c) ^ (d))
  128. #define F_40_59(b, c, d) (((b) & (c)) | (((b) | (c)) & (d)))
  129. #define F_60_79(b, c, d) F_20_39(b, c, d)
  130. #define BODY_00_15(i, a, b, c, d, e, f, xi) \
  131. (f) = xi + (e) + K_00_19 + ROTATE((a), 5) + F_00_19((b), (c), (d)); \
  132. (b) = ROTATE((b), 30);
  133. #define BODY_16_19(i, a, b, c, d, e, f, xi, xa, xb, xc, xd) \
  134. Xupdate(f, xi, xa, xb, xc, xd); \
  135. (f) += (e) + K_00_19 + ROTATE((a), 5) + F_00_19((b), (c), (d)); \
  136. (b) = ROTATE((b), 30);
  137. #define BODY_20_31(i, a, b, c, d, e, f, xi, xa, xb, xc, xd) \
  138. Xupdate(f, xi, xa, xb, xc, xd); \
  139. (f) += (e) + K_20_39 + ROTATE((a), 5) + F_20_39((b), (c), (d)); \
  140. (b) = ROTATE((b), 30);
  141. #define BODY_32_39(i, a, b, c, d, e, f, xa, xb, xc, xd) \
  142. Xupdate(f, xa, xa, xb, xc, xd); \
  143. (f) += (e) + K_20_39 + ROTATE((a), 5) + F_20_39((b), (c), (d)); \
  144. (b) = ROTATE((b), 30);
  145. #define BODY_40_59(i, a, b, c, d, e, f, xa, xb, xc, xd) \
  146. Xupdate(f, xa, xa, xb, xc, xd); \
  147. (f) += (e) + K_40_59 + ROTATE((a), 5) + F_40_59((b), (c), (d)); \
  148. (b) = ROTATE((b), 30);
  149. #define BODY_60_79(i, a, b, c, d, e, f, xa, xb, xc, xd) \
  150. Xupdate(f, xa, xa, xb, xc, xd); \
  151. (f) = xa + (e) + K_60_79 + ROTATE((a), 5) + F_60_79((b), (c), (d)); \
  152. (b) = ROTATE((b), 30);
  153. #ifdef X
  154. #undef X
  155. #endif
  156. /* Originally X was an array. As it's automatic it's natural
  157. * to expect RISC compiler to accomodate at least part of it in
  158. * the register bank, isn't it? Unfortunately not all compilers
  159. * "find" this expectation reasonable:-( On order to make such
  160. * compilers generate better code I replace X[] with a bunch of
  161. * X0, X1, etc. See the function body below...
  162. * <appro@fy.chalmers.se> */
  163. #define X(i) XX##i
  164. #if !defined(SHA1_ASM)
  165. static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num) {
  166. const uint8_t *data = p;
  167. register unsigned MD32_REG_T A, B, C, D, E, T, l;
  168. unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10,
  169. XX11, XX12, XX13, XX14, XX15;
  170. A = c->h0;
  171. B = c->h1;
  172. C = c->h2;
  173. D = c->h3;
  174. E = c->h4;
  175. for (;;) {
  176. const union {
  177. long one;
  178. char little;
  179. } is_endian = {1};
  180. if (!is_endian.little && ((size_t)p % 4) == 0) {
  181. const uint32_t *W = (const uint32_t *)data;
  182. X(0) = W[0];
  183. X(1) = W[1];
  184. BODY_00_15(0, A, B, C, D, E, T, X(0));
  185. X(2) = W[2];
  186. BODY_00_15(1, T, A, B, C, D, E, X(1));
  187. X(3) = W[3];
  188. BODY_00_15(2, E, T, A, B, C, D, X(2));
  189. X(4) = W[4];
  190. BODY_00_15(3, D, E, T, A, B, C, X(3));
  191. X(5) = W[5];
  192. BODY_00_15(4, C, D, E, T, A, B, X(4));
  193. X(6) = W[6];
  194. BODY_00_15(5, B, C, D, E, T, A, X(5));
  195. X(7) = W[7];
  196. BODY_00_15(6, A, B, C, D, E, T, X(6));
  197. X(8) = W[8];
  198. BODY_00_15(7, T, A, B, C, D, E, X(7));
  199. X(9) = W[9];
  200. BODY_00_15(8, E, T, A, B, C, D, X(8));
  201. X(10) = W[10];
  202. BODY_00_15(9, D, E, T, A, B, C, X(9));
  203. X(11) = W[11];
  204. BODY_00_15(10, C, D, E, T, A, B, X(10));
  205. X(12) = W[12];
  206. BODY_00_15(11, B, C, D, E, T, A, X(11));
  207. X(13) = W[13];
  208. BODY_00_15(12, A, B, C, D, E, T, X(12));
  209. X(14) = W[14];
  210. BODY_00_15(13, T, A, B, C, D, E, X(13));
  211. X(15) = W[15];
  212. BODY_00_15(14, E, T, A, B, C, D, X(14));
  213. BODY_00_15(15, D, E, T, A, B, C, X(15));
  214. data += HASH_CBLOCK;
  215. } else {
  216. (void)HOST_c2l(data, l);
  217. X(0) = l;
  218. (void)HOST_c2l(data, l);
  219. X(1) = l;
  220. BODY_00_15(0, A, B, C, D, E, T, X(0));
  221. (void)HOST_c2l(data, l);
  222. X(2) = l;
  223. BODY_00_15(1, T, A, B, C, D, E, X(1));
  224. (void)HOST_c2l(data, l);
  225. X(3) = l;
  226. BODY_00_15(2, E, T, A, B, C, D, X(2));
  227. (void)HOST_c2l(data, l);
  228. X(4) = l;
  229. BODY_00_15(3, D, E, T, A, B, C, X(3));
  230. (void)HOST_c2l(data, l);
  231. X(5) = l;
  232. BODY_00_15(4, C, D, E, T, A, B, X(4));
  233. (void)HOST_c2l(data, l);
  234. X(6) = l;
  235. BODY_00_15(5, B, C, D, E, T, A, X(5));
  236. (void)HOST_c2l(data, l);
  237. X(7) = l;
  238. BODY_00_15(6, A, B, C, D, E, T, X(6));
  239. (void)HOST_c2l(data, l);
  240. X(8) = l;
  241. BODY_00_15(7, T, A, B, C, D, E, X(7));
  242. (void)HOST_c2l(data, l);
  243. X(9) = l;
  244. BODY_00_15(8, E, T, A, B, C, D, X(8));
  245. (void)HOST_c2l(data, l);
  246. X(10) = l;
  247. BODY_00_15(9, D, E, T, A, B, C, X(9));
  248. (void)HOST_c2l(data, l);
  249. X(11) = l;
  250. BODY_00_15(10, C, D, E, T, A, B, X(10));
  251. (void)HOST_c2l(data, l);
  252. X(12) = l;
  253. BODY_00_15(11, B, C, D, E, T, A, X(11));
  254. (void)HOST_c2l(data, l);
  255. X(13) = l;
  256. BODY_00_15(12, A, B, C, D, E, T, X(12));
  257. (void)HOST_c2l(data, l);
  258. X(14) = l;
  259. BODY_00_15(13, T, A, B, C, D, E, X(13));
  260. (void)HOST_c2l(data, l);
  261. X(15) = l;
  262. BODY_00_15(14, E, T, A, B, C, D, X(14));
  263. BODY_00_15(15, D, E, T, A, B, C, X(15));
  264. }
  265. BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
  266. BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
  267. BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
  268. BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
  269. BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
  270. BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
  271. BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
  272. BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
  273. BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
  274. BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
  275. BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
  276. BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
  277. BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
  278. BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
  279. BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
  280. BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
  281. BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
  282. BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
  283. BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
  284. BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
  285. BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
  286. BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
  287. BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
  288. BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
  289. BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
  290. BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
  291. BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
  292. BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
  293. BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
  294. BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
  295. BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
  296. BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
  297. BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
  298. BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
  299. BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
  300. BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
  301. BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
  302. BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
  303. BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
  304. BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
  305. BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
  306. BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
  307. BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
  308. BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
  309. BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
  310. BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
  311. BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
  312. BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
  313. BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
  314. BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
  315. BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
  316. BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
  317. BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
  318. BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
  319. BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
  320. BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
  321. BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
  322. BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
  323. BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
  324. BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
  325. BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
  326. BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
  327. BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
  328. BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
  329. c->h0 = (c->h0 + E) & 0xffffffffL;
  330. c->h1 = (c->h1 + T) & 0xffffffffL;
  331. c->h2 = (c->h2 + A) & 0xffffffffL;
  332. c->h3 = (c->h3 + B) & 0xffffffffL;
  333. c->h4 = (c->h4 + C) & 0xffffffffL;
  334. if (--num == 0) {
  335. break;
  336. }
  337. A = c->h0;
  338. B = c->h1;
  339. C = c->h2;
  340. D = c->h3;
  341. E = c->h4;
  342. }
  343. }
  344. #endif